

Original Article: Open Access

Meta-analysis of Association between Helicobacter pylori Infection and Epilepsy

Gang Yao¹, Ping Wang², Xiang-Dan Luo³ and Ting-Min Yu^{1*}

¹Department of Neurology, The Second Hospital of Jilin University, China ²Department of Otolaryngology-Head and Neck Surgery, The First Hospital of Jilin University, China ³Department of Nutrition, The Second Hospital of Jilin University, China

*Corresponding author: Tingmin Yu, MD, PhD, Department of Neurology, The Second Hospital of Jilin University, Changchun, China, Tel: +86-0431-88796298, E-mail: ytm_396@163.com

Abstract

Despite recent research focus on the association between Helicobacter pylori (H. pylori) infection and epilepsy there is no consensus about the findings. To obtain a more comprehensive estimate of the association we conducted a meta-analysis to determine the prevalence of H. pylori infection in epilepsy patients and healthy controls. PubMed, EMBASE, Cochrane Library, Web of Science, Google Scholar and CINAHL were searched to identify eligible studies. Four studies were selected for inclusion, involving 418 cases (232 patients with epilepsy and 186 controls). Overall, the prevalence of H. pylori infection in patients with epilepsy was higher than that in control groups. (46.98% vs. 26.34%, OR = 2.58, 95% CI: 1.15-5.82, P = 0.02). Subgroup analysis revealed that the levels of H. pylori infection in epilepsy patients was greater than that in control group by using ELISA (OR = 5.36, 95% CI: 2.62-10.95, P < 0.00001), but it was not statistically significant difference when using ¹³C urea breath test (OR = 1.36, 95% CI: 0.75-2.46, P = 0.32). Our analysis demonstrated that the association between *H. pylori* infection and epilepsy is a significant positive correlation. Whether H. pylori infection is a risk factor for epilepsy should thus be addressed in large-scale and prospective studies.

Keywords

Epilepsy, Helicobacter pylori, Prevalence, Meta-analysis

Introduction

Helicobacter pylori (H. pylori) is a gram-negative bacterium and mainly associated with chronic gastritis, peptic ulcer disease, gastric cancer and gastric mucosa-associated lymphoid tissue lymphoma [1,2]. Furthermore, some reports have discerned a relationship between H. pylori infection and extra-gastrointestinal diseases such as cirrhosis, pancreatic cancer, coronary heart disease, stroke, migraine, Alzheimer's disease and Multiple sclerosis [3-8]. As these results remain controversial, the interactions between H. pylori and humans are suggested to be extremely sophisticated [9].

Recently, there has been some research interest in the association between H. pylori infection and epilepsy. Several studies evaluating the possible association between H. pylori infection and epilepsy have been published [10-15]. Some studies have reported a significant positive correlation between H. pylori infection and epilepsy [11,12]. However, others have failed to determine any association between H. pylori infection and epilepsy [10,13]. In 2011, Asadi-Pooya et al. [14] reported that treating H. pylori infection in patients with refractory epilepsy did not significantly change the seizure frequency. To obtain a more comprehensive estimate of the association we conducted a meta-analysis to determine the prevalence of *H. pylori* infection in patients with epilepsy and controls.

Methods

Literature search

A systematic search of PubMed, EMBASE, Cochrane Library, Web of Science, Google Scholar and CINAHL was performed to identify potentially relevant publications from the date of database origination through August 2016. They were searched for abstracts using the terms ("Helicobacter pylori" [Mesh] OR "Campylobacter pylori" [Title/Abstract] OR "Campylobacter pyloridis" [Title/Abstract] OR "Campylobacter pyloris" [Title/ Abstract] OR "Helicobacter nemestrinae" [Title/Abstract]) AND ("Epilepsy" [Mesh] OR "Epilepsies" [Title/Abstract] OR "Seizure Disorder" [Title/Abstract] OR "Seizure Disorders" [Title/Abstract] OR "Seizures, Epileptic" [Title/Abstract] OR "Epileptic Seizures" [Title/Abstract] OR "Epileptic Seizure" [Title/Abstract] OR "Seizure, Epileptic" [Title/Abstract] OR "Single Seizure" [Title/Abstract] OR "Seizure, Single" [Title/Abstract] OR "Seizures, Single" [Title/ Abstract] OR "Single Seizures" [Title/Abstract] OR "Epilepsy, Cryptogenic" [Title/Abstract] OR "Cryptogenic Epilepsies" [Title/Abstract] OR "Cryptogenic Epilepsy" [Title/Abstract] OR "Epilepsies, Cryptogenic" [Title/Abstract] OR "Status epilepticus" [Title/Abstract] OR "Aura" [Title/Abstract] OR "Auras" [Title/ Abstract] OR "Awakening Epilepsy" [Title/Abstract] OR "Epilepsy, Awakening" [Title/Abstract]). There was no language restriction. Two investigators independently selected all titles and abstracts identified by the initial search.

Study selection

The inclusion criteria were as follows: (1) The studies had to be case-control, cross-sectional or case-cohort in design; (2) studies that provided the raw data on *H. pylori* infection in both the epilepsy

Citation: Yao G, Wang P, Xiang-Dan L, Ting-Min Y (2016) Meta-analysis of Association between Helicobacter pylori Infection and Epilepsy. Int J Brain Disord Treat 2:016 Received: September 08, 2016: Accepted: December 02, 2016: Published: December 06, 2016 Copyright: © 2016 Yao G, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Table	1:	Characteristics	of	the	4	included	studies
ubic	••	onaracteristics	U.	uic	-	moluucu	Studies

Reference	Year	Country	Study design	Specimen	Method	H. pylori (+) in epilepsy group (%)	H. pylori (+) in control group (%)	H. pylori (+) in epilepsy classification	P value
Asadi-Pooya	2012	Iran	Case-control	Breath	¹³ C-UBT	35/62 (56.45%)	14/33 (42.42%)	IGE: 21/34; TLE: 14/28 The difference was not significant (P = 0.3)	0.3
Okuda	2004	Japan	Case-control	Serum	ELISA	19/75 (25.33%)	5/71 (7.04%)	IGE: 9/22; ILE: 10/53 The difference was not significant	< 0.05
Ozturk	2007	Turkey	Case-control	Serum	ELISA	37/47 (78.72%)	13/35 (37.14%)	Poor prognosis: 18/24 Good prognosis: 19/23 The difference was not significant (P > 0.05)	< 0.001
Razak	2012	Malaysia	Case-control	Breath	¹³ C-UBT	18/48 (37.50%)	17/47 (-36.17%)	Generalised epilepsy: 5/19 Partial epilepsy: 13/29 The difference was not significant	0.893

H.pylori- Helicobacter pylori; IGE- idiopathic generalized epilepsy; TLE- temporal lobe epilepsy; ILE- idiopathic localization-related epilepsy; ELISA- enzyme-linked immunosorbent assay; ¹³C-UBT- ¹³C urea breath test.

group and the control group. Studies were excluded if: (1) The studies had no control groups; (2) The articles were review articles, laboratory studies, or studies of animals. To ensure homogeneity in data the two investigators performed the data extraction independently.

Statistical analysis

Calculation of dichotomous variables was conducted using the odds ratio (OR) with the 95% confidence interval (CI) as the summary estimates to measure the strength of the association of *H. pylori* infection and Epilepsy. Heterogeneity was tested using the I² statistic test, which is a quantitative measure of inconsistency across studies. I² values of above 25%, 50% and 75% being considered to indicate low, medium, and high heterogeneity, respectively. Heterogeneity was also determined by Q-test, and it was considered indicative of significant heterogeneity when P values were less than 0.1. When the effects were assumed to be homogeneous (I² < 50%) a fixed-effects model was used; otherwise, the random-effects model was more appropriate [16]. Statistical significance was set at P values of less than 0.05. The meta-analysis was performed using Review Manager 5.3 software.

Results

Identification of eligible studies

We identified 54 articles from PubMed, EMBASE, Cochrane Library, Web of Science, Google Scholar and CINAHL. Of these articles most were excluded after reading the titles and abstracts, mainly because they were reviews or were not relevant to the metaanalysis, leaving 11 that appeared to fulfill the inclusion criteria. Following more thorough scrutiny, an additional 7 articles were excluded. Finally, a total of 4 prospective articles including 232 cases of Epilepsy and 186 participants were included in the meta-analysis [10-13]. A detailed flowchart of the selection process is presented in figure 1.

Study characteristics

The main characteristics of the 4 included studies are presented in table 1. Four studies involved 232 patients with epilepsy, with a total H. pylori infection rate of 46.98% (109/232). The sample size of the control groups was 186, of which 49 were H. pylori-positive (26.34%). Concerning the H. pylori measure methods, two studies used ELISA, and two studies used the ¹³C urea breath test (¹³C-UBT). Okuda, et al. [11] divided the epilepsy subjects into two subgroups: idiopathic generalized epilepsy (IGE) and idiopathic localizationrelated epilepsy (ILE). Ozturk, et al. [12] separated the Epilepsy patients into poor prognosis and good prognosis groups. Asadi-Pooya, et al. [10] determined the frequency of infection with H. pylori among two groups of patients with epilepsy: patients with idiopathic generalized epilepsy (IGE) and patients with temporal lobe epilepsy (TLE) due to mesial temporal sclerosis. Razak, et al. [13] investigated the association of H. pylori infection with generalised epilepsy and partial epilepsy.

Results of meta-analyses

Overall, the prevalence of *H. pylori* infection in patients with epilepsy was higher than that in control groups. (46.98% vs. 26.34%, OR = 2.58, 95% CI: 1.15-5.82, P = 0.02) (Figure 2). The heterogeneity was high (P = 0.03, $I^2 = 68\%$). We performed a subgroup analysis to further investigate the factors impacting the overall results.

Using stratified analysis based on different methods, the data

	Experim	ental	Cont	rol		Odds ratio			Odds ratio)	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	I	M-H	, Random, 9	5% CI	
Asadi-Pooya 2012	35	62	14	33	26.3%	1.76 [0.75, 4.13]					
Okuda 2004	19	75	5	71	22.9%	4.48 [1.57, 12.77]					
Ozturk 2007	37	47	13	35	24.1%	6.26 [2.35, 16.66]			-	-	
Razak 2012	18	48	17	47	26.7%	1.06 [0.46, 2.44]			+		
Total (95% Cl)		232		186	100.0%	2.58 [1.15, 5.82]					
Total events	109		49								
Heterogeneity: Tau ² =	= 0.46; Chi ²	= 9.26,	df = 3 (P	= 0.03); I ² = 68%	6	 				
Test for overall effect	:: Z = 2.29 (P = 0.02	2)				0.01 Favo	0.1 ours [experim	1 ental] Favou	10 rs [control]	100

Figure 2: Overall meta-analysis of the prevalence of H. pylori infection in the epilepsy group compared with the control group.

	Experim	ental	Cont	rol		Odds ratio	Odds ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% C	M-H, Random, 95% Cl
ELISA							
Okuda 2004	19	75	5	71	22.9%	4.48 [1.57, 12.77]	· · · · · · · · · · · · · · · · · · ·
Ozturk 2007	37	47	13	35	24.1%	6.26 [2.35, 16.66]	
Subtotal (95% CI)		122		106	47.0%	5.36 [2.62, 10.95]	-
Total events	56		18				
Heterogeneity: Tau ² = Test for overall effect:	0.00; Chi ² Z = 4.60 (F	= 0.21, P < 0.00	df = 1 (P 001)	= 0.65); I ² = 0%		
13C-UBT							
Asadi-Pooya 2012	35	62	14	33	26.3%	1.76 [0.75, 4.13]	+
Razak 2012	18	48	17	47	26.7%	1.06 [0.46, 2.44]	
Subtotal (95% CI)		110		80	53.0%	1.36 [0.75, 2.46]	-
Total events							
Heterogeneity: Tau ² = Test for overall effect:	0.00; Chi ² Z = 1.00 (F	= 0.70, P = 0.32	df = 1 (P)	= 0.40); I ² = 0%		
Total (95% CI)		232		186	100.0%	2.58 [1.15, 5.82]	-
Total events	109		49				
Heterogeneity: Tau ² =	0.46; Chi ²	= 9.26,	df = 3 (P	= 0.03); I² = 68%	6	
Test for overall effect: Test for subgroup diffe	Z = 2.29 (F erences: Cl	^D = 0.02 hi ² = 8.3) 5, df = 1 ((P = 0.0	004); l² =	88.0%	Favours [experimental] Favours [control]
Figure	e 3: Subgro	up analy	sis accord	ding to a	different d	etection methods for the a	ssociation of <i>H.pylori</i> infection with Epilepsy.

revealed that the prevalence of *H. pylori* infection in epilepsy patients was greater than that in control group by using ELISA in two studies (OR = 5.36, 95% CI: 2.62-10.95, P < 0.00001), but it was not statistically significant difference when using ¹³C urea breath test in other two studies (OR = 1.36, 95% CI: 0.75-2.46, P = 0.32) (Figure 3).

Discussion

The association between epilepsy and *H. pylori* infection is controversial [10-15]. In this meta-analysis we provide an overview of the relationship between *H. pylori* positiveity and epilepsy with a total of 418 subjects from four eligible studies. Overall the prevalence of *H. pylori* infection in epilepsy patients (46.98%, 109/232) was higher than in control individuals (26.34%, 49/186) (P = 0.02), indicating that *H. pylori* infection may be a risk factor for epilepsy.

Epilepsy may be triggered by immunological mechanisms as a result of *H. pylori* infections. Autoimmunity was recently suggested to be involved in the pathology of epilepsies [17]. Bartolomei, et al. [18] found that detection of anti-GM1 antibodies could allow identification of patients with partial epilepsy associated with an autoimmune response. *H. pylori* could indirectly influence the brain function due to the release of multiple cytokines such as IL-1,IL-6,TNF- α ,which involved in the blood-brain barrier (BBB) disruption and pathogenesis of neuronal inflammatory damage in epilepsy [19,20]. Kountouras, et al. [20] have hypothesized that *H. pylori* might be a potential therapeutic target in epilepsy.

We conducted a further analysis based on different detection methods, the results showed that the prevalence of *H. pylori* infection in epilepsy patients was higher than that in control groups by using ELISA [11,12], but it was not statistically significant difference using ¹³C-UBT [10,13]. The anti-*H. pylori* IgG-ELISA is a common method for detecting *H. pylori* seropositivity in clinics. It is well suitable for

large-scale population surveys [21]. ¹³C-UBT is a detection method based on the carbon dioxide and ammonia produced by *H. pylori* converting urea and has high specificity and sensitivity [21]. ¹³C-UBT reveals the active (present) infection, whereas the serology can reveal the past infection. However, it may be impossible to directly compare the ¹³C-UBT results due to the difference in UBT protocols across different clinical centers generated differences in breath sample collection times and intervals, as well as influences on delaying gastric emptying [21,22].

There are some limitations in our study. First, the analysis was conducted on a small number of case-control studies, and the cases included in these studies are also limited and lack of high-quality data. Second, the lack of individual data has limited further subgroup analyses of gender and epilepsy sub-type. Finally, some articles published in non-English languages might be missed.

In summary, the present study showed that the association between epilepsy and *H. pylori* infection is a significant positive correlation. Whether *H. pylori* infection is a risk factor for epilepsy should thus be addressed in large-scale and prospective studies.

Acknowledgments

This study was supported by National Natural Science Foundation of China (Grant No. 81500953), The Program of Jilin Provincial Science & Technology Department (Grant No. 20150520143JH), Jilin Provincial Development and Reform Commission Project (2014N151), and Norman Bethune Program of Jilin University (Grant No. 2015215).

References

 Kusters JG, van Vliet AH, Kuipers EJ (2006) Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19: 449-490.

- Banatvala N, Mayo K, Megraud F, Jennings R, Deeks JJ, et al. (1993) The cohort effect and Helicobacter pylori. J Infect Dis 168: 219-221.
- Kountouras J, Zavos C, Polyzos SA, Katsinelos P, Deretzi G (2015) Association between cirrhosis and Helicobacter pylori-related brain pathologies. Eur J Gastroenterol Hepatol 27: 183.
- Bulajic M, Panic N, Löhr JM (2014) Helicobacter pylori and pancreatic diseases. World J Gastrointest Pathophysiol 5: 380-383.
- Huang WS, Tseng CH, Lin CL, Tsai CH, Kao CH (2014) Helicobacter pylori infection increases subsequent ischemic stroke risk: a nationwide populationbased retrospective cohort study. QJM 107: 969-975.
- Faraji F, Zarinfar N, Zanjani AT, Morteza A (2012) The effect of Helicobacter pylori eradication on migraine: a randomized, double blind, controlled trial. Pain Physician 15: 495-498.
- Kountouras J, Boziki M, Zavos C, Gavalas E, Giartza-Taxidou E, et al. (2012) A potential impact of chronic Helicobacter pylori infection on Alzheimer's disease pathobiology and course. Neurobiol Aging 33: e3-4.
- Smyk DS, Koutsoumpas AL, Mytilinaiou MG, Rigopoulou EI, Sakkas LI, et al. (2014) Helicobacter pylori and autoimmune disease: cause or bystander. World J Gastroenterol 20: 613-629.
- Xiao M, Wang Y, Gao Y (2013) Association between Helicobacter pylori infection and pancreatic cancer development: a meta-analysis. PLoS One 8: e75559.
- Asadi-Pooya AA, Dehghani SM, Petramfar P, Emami M, Mahmoodi M (2012) Helicobacter pylori infection in patients with epilepsy. Seizure 21: 21-23.
- Okuda M, Miyashiro E, Nakazawa T, Minami K, Koike M (2004) Helicobacter pylori infection and idiopathic epilepsy. American Journal of Medicine 116: 209-210.
- Ozturk A, Ozturk CE, Ozdemirli B, Yucel M, Bahçebaşi T (2007) Helicobacter pylori infection in epileptic patients. Seizure 16: 147-152.

- Razak MRA, Tan HJ, Razlan H, Ibrahim NM, Sutan R (2012) Prevalence of helicobacter pylori infection in epilepsy patients in a teaching hospital in Malaysia. Neurology Asia 17: 293-296.
- Asadi-Pooya AA, Dehghani SM, Emami M (2011) Effect of treating helicobacter pylori infection on seizure frequency in patients with refractory epilepsy. Iran J Neurol 10: 51-53.
- Sabetay S, Kaplan L, Weller B (2012) Epileptic patients have an increased risk of carbamazepine toxicity during triple therapy for Helicobacter pylori infection: A case presentation and review of the literature. European Journal of Neurology 19: 248.
- Su J, Zhou XY, Zhang GX (2014) Association between Helicobacter pylori infection and migraine: A meta-analysis. World J Gastroenterol 20: 14965-14972.
- 17. Cojocaru IM, Cojocaru M (2010) Reactions of the immune system in epilepsy. Maedica (Buchar) 5: 201-206.
- Bartolomei F, Boucraut J, Barrié M, Kok J, Dravet C, et al. (1996) Cryptogenic partial epilepsies with anti-GM1 antibodies: a new form of immune-mediated epilepsy? Epilepsia 37: 922-926.
- Friedman A, Kaufer D, Heinemann U (2009) Blood-brain barrier breakdowninducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res 85: 142-149.
- Kountouras J, Zavos C, Deretzi G, Polyzos SA, Katsinelos P, et al. (2011) Helicobacter pylori might be a potential therapeutic target in epilepsy. Medical Hypotheses 76: 763.
- Feng H, Zhou X, Zhang G (2014) Association between cirrhosis and Helicobacter pylori infection: a meta-analysis. Eur J Gastroenterol Hepatol 26: 1309-1319.
- Schmilovitz-Weiss H, Sehayek-Shabat V, Eliakim R, Skapa E, Avni Y, et al. (2012) Applicability of a short/rapid ¹³C-urea breath test for Helicobacter pylori: retrospective multicenter chart review study. BMC Gastroenterol 12: 8.