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from blood-forming tissue, such as the bone marrow, or in 
the cells of the immune system. 

Although hematopoiesis and hematologic malignan-
cies are regulated by multiple lineage-specific transcrip-
tional factors [1], cancer genomic sequencing data from 
patients revealed that the frequency of genetic aberra-
tions in hematologic cancer is much lower than most oth-
er malignancies, suggesting that epigenetic mechanisms 
are critical for hematologic malignancies [2,3]. Recipro-
cally, epigenetic modifiers that are aberrantly regulated in 
hematologic malignancies play a prominent role on hema-
topoiesis, including both self-renewal and differentiation 
of hematopoietic stem cells. One of the major epigenetic 
regulators is the class of polycomb-group (PcG) proteins 
that repress numerous genes involved in various biological 
process, such as cell differentiation, and cell cycle process-
es [4]. 

Polycomb Group (Pcg) Proteins

Polycomb group (PcG) proteins were first reported as an 
essential complex for controlling segmentation in drosoph-
ila [5]. In Drosophila, most of PcG target genes present spe-
cific cis-regulatory sequences named Polycomb-repressed 
elements (PREs) [6]. In mammals, PcG proteins incorporate 
two major functional complexes named polycomb repres-
sive complex (PRC) 1 and 2 [3]. The canonical PRC1 com-
plex consists of four core subunits sorted into four gene 
families including the CBX, PHC, PCGF and RING1. Each of 
these four core subunits presents multiple orthologs, which 
incorporate dynamic patterns of PRC1 complex depend on 
the differentiated status [7]. Through the ubiquitin E3 ac-
tivity of its RING1 subunit, PRC1 mediates transcriptional 
repression by promoting the monoubiquitination of H2A at 
lysine 119 [8]. The PRC2 complex comprises three core sub-

Introduction

The hematopoietic system is a well-established mod-
el for the homeostatic mechanism between self-renewal 
and differentiation. One Hematopoietic stem cell (HSC) 
could asymmetrically divide to a HSC destined for main-
taining its line and to a multipotent progenitor, which 
could undergo expansion and generate large numbers of 
lineage-committed progenitors to consistently generate 
abundant numbers of new blood cells through the differ-
entiation during our entire lifespan. In concept, one HSC 
is sufficient to generate the entire hematopoietic system.

Aberrant regulation of the differentiation of HSC could 
give rise to immortalized progenitors that lost prolifera-
tion control, leading to the development of hematologic 
malignancies, including leukemia, lymphoma, and mul-
tiple myeloma. Hematologic malignancies are originated 
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been revealed to be involved in the regulation of hemato-
logic stem cell function and differentiation and have been 
broadly linked to hematologic malignancies. Polycomb pro-
teins are histone modifiers that contain two multi-protein 
complexes: Polycomb Repressive Complex 1 and 2 (PRC1 
and PRC2). As each PcG gene present multiple orthologs, 
distinct PRC1 and PRC2 sub-complexes exist in different 
differentiation stage and tissues. Aberrant expression or 
mutation of individual PcG gene is likely to result in alter-
ation of the PRC composition that is crucial for its enzymatic 
activity and target selectivity. Considering the dramatically 
increasing data on the regulation and functions of polycomb 
proteins, this review focuses on hematopoiesis and hema-
tologic malignancies. 
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units: suppressor of zeste 12 homolog (SUZ12), embryonic 
ectoderm development (EED) and one of two Enhancer of 
Zeste orthologs (EZH), EZH1 or EZH2 [9]. Through the his-
tone methyltransferase activity of EZH2 or EZH1, PRC2 pro-
motes the tri-methylation of H3 at lysine 27 (H3K27me3) 
generally associated with transcriptional repressive gene 
loci [10,11]. Intriguingly, both EZH1 and EZH2 have been 
revealed as transcriptional co-activators, suggesting that 
non-PRC2 function of EZHs may play an important role on 
RNA polymerase II elongation and drug-resistant of prostate 
cancer cells [12,13]. PRC2-mediated H3K27me3 is specifical-
ly recognized and bound by the chromo-domain of CBX sub-
unit, thus recruiting PRC1 complex, which place PRC2 in the 
upstream of PRC1 (Figure 1A). RYBP is also known as RING1 
And YY1-Binding Protein. It plays a role on the formation of 
non-canonical PRC1 complexes, which mediate H2A ubiq-
uitination at polycomb target sites independent on PRC2 
and H3K27me3 [14,15]. In addition, the RUNX1/CBFβ tran-
scription factor complex mediates site-specific PRC1 chro-
matin recruitment also through PRC2-independent manner 
[16]. Intriguingly, it has been reported that PRC1-dependent 
H2AK119ub1 leads to recruitment of PRC2 and H3K27me3 
to effectively initiate a polycomb domain [17], which place 
PRC1 into the upstream of PRC2 (Figure 1B). As various 
mechanisms have been found for recruitment of PRC1 and 
PRC2 in different cell types, the interdependence between 
PRC1 and PRC2 association at target gene loci is still an im-
portant issue to be addressed [18].

Polycomb Proteins in Hematopoiesis

BMI-1 is crucial for the maintenance of self-renewal 
of hematopoietic stem cell (HSCs) [19]. The number of 
HSCs was markedly reduced in postnatal Bmi-1-/- mice 
and the self-renewal of adult HSCs was no detectable, 
indicating a cell autonomous defect in Bmi-1-/- mice 
[20]. Consistent to this phenotype, the expression of 
the genes associated with stem cell, cell survival and 
proliferation including p16Ink4a and p19Arf was altered 
in bone marrow cells of the Bmi-1-/- mice. Intriguingly, 
Bmi-1 directly targets the Cdkn2a locus, which encodes 
P16Ink4a/P19Arf [21]. Double knockout of Bmi-1 and Cdk-
n2a revealed a partial rescue of HSC function, suggests 
that the repression of cell cycle inhibitor P16Ink4a/P19Arf 
by Bmi-1 is critical in HSCs [21]. Cells derived from Bmi-
1-/- mice also have impaired mitochondrial function re-
sulting in a dramatically increase of reactive oxygen spe-
cies and subsequent induce the DNA damage response 
mediated cell death, indicating that Bmi-1 may have a 
protective effect against oxidative stress that plays a 
crucial role in the self-renewal and survival capacity of 
HSCs [22]. In addition, loss of Bmi-1 lead to premature 
expression of B-lymphoid genes in progenitors accom-
panied by accelerated lymphoid lineage specification, 
indicating that Bmi-1 is a possible inhibitory factor of 
lymphoid lineage differentiation [23]. In contrast to 
Bmi-1, knockout of Mel-18, another PCGF gene family 
member, failed to cause apparent defect in the self-re-
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Figure 1: PRC1 and PRC2 can be recruited to chromatin in two different models. A) The “PRC2-dependent” model is based 
on the initial literature and implies that PRC2 mediates canonical PRC1 recruitment via H3K27me3 recognition. This scheme 
introduces the existence of PRC2-independent PRC1 sub-complexes that bind the same genomic loci independently of 
H3K27me3 and play a major contribution to sustain H2Aubq levels; B) The “PRC1-dependent” model shows that PRC2 can 
be directly recruited to chromatin by variant PRC1 sub-complexes, potentially by recognizing H2AK119 mono-ubiquitination. 
The subunit KDM2B in variant PRC1 directly binds to CpG-rich DNA.
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newal of HSCs but increased proliferation of B-cells, 
suggesting that Mel-18 plays a role for in more differ-
entiated cells [24]. Polycomb chromobox (CBX) family 
members show distinct expression patterns dependent 
on HSC-stage-specific, indicating various formations 
of PRC1 complexes present during HSC differentiation 
[25]. Transplanted CBX2-overexpressing HSCs in mice 
showed only B-cell reconstitution, suggesting that CBX2 
is involved in lymphopoiesis, but not myelopoiesis [25]. 
CBX7 is highly expressed in the HSCs and plays an irre-
placeable role in the self-renewal of HSCs by repressing 
the expression of progenitor-specific genes, suggest-
ing that the PRC1 complex in HSCs preferentially con-
tains CBX7 [25]. In contrast to CBX7, over expression of 
CBX2, CBX4 or CBX8 promotes the differentiation and 
exhaustion of HSCs, suggesting that other CBX proteins 
can compete with CBX7 to incorporate CBX2-, CBX4- or 
CBX8-containing PRC1 complexes that target the genes 
associated with the differentiation of HSCs [25]. On the 
other hand, the role of non-CBX containing PRC1 com-
plexes in hematopoiesis is much less known. Recently, 
PCGF1 mediated transcriptional repression of Hox genes 
has been revealed to be required for the self-renewal in 
Runx1-/- HSCs, suggesting cooperation of transcription-
al and epigenetic regulation is crucial for hematopoietic 
differentiation [26].

Comparing to PRC1, the role of PRC2 in hematopoie-
sis is mainly dependent on the EZHs proteins. Comparing 
to the ubiquitously expression of EZH2, EZH1 is a backup 
gene that is highly expressed in adult HSC but not in fetal 
HSC. Whereas EZH2-/- embryos died of anemia due to in-
sufficient expansion of HSCs/progenitor cells and erythro-
poiesis, deletion of EZH2-/- in adult bone marrow had no 
alteration on hematopoiesis, suggesting that EZH1 com-
plements EZH2 in the BM, but not in the fetal liver [27]. 
Deletion of Eed, a core subunit for the formation of both 
EZH1- and EZH2- containing PRC2 complexes, results in de-

pletion of adult bone marrow HSCs while fetal liver HSCs 
are produced in normal numbers, suggesting that Eed 
present the EZH-independent function [28]. Although Eed-
/- neonatal HSCs still expressed HSC signature genes, they 
were unable to differentiate into mature blood cells and 
were prone to cell death [28]. Deletion of Cdkn2a, whereas 
revealed partial rescue of HSC function in Bmi-1-/- mice, 
enhances hematopoietic stem/progenitor cell (HSPC) sur-
vival but fails to restore HSC functions in Eed-null mice [28]. 
These findings suggested that PRC2 plays a role during 
hematopoietic differentiation in a different manner with 
PRC1. Consistent with the role of PRC2 in transcriptional 
repression, Eed-/- HSCs present depression of PRC2 target 
genes largely associated with HSC self-renewal, differen-
tiation and apoptosis, indicating that PRC2 suppresses 
genes of diverse pathways ensuring normal HSC functions 
[28]. Recently, it has been revealed that EZH1 and EZH2 
undergo an expression switch mediated by GATA factors 
during blood cell development and loss of EZH2 expression 
results in repositioning of EZH1 chromatin occupancy and 
transcriptional activity (Figure 2), suggesting that the dy-
namic composition of PRC2 subunit leads to a switch from 
canonical repression to non-canonical activation during 
the differentiation from HSCs to progenitors [29]. More 
intriguingly, an EZH1-SUZ12 sub-complex lacking EED, 
named a non-canonical PRC2 complex, was identified to 
occupy active chromatin domains, and positively regulates 
gene expression [29]. In addition, EZH2 also plays a critical 
role in the early stage of B cell development and rearrange-
ment of the immunoglobulin heavy chain gene (Igh) [30].

Polycomb Proteins in Hematopoietic Malignancies

Bmi-1 has been found to be involved in leukemogen-
esis since it was recognized as a collaborator of c-Myc in 
the induction of B-cell lymphomas [31]. BMI-1 is com-
monly highly expressed in patients with myelodysplastic 
syndromes (MDS) [32], acute myeloid leukemia (AML) 
[33], chronic myeloid leukemia (CML) [34] and various 
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Figure 2: The dynamic PRC2 complexes switch during HSCs differentiation. This cartoon represents a switch from EZH2 
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chromatin to enhance the expression of genes involved in differentiation. 
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leukemia (ETP ALL) present high frequencies of mutations 
in PRC2 core components EZH2, EED and SUZ12 [54,55]. 
Inactivating somatic mutations of EZH2, EED and SUZ12 
also occur frequently in patients with myelodysplastic dis-
orders including myelodysplastic syndromes (MDSs) and 
MDS/myeloproliferative neoplasm (MPN) overlap disor-
ders (MDS/MPN) [55-57]. In the patients with MDS/MPN, 
EZH2 mutations were frequently coincided with tet meth-
ylcytosine dioxygenase 2 (TET2) mutations [58]. Whereas 
deletion of EZH2 alone was enough to induce MDS/MPN-
like diseases in mice, double depletion of EZH2 and Tet2 
established more advanced myelodysplasia and dramati-
cally accelerated the development of myelodysplastic dis-
orders including both MDS and MDS/MPN [58]. Inactivat-
ing mutations of EZH2 are also frequently associated with 
RUNX1 mutations in MDS patients and loss of EZH2 signifi-
cantly promote Runx1 mutant-induced MDS mice model 
[59]. EZH2-/- mice have been showed the phenotype that 
is associated with a thymocyte developmental block at the 
double negative stage and promote the development of 
T-lineage lymphoblastic leukemia [54]. On the other hand, 
hyperactive mutations of EZH2 have been detected in dif-
fuse large B-cell lymphomas [60] and follicular lymphomas 
[61] in which EZH2 may be a potential therapeutic target 
[62,63]. Overexpression of EZH2 in transgenic mice has 
been showed to enhance myeloproliferation [64]. Knock-
down of PRC2 subunits EED, SUZ12 or EZH1/ EZH2 resulted 
in proliferation arrest and differentiation in different AML 
cell lines [65]. In MLL-rearranged leukemia, genetic mice 
models revealed that Eed is essential for leukemogenesis 
and leukemia maintenance, whereas EZH2 is dispensable 
for MLL-AF9 AML [66,67]. In summary, EZH2 plays both 
roles as pro-oncogene and tumor suppressor depends on 
different types of hematopoietic malignancies.

Conclusions and Future Perspectives

PcG proteins have become putative epigenetic regula-
tors in both normal hematopoiesis and various hemato-
logical malignancies. The expression of PcG genes is highly 
regulated during the stage of hematopoietic cell differen-
tiation. Aberrant expression or mutation of PcG genes is 
associated with different types of hematopoietic malig-
nancies. Intriguingly, individual PcG genes display either 
tumor suppressor or oncogenic functions largely depend-
ing on the cell context. As each PcG gene present multiple 
orthologs, distinct PRC1 and PRC2 sub-complexes exist in 
different differentiation stage and tissues. Since distinct 
polycomb sub-complexes might target specific gene loci 
with different recruiting mechanisms, it is required more 
work to address the mechanism of the compositional 
switch and PRC recruitment. Overall, understanding the 
molecular mechanism of the genetic alterations and com-
position switch of polycomb proteins will not only provide 
important knowledge for hematopoiesis but also be ben-
eficial for developing pharmacological method targeting 
of PRC compositions for the treatment of hematological 
malignancies.

types of lymphoma [35]. More intriguingly, BMI-1 ex-
pression is strongly correlated with disease progression 
and is associated with a poor prognosis in the patients 
with AML [33] and CML [36]. Studies in various leuke-
mic mouse models suggested that Bmi-1 might be an 
important collaborating factor for leukemic transfor-
mation mediated by some fusion oncogenes, such as 
HoxA9-Meis1 [37], MLL-AF9 [38] and BCR-ABL [39,40]. 
In addition, Bmi-1 protects leukemia stem cells (LSCs) 
from senescence and apoptosis via repressing the ex-
pression of p16 and p19 expression [37,41]. Inhibition 
of BMI-1 expression mediated reactive oxygen species 
accumulation and apoptosis results in the reduction of 
proliferative capacity and stem/progenitor cell frequen-
cy in AML CD34 positive cells [19]. As BMI-1 could be 
efficiently inhibited by a small molecule in colon can-
cer cells in preclinical models [42], its required further 
studies to test which types of leukemia are susceptible 
to BMI-1-targeted therapies. Unexpectedly, deletion of 
Bmi-1 in Cdnkn2a-/- hematopoietic cells induced abnor-
mal megakaryocytopoiesis accompanied by marked ex-
tra medullary hematopoiesis, which eventually resulted 
in lethal myelofibrosis, suggesting that Bmi-1 also pres-
ent a tumor suppressor function [43]. As Bmi-1 may 
form different sub-complexes during hematopoietic 
cells differentiation.

Comparing to for BMI-1, less is known about other 
PRC1 components. It has been found that aberrant ex-
pression of PRC1 genes, such as MEL-18, RING1, HPH1, 
HPC1, in multiple types of lymphomas [44,45], suggest-
ing that this abnormal formation of PRC1 contributes 
to the development of hematologic malignancies. Sim-
ilar to Bmi-1, CBX8 has been shown to be essential in 
leukemogenesis induced by fusion oncogenes, such as 
MLL-AF9 [46]. CBX7 is often highly expressed in human 
follicular lymphomas (FLs) and its over expression in the 
mouse lymphoid compartment initiates T cell lymphoma 
and cooperates with c-Myc to induce highly aggressive 
B cell lymphomas [47]. Although it’s remains unclear 
whether CBX4 is directly involved in leukemia develop-
ment, it has been found that CBX4 expression is strongly 
correlated with the angiogenesis [48], metastasis [49] 
and prognostic [50] of hepatocellular cancer patients. 
Further studies found that CBX4 increased the tran-
scriptional activity of hypoxia-inducible factor-1 (HIF-
1) and enhancing the expression of HIF-1 target genes 
associated cancer metabolism, suggesting that CBX4 
might play roles in other types of cancer [51]. RING1A, 
another PRC1 member, is commonly highly expressed 
in MDS and AML and is correlated with poor progno-
sis [32]. Additionally, SNPs in RING1A is correlated with 
non-Hodgkin lymphoma [52]. Enhanced expression of 
RING1B, a paralog of RING1A, has detected in multiple 
types of lymphomas [53].

Inactivating mutations of PRC2 components have been 
found in multiple types of hematopoietic malignancies. 
Patients with Early T-cell precursor acute lymphoblastic 
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