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Abstract
As the recent update of General Anaesthesia compared 
to Spinal anaesthesia (GAS) studies has been published 
in 2019, together with other clinical evidence, the human 
studies provided an overwhelming mixed evidence of an 
association between anaesthesia exposure in early child-
hood and later neurodevelopment changes in children. 
Pre-clinical studies in animals provided strong evidence on 
how anaesthetic and sedative agents (ASAs) causing neu-
rotoxicity in developing brain and deficits in long-term cog-
nitive functions. However pre-clinical results cannot trans-
late to clinical practice directly. Three well designed large 
population-based human studies strongly indicated that a 
single brief exposure to general anesthesia (GAs) is not as-
sociated with any long-term neurodevelopment deficits in 
children’s brain. Multiple exposure might cause decrease 
in processing speed and motor skills of children. Howev-
er, the association between GAs and neurodevelopment in 
children is still inconclusive. More clinical studies with larger 
scale observations, randomized trials with longer duration 
exposure of GAs and follow-ups, more sensitive outcome 
measurements, and strict confounder controls are needed 
in the future to provide more conclusive and informative 
data. New research area has been developed to contribute 
in finding solutions for clinical practice as attenuating the 
neurotoxic effect of ASAs. Xenon and Dexmedetomidine 
are already used in clinical setting as neuroprotection and 
anaesthetic sparing-effect, but more research is still need-
ed.
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Introduction
The advent of the modern general anaesthesia 

(GAs) made it possible for the advancement of mod-
ern complex surgical and diagnostic procedures in 
seriously ill patients of all age groups. Anaesthet-
ic and sedative reagents affect the central nervous 
system (CNS) by interacting with neurotransmitters 
and resolving neuronal integration between differ-
ent brain regions. Presently widely used anesthetics 
act by two major mechanisms, 1) Increasing inhib-
ition through γ-Aminobutyric acid (GABA) receptors 
(e.g., benzodiazepines, barbiturates, propofol, eto-
midate, isoflurane, enflurane, and halothane) [1] and 
2) Decreasing the excitation via N-Methyl-D-Aspar-
ate (NMDA) receptors (e.g., katemine, nitrous ox-
ide(N2O), and xenon) [2].

In the last 20 years, more and more evidence from 
animal studies, including non-human primates, have 
indicated the potentials for GAs agents to cause neu-
ro-apoptosis and other neurodegenerative changes in 
the developing mammalian brain. It has been demon-
strated that exposure to GAs, predominately during 
the early postnatal period triggers long-term morph-
ological and functional changes in the CNS, which 
in turn can result in impairment of neurocognitive 
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genesis are growth factors, like nerve growth factor 
(NGF) and brain-derived neurotrophic factor (BDNF). 
These factors mainly regulate the differentiation of pro-
genitor cells, axo- and dendrite-genesis, as well as neur-
onal cell survival [8].

As known that all commonly used anesthetic and 
sedative reagents provide anaesthetic and sedative ef-
fects by binding to the GABA receptor, or the NMDA 
receptor, or both. The first animal study by Jevtovic-To-
dorovic, et al. [2] demonstrated that routine GAs (iso-
flurane, sevoflurane, propofol, ketamine) are capable 
of producing lasting cognitive, behavioral and memory 
deficiency in postnatal day 7 rats when exposed with 
6h mixture of nitro oxide, isoflurane and midazolam 
[2]. More cellular and animal studies have provided 
substantial and convincing evidence on the cytotoxic 
and neurotoxic effects of GAs. Furthermore, studies on 
non-human primates aligned with the results in rodents 
research, finding that early-life exposure to ketamine, 
sevoflurane or isoflurane can lead to persistent decline 
in cognitive, executive, memory and motivation-based 
tasks, and increase anxiety behaviours in long term [9-
11].

The molecular mechanisms of cytotoxic and neuro-
toxic effect of general anaesthetics on developing brain 
have been extensively explored. In-vitro and in-vivo 
studies have revealed that anaesthetics induce apopto-
sis via two possible pathways: Intrinsic pathway and ex-
trinsic pathway [12]. The extrinsic pathway is activated 
via tumour necrosis factor (TNF) receptors. While the 
intrinsic pathway is initiated in response to signals from 
within the cell, this results in the decreasing anti-apop-
totic BCL-2/pro-apoptotic Bax ratio, increasing react-
ive oxygen species (ROS), and promoting cytochrome 
C to be released from the mitochondria and activat-
ing caspase-3 cleavage. GAs accelerates the process 
of apoptosis during the period when GABA receptor is 
excitatory. While applying the GAs at a later neuronal 
development stage when GABA receptor is inhibitory, 
it induces less neurodegeneration. However, the nega-
tive effects on learning and memory are still exist. Both 
long-term blockage of excitatory and the activation of 
inhibitory receptors, neuronal synapses may induce a 
change in receptor expression. This might influence the 
excitability of the neuron and make it more vulnerable 
to toxic stimuli. For neuronal development, both excita-
tory and inhibitory input from adjacent neurons are es-
sential. By blocking the connection from adjacent neur-
ons, the differentiation and survival might be critically 
affected. Other studies also suggested that GAs causes 
deficit in axon myelination by affecting glial cells [13]. 
Recently anaesthetic-induced neuroinflammation has 
been revealed as a possible mechanism for cognitive 
impairment in immature mice [14].

The current available animal studies give rises to 
several important indications of factors that affect tox-

performance [3]. It arouse the concerns about anaes-
thesia related neurological injury in young children 
among parents, health-care providers and regulatory 
authorities. Several human clinical studies including 
different outcome measurements interpreted the 
associations between surgery in early childhood and 
slightly worse subsequent academic performance or 
increased risk of the behavioral abnormity. In 2016, 
the U.S. Food and Drug Administration (FDA) issued 
a safety announcement, warning that “repeated or 
lengthy use of general anesthetic and sedation drugs 
during surgeries or procedures in children younger 
than 3 years or in pregnant women during their third 
trimester may affect the development of children’s 
brains” [4]. And in 2017, FDA issued a change in label-
ing regarding the safe use of anaesthetic and sedative 
reagents [5].

As more and more clinical evidence has been re-
vealed about how anaesthetic and sedative reagents 
affect development of human brain, it is more import-
ant to analyze the strengths and limitations of all the 
clinical evidence in order to determine the changes in 
clinical practice. This review will be focusing on the new 
findings in both pre-clinical research and clinical studies, 
with the brief summarization of the animal studies and 
current clinical evidence that have been well reported. 
Finally, the future and ongoing clinical studies will be 
discussed as the future directions for anaesthetic re-
search on developing brain.

Pre-Clinical Evidence: Early-Life Anaesthesia 
Exposure

The initial pre-clinical studies of anaesthesia induced 
developmental neurotoxicity were done with rodent 
models. Rodent brains undergo brain growth spurt 
period (synaptogenesis) mainly at postnatal time. The 
brain maturation reaches 90-95% of adult weight for 
fairly short time (postnatal day 20-21). And the key 
developmental processes, like synaptogenesis, blood-
brain barrier establishment and oligodendrocyte mat-
uration etc., across ages are well defined [6,7]. During 
normal synaptogenesis, neurons that fail to develop 
synaptic contact will undergo programmed cell death 
also known as apoptosis. As for neuronal development, 
migration, differentiation and synaptogenesis, two of 
the major factors that influence all are excitatory and 
inhibitory neurotransmitters. The most important excit-
atory neurotransmitter that mainly contribute to neuro-
genesis is glutamate, which acts mainly by activating the 
NMDA receptor. The most important inhibitory neuro-
transmitter in mature brain is GABA. In the immature 
brain, the GABA receptor is excitatory, and its activation 
leads to a depolarization in the immature neuron. Dur-
ing development, the intracellular chloride concentra-
tion decreases, and the GABA receptor is transitioning 
from being excitatory to inhibitory receptor in the adult 
brain. Other important factors that involves in neuro-
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studies basically used healthy animals to expose to 
GAs. In the clinical situation, it is often with children 
in need of surgery, whom might be exposed to pro-
longed surgeries and have multiple postoperative 
complications, like pain, anxiety, fluid imbalance, 
and surgery-induced trauma. There are only limited 
animal studies including surgical or pain stimuli into 
consideration, but the results are contradictory. One 
study published in 2012 by Shu, et al. [22] showed 
that rat pups who received GAs for 6h with a hind 
paw incision or formalin injection respectively, ex-
hibited higher degree of neuro-apoptosis in brain 
cortex and spinal cord. These subjects also showed 
long-term impairments comparing to age-matched 
animals which have been exposed to GAs alone with-
out nociceptive stimulus [22]. Interestingly another 
study published in the same year by Liu, et al. sug-
gested that 6h exposure of rat pups to GAs with 
chemical nociception induced by complete Freund’s 
adjuvant resulted in attenuated anaesthesia-induced 
neuro-apoptotic response. Cognitive behavior in later 
life was not assessed [23]. All these indicating that 
the real situation in clinical setting is way more com-
plicated. It would be challenging to establish a clear 
relevance of the animal studies to clinical practice. 
However pre-clinical animal studies are still valuable 
as they revealed the molecular and cellular mechan-
ism for GAs toxicity in developing brain [24]. The be-
havior and pathological data from animal studies can 
provide reference for the designing clinical studies.

Clinical Evidence: What we Can Imply from all 
the Clinical Data and What’s Next

The first reported study in 1953 by Eckenhoff, et al. 
[25] suggested possible relevance between personality 
change and pre-anaesthetic medication (pentobarbital, 
scopolamine and morphine) [25]. However no clear link 
between surgery and neuro developmental outcome 
had been noticed outside the neonatal period. There 
was no obvious clinical problem, until the pre-clinical 
data has grown. There was an increasing urge to find 
out if GAs exposure does indeed cause the clinical rel-
evance of neurodevelopment dysfunction in children. 
The answer to this question is not easy or straight-
forward. There are many aspects and concerns need-
ed to be taken into consideration, regarding the GAs 
effects on children. The effect might be dependent 
on the choice of anaesthetics. The GAs approach var-
ies based on the child’s age, medical/surgical history, 
types of surgical procedure and duration of anaesthe-
sia administration and the nature of the anaesthesia 
exposure. Unfortunately, translation pre-clinical data in 
human is imprecise and inapplicable. A recent review 
by integrating more than 440 pre-clinical studies with 
exceed 30 clinical studies up to date, demonstrated 
no clear exposure duration threshold below which no 
structural injury or subsequent cognitive abnormalities 

icity of early-life anaesthesia on animals. First is the de-
velopmental stage at which animals are exposed to GAs. 
Neuronal cells tend to be more vulnerable during the 
brain growth spurt period. And the timing of this period 
varies from species, in rat, it lasts from the 7th up to 17th 
postnatal day and in rhesus monkeys from the 5th to the 
16th postnatal day [6]. The peak period of synaptogen-
esis various between brain regions and different neur-
onal cell types [15]. Different neuronal cell types may 
possess different susceptibility to GAs. Glutaminergic 
and GABA ergic neurons may be more vulnerable to 
toxic effects than cholinergic neurons [16].

Second important factor is the length and frequency 
of exposure to the general anaesthetics. Neurocognitive 
deficits have been identified after several hours GAs ad-
ministration but not after short-term single administra-
tion of GAs [17]. Repeated, short-time exposures to the 
GAs also results in cognitive dysfunction, indicating that 
accumulative length of exposure to GAs within a certain 
period of time is one of key factors [14,18].

Third, a dose-dependent toxicity effect has been re-
vealed in animal studies. Higher the dose of GAs is, the 
larger the number of apoptotic neurons is. The dosage 
of GAs can affect the degree of developmental impair-
ment, cell differentiation and synaptogenesis [1,19].

Lastly, recent studies suggest that the sensitivity to 
GAs may vary between sex. One study in rats showed 
males and females followed distinct paths of neural and 
cognitive development after an early anesthetic-medi-
ated effect on the brain. Both male and female rats 
exhibited extensive neuronal death. However drastic 
behavioral impairment was manifested only in male 
subjects [20].

The Gap and Limitation of the Findings from 
Animal Studies Transferring to Clinical Practice

Researchers have focused substantial attention 
to evaluating the development of cognitive abilities 
of animals exposed to GAs at the peak of synapto-
genesis. It has been concluded that GAs exposure 
animals showed abnormality in memory and cogni-
tive in adulthood comparing with GAs non-exposure 
animals. Both single long exposure and repeatedly, 
short-term exposure to GAs during critical stage of 
brain development can cause significant impairments 
in neurocognitive development. We know that the 
critical stages of brain development various from 
species. Then how to imply the findings from animal 
research to clinical practice?

In human brain, the synaptogenesis period is 
thought to last from the last trimester until the third 
year of life which is way longer comparing to rodent 
and rhesus monkeys. It is hard to imply the critical 
development stages that mostly affected by GAs dir-
ectly from animal studies [21]. Besides, the animal 
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development were assessed at 2 years of age and 5 
years of age respectively. The secondary outcome, 
the composite cognitive score of the Bayley Scales 
of Infant and Toddler Development III, assessed at 2 
years of age and published in 2016, providing strong 
evidence for equivalence between awake-regional 
anaesthesia and GAs in infancy in terms of neuro-
development [33]. The primary outcome measure 
was full-scale intelligence quotient (FSIQ) on the 
Wechsler Preschool and Primary Scale of Intelligence, 
third edition at 5 years of age published recently in 
2019. The results were interpreted that slightly less 
than 1h of GAs in early infancy does not alter neuro 
developmental outcome at 5 years of age compared 
with awake-regional anaesthesia in a predominantly 
male study population [34].

Mayo Anesthesia Safety in Kids (MASK) Study
MASK study enrolled children born in Olmsted 

County, Minnesota, USA, from 1994 to 2007, who 
were exposed to surgery and anaesthesia before the 
age of 3 year. Total 997 children were enrolled in the 
MASK study. 380 children had a single exposure to 
GAs, 206 children had multiple exposure to GAs, and 
411 were unexposed. Enrolled children were sampled 
using a propensity-guided approach and underwent 
neuropsychological testing at age 8 to 12 or 15 to 20 
year. The primary outcome based on the Full-Scale 
intelligence quotient standard score of the Wech-
sler Abbreviated Scale of Intelligence did not differ 
significantly according to exposure status. Second-
ary assessment including individual domains from a 
comprehensive neuropsychological assessment and 
parent reports, found that processing speed and fine 
motor abilities were decreased in the multiple but 
not the single exposed children. Other functions did 
not show significant difference accordingly. The par-
ents of multiple exposed children reported increased 
problems related to executive function, behaviour, 
and reading [35,36].

Two follow-up studies of MASK study attempted 
to translate the non-human primate data to humans 
and perform additional analysis to verify the results 
[37,38]. One follow-up study done by Warner, et al., 
proposed reasons for the variability in the results of 
anaesthetics clinical neurotoxicity. As with neurotoxic 
exposure, not all cognitive domains might be equal-
ly affected and specific domains that are affected by 
GAs are still not clear. By applying the knowledge 
from animal studies, Warner and colleagues picked 
the neurodevelopment test, Operant Test Battery 
(OTB) which can be used both in humans and animals. 
There was no difference found in OTB scores even 
after multiple exposure in children. However previ-
ous non-human primates studies showed decrease in 
OTB accuracy and response speed after anaesthetic 
exposure [11]. The difference of the findings might 

occurred. Animal data did not clearly identify a specific 
age beyond which anaesthetic exposure did not cause 
any structural or functional abnormalities [26]. All these 
make it even harder for human studies to use pre-clinic-
al data as a guideline to design clinical research.

Given the uncertainty of translating the pre-clinic-
al data, it is impossible to design a single randomized 
controlled human study including all the affecting 
factors to determine the outcomes. It is more appro-
priate for a range of studies to examine a range of 
outcomes, anaesthetic duration and age at exposure. 
Many elaborate reviews on this topic have been pub-
lished recently and assessed most of the clinical stud-
ies [3,27-30]. In this review, we will briefly summarize 
the up-to-date and the most well designed three clin-
ical studies and discuss the limitations. Most import-
antly, we will discuss the implications from human 
studies that can guide the clinical practice and future 
directions for designing clinical research.

The Pediatric Anaesthesia Neurodevelopment 
Assessment (PANDA) study

PANDA study used a sibling-matched cohort de-
sign to test if a single anaesthesia exposure in healthy 
young children is associated with impaired neurocog-
nitive development and abnormal behavior in later 
children. The study cohort included sibling pairs with-
in 36 months in age and currently 8 to 15-years-old. 
All exposed children received inhaled anaesthetic 
agents and anaesthesia median duration of 80 min-
utes. 105 sibling pairs were included in the primary 
outcome, global cognitive function (IQ) test. There 
was no statistically significantly differences in mean 
scores between exposed siblings and unexposed sib-
lings. A detailed neuropsychological battery assessed 
IQ and domain-specific neurocognitive functions as 
the secondary outcomes also showed no statistically 
significant differences between sibling pairs in mem-
ory/learning, motor/processing speed, visuospatial 
function, attention, executive function, language, or 
behavior [31].

The General Anaesthesia Compared to Spinal 
Anaesthesia (GAS) Study

The first randomised trial was designed as GAS 
consortium to verify whether anaesthesia expos-
ure in early childhood can cause long-term neuro-
development changes. Two established anaesthetic 
techniques for inguinal herniorrhaphy treating pos-
toperative apnea in young infant: Awake-regional 
and sevoflurane-based GAs [32]. Between the year 
2007 to 2013, 722 infants up to 60 weeks who were 
recruited in the trial from 28 hospitals in multiple 
countries were randomly assigned to receive either 
awake-regional or sevoflurane-based GAs for inguinal 
herniorrhaphy. The median duration of anaesthesia 
in the GAs group was 54 min. The outcomes of neuro-
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information and evidence [39].

Thirdly, the GAs effect on different sex has not 
been fully addressed in the PANDA and GAS study. 
Pre-clinical data indicated that anaesthetic drugs 
might affect long-term cognitive function different-
ly between sex [20]. Only MASK studies females and 
males were equally recruited in the studies, but not 
separately analyzed. In PANDA and GAS studies, the 
majority of the recruited children were males [26].

Last but not least, all three studies were assessed 
the association between surgery plus anesthetic ex-
posure and cognitive/behavior deficiency. It is hard 
to rule out the impact of the surgery contribution 
to the outcomes. Furthermore, confounders such as 
hypotension, body temperature, and hypoxia during 
surgery are rarely included in these studies. These 
confounders could potentially alter the outcomes 
[29].

Discussions and Conclusions
In pre-clinical studies, adverse neurological ef-

fects of commonly used anaesthetic agents are seen 
in rodents and non-human primates. Long duration, 
repeated exposure and multiple agents can increase 
neurotoxicity, cognitive and behavioral function. Due 
to the difference in brain development between hu-
man and other animals, the results of the pre-clin-
ical studies cannot directly apply to clinical practice. 
Smart Tots, a Public-Private Partnership (PPP) was 
established between the FDA and the international 
Anesthesia Research Society (IARS) in 2009, to facili-
tate pediatric anesthesia research with aim of making 
surgery safer for infants and children [40,41]. Mul-
tiple published epidemiologic studies assessed the 
association between GAs exposure in early life and 
neurodevelopment in later life of children. Due to the 
limitation of the sample size and lack of sensitivity of 
the measurements, the results showed various out-
comes and some contradictories [28,42-44]. Three 
well-designed clinical studies discussed in this review 
found evidence showing that not a single brief expos-
ure but multiple exposure to GAs in children within 
3 years age decreased processing speed and motor 
skills. The difference was not found in other cognitive 
functions [31,33-35,45]. One of the MASK follow-up 
studies provided more information and possible fu-
ture directions for further designing clinical studies. 
The results showed that anaesthetic exposure, even 
multiple exposure, did not result in gross deficits in 
all exposed children. This indicates that the effects 
of GAs on children are likely to be subtle and not all 
children are universally vulnerable [38]. As there are 
important limitations in the published observational 
studies, it is still not sufficient in evidence to conclude 
that GAs directly has any long-term impact in children 
[46]. Besides more clinical studies with larger scale 

be due to the insensitivity of OTB test for detecting 
small effects in children. Also the median anaesthet-
ic exposure duration for children in MASK study was 
45 min for single exposure and 187 min for multiple 
exposure [35], while the non-human primate study 
used a 24 hr infusion of ketamine, which is not only 
a very long exposure but also an anaesthetic drug 
that is not the choice in most paediatric procedures 
[11]. This MASK study finding is consistent with other 
published studies showing that anaesthetic exposure 
does not result in large cognitive deficits, particularly 
in domains associated with intelligence.

The other MASK follow-up study done by Zaccari-
ello, et al. preformed a secondary re-analysis of some 
of the neuropsychologist-assessed outcomes presented 
in the initial MASK study [35]. Two analyses, a factor 
and a cluster analysis were performed in this follow-up 
study. The results showed that children with multiple 
exposures had lower scores in processing speed, motor 
coordination and visual-motor integration, but no dif-
ferences were seen in the children after a single expos-
ure [38].

GAS and PANDA studies provided strong evidence 
that infants exposing to a single brief (less than 1h) GAs 
does not cause significant neurocognitive or behaviour-
al deficits. The MASK study also verified the same con-
clusion. Besides, MASK study provided evidence that 
not the single exposure but the multiple exposure to 
GAs in young children is associated with a specific pat-
tern of deficits. However, this is just the beginning of 
understanding how GAs affects neurodevelopment in 
infants. The current published clinical studies have lim-
itations to address the issue thoroughly and there are 
still missing puzzles.

First of all, the dosage dependent effect of GAs is 
still not clear. GAS and PANDA studies all used less 
than 1h brief anaesthetic exposure showing no ef-
fect in long-term neurodevelopment. MASK studies 
indicated that single average 45 min exposure does 
not affect gross neurodevelopment, while multiple 
exposure with average of 187 min period caused the 
deficits in fine motor skills. Current results do not 
provide data regarding to the neurocognitive risks of 
repeated episodes of anesthesia exposure or more 
prolonged durations of a single exposure which often 
happen in complicated pediatric surgeries.

Secondly, the current cognitive and behavioral tests 
used for clinical studies are not sensitive enough to an-
alysis in depth how affected sub-domains in the brain 
are. Like the Bayley III assessment method used in GAS 
studies is a well validated assessment for current neuro-
development and early neurobehavioral assessment of 
children. However, it is not a perfect predictor for long-
term outcome. Further analysis of the data collected 
from current clinical studies could also provide more 
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imal models. N Engl J Med 372: 796-797.
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ciceptive stimuli enhance anesthetic-induced neuroapopto-
sis in the rat developing brain. Neurobiol Dis 45: 743-750.
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observation in need for sequential clinical studies. 
Randomized trials with longer duration exposure of 
GAs, follow-ups, more sensitive outcome measure-
ments, and strict confounder controls should also be 
included to provide more conclusive and informative 
data. Meanwhile, new research area has been de-
veloped in order to find possible solutions that can 
attenuate anaesthetics neurotoxicity effect on de-
veloping brain. Different drugs are being studied to 
mitigate the apoptosis response to ASAs. Xenon and 
Dexmedetomidine (DEX) are already used in clinical 
settings as neuroprotection and anaesthetic spar-
ing-effect, but more research is still needed [47-51].

Evidence from clinical studies on association be-
tween GAs and neurodevelopment provided more in-
formation for clinical practice. While, at this point it 
is still inconclusive. Thus, changes in clinical manage-
ment of children are not advised at this time. It is 
less important than the benefit of medical procedure 
has done for the children. However, in order to allow 
parents and healthcare providers to make informed 
clinical decision, the risk of anaesthesia should be ad-
equately and fully evaluated.
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