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Abstract

Background: The field of functional magnetic resonance imaging
(fMRI) has grown in usage, applications, and complexity. The
results of a general linear model (GLM) analysis vary from one
investigator to another as they depend on image preprocessing,
model choices and physiological assumptions. There is a need for
a simple, efficient and consistent analysis method.

Methods: We propose the target frequency analysis (TFA) as
an intuitive, computationally efficient method to analyze data
from block design fMRI experiments. We illustrate its utility with
a traditional auditory experiment and develop the theoretical
foundation on which the method is based.

Results: We show that the TFA correctly identifies activation of the
primary and secondary auditory cortex in response to a periodic
auditory stimulus. We demonstrate that the amplitude of a single
frequency component or the sum of several frequency components
of a white noise signal have a Nakagami probability distribution.
The percentiles of this null distribution can be used to determine the
activation threshold of an fMRI experiment.

Conclusions: The proposed TFA approach does not require
assumptions of the GLM approach such as the a priori knowledge
of the shape of the stimulus function or hemodynamic response
function. The method is computationally efficient and has
great potential as supplementary analysis of block design fMRI
experiments.

Keywords

Fourier transform, Functional MRI, Frequency analysis

Summary statement

We provide the theoretical foundation of a frequency based fMRI
analysis approach, which does not depend on many assumptions of
existing GLM based approaches. We illustrate its application using an
auditory fMRI example.

Introduction

Functional magnetic resonance imaging (fMRI) methods
have expanded in scope and level of sophistication. Yet, the user
dependent nature of fMRI analyses has led some to become skeptical
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of the validity of the data and scientific hypothesis generated. The
prevailing statistical technique is the general linear model (GLM). It
is used ubiquitously because it is very flexible, but it typically requires
certain data manipulations and depends on specific physiological
assumptions, which may not be met. For example, the response to
a task has been shown to be stimulus specific [1] and the response
changes with age or from person to person [2]. It has been documented
that the fMRI response depends on the subject as well as the day and
time of the scanning session [3]. It can easily be demonstrated that
just minor modifications of the input onset values used in existing
imaging analysis packages alter the results significantly (an example
is given in figure 1). The subjective nature of imaging analyses makes
the interpretation of functional imaging studies, particularly those
that investigate complex cognitive tasks, problematic. In classical
statistical applications, the investigator can use descriptive methods
to provide an overall sense of the data. However, the complex nature
of neuroimaging analysis makes it difficult to generate a simple
statistic that provides an intuitive description of the experiment.

With the goal in mind to find a method for block design fMRI
experiments that is unconstrained by many of the assumptions
of the GLM method, we first contemplated a simple analysis of
the temporal signal variance. The basic idea was that a brain MRI
signal recorded over time from a person at a resting state (i.e. not
subject to an experimental stimulus) would have temporal variability
attributable only to the random noise of the MRI signal. By contrast,
the signal time course of a person exposed to a repeated task would
have a larger variability in areas of the brain that respond to the task,
reflecting both the variance due to the task as well as the variance
due to the random noise. Unfortunately, this simplistic approach
fails to identify task related activity as it ignores other very important
sources of variances such as the MRI signal drift and physiological
noise (rhythmic signal changes due to heart beat and respiration).
We realized that any useful method would have to somehow extract
the signal due to the periodic task while ignoring any other signal
variability (noise). This thought gave rise to the target frequency
analysis (TFA) proposed in this paper. This approach builds on
existing frequency based analysis concepts with a new focus on the
amplitude of a single frequency. We also generalize the concept
slightly to include the target frequency (TF) and its harmonics and
prove the theoretical foundation of the proposed method rigorously.
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Figure 1: Phase dependence of GLM based image analysis. The auditory experiment was timed such that the stimulus onset was expected to coincide with the
2" recorded brain volume. A modified analysis with onset at Volume 1 shows more activation, an onset at Volume 3 shows no activation at all.
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Figure 2: lllustration of Results for Auditory fMRI experiment in 12 human volunteers, analyzed in the time domain using a mass-univariate t-test with an FWE
corrected threshold at a p = 0.05 level versus a TF based analysis using only one (the first) harmonic and a threshold determined by the 95" percentile of amplitude
distribution under the null hypothesis of a white noise signal (Nakagami [1,150]).
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We then designed an fMRI experiment for the empirical comparison
of the traditional GLM analysis and the new TFA approach. We chose
an auditory task for this experiment since this type of stimulus has
been well validated in BOLD fMRI experiments. Our hypothesis was
that the TFA approach would produce qualitative comparable result
when compared to the traditional GLM analysis.

Materials and Methods
Subjects and recruitment

To demonstrate the concept of the TFA we conducted an auditory
fMRI study in 12 human volunteers. Participants were recruited by
public advertisement. During a screening visit we performed a focused
history and physical examination and we obtained written informed
consent. Handedness was assessed using the Edinburgh Handedness
Inventory [4]. We included healthy right-handed volunteers ages 21
- 40. Exclusion criteria were any significant preexisting pulmonary or
cardiac disease, a body mass index > 40 kg/m?, a history of substance
abuse and a current prescription of any neurotropic medication. On
a separate day, participants underwent an fMRI session consisting
of an orientation scan, a structural MRI scan and a 5-minute echo
planar imaging (EPI) session on a Siemens Allegra 3T scanner.

Technical information and GLM analysis

We acquired 150 functional images at a near isovolumetric voxel
resolution of 4 mm and a repetition time of 2000 ms. Functional MRI
data were stored in Siemens DICOM format and then converted to
4D-single Nifti files and realigned in Matlab R 2012b (Mathworks,
Natick, MA) using tools built into statistical parametric mapping (SPM
12, London, UK). These were the only preprocessing steps needed for
the TFA. The GLM analysis required a few extra steps: after realignment,
images were co-registered to the structural scan, spatially normalized and
smoothed with the default 8 by 8 by 8 mm smoothing kernel. To define
the expected fMRI activation time course, we used the default parameters
in SPM where the fMRI BOLD response is modeled as a convolution of
a box-car function per experiment design and a 2-component gamma
mixture model for the hemodynamic response function (canonical hrf).
To select the most parsimonious model, no motion regressors, temporal
or dispersion derivatives were added.

During the functional scans, volunteers listened to eight second
blocks of music (created from royalty free audio clips of varying music
genres), starting at the 8" second and alternating with 8-seconds
of silence. Music stimulus and scanner start were synchronized by
count down. We used the fMRI compatible headset provided from
the manufacturer (Siemens) both to shield subjects from scanner
noise as well as to play the auditory stimulus (music segments). The
first two brain volumes, taking up the first 4 seconds after scanner
start, were not recorded as they constitute equilibration ("dummy")
scans. We performed two analyses: a traditional GLM analysis using
the statistical parametric mapping (Welcome Trust Centre for
Neuroimaging, London) and a TFA analysis. A family-wise error
correction threshold of p = 0.05 was used for the results report.
Average activation was calculated as the mean of the SPMs for each
participant. The resulting t-maps were then rendered to an inflated
brain surface using the BrainNet Viewer [5].

Target frequency analysis (TFA)

We define the TF as the particular frequency that corresponds to
the experimental task. In the auditory example, we play 8 — second
sequences of music that alternate with 8 — second sequences of silence.
This gives a task period of 16 seconds or, in terms of frequency, a
task frequency of 1/16 Hz. In the analysis, we target the same
frequency component, the 1/16 Hz frequency component and call
this our TF. Realigned images were loaded as 4-dimensional matrix
into Matlab 2014a (Mathworks, Natick, MA). After removing low
signal intensities, which represent voxels outside the brain, images
were mean-centered and scaled by subtracting the temporal mean
signal and dividing by the temporal signal standard deviation for all
brain voxels, using matrix commands in Matlab. This was followed

by extracting the TF - the one signal frequency with a period of 8
seconds that corresponds to the period of the auditory experiment
- using the Goertzel algorithm in Matlab [6]. Images were then co-
registered manually to match in anterior commissure (origin), size
and spatial rotation with the t-maps generated via the GLM analysis
to allow for the illustration of both methods in figure 2. As statistical
threshold, we used the 95% percentile of the Nakagami (m = 1, Q
= 150) distribution [the rationale for this will be explained below].
Average activation was calculated as mean amplitude values across
participants.

To establish a threshold for declaring voxels active, we
investigated the behavior of a random noise BOLD signal, i.e. a signal
that one could expect if no stimulation was presented to a subject.
First, we used simulation methods to generate independent Gaussian
distributed noise. After a Fourier transform of this random signal,
we studied the characteristics of all frequency components as well
as individual frequencies using three-dimensional histograms and
the distribution fitting tool in Matlab (Figure 3). Based on empirical
observations, we postulated that the amplitude of a single frequency
of a white noise signal has a Nakagami distribution. We then applied
standard mathematical methods to provide a proof to support our
observation.

Results

Results from an auditory experiment

The results of our auditory study are illustrated in figure 2. The
left auditory cortex, located within the lateral fissure and the superior
aspect of the temporal gyrus, is shown to be active in each of twelve
participants. It can also be seen that there is considerable variability
from one person to another. However, the location of activation within
the superior temporal gyrus appears to be relatively consistent across
analysis methods (GLM vs. TFA). In addition to cortical renderings
for each participant we show the average activation. The threshold
of the amplitude variable is based on the null distribution, which we
have derived as Nakagami (m = 1, Q = 150). The 95" percentile of
this distribution equals 23.22. When this threshold is applied to the
auditory experiment we know that 5% of the voxels displayed may be
included simply by chance.

One of the advantages of the TFA is that the method is
independent of the phase shift of the signal or delayed onset time of
the perceived stimulus. In a GLM based analysis the same variations
would drastically alter the results as we demonstrate in figure 1, which
shows the results of a GLM based analysis with varying onset times.
The onset of auditory activation was timed to occur at the end of
the second volume. Given the stimulus start at 8 seconds, the first
2 volumes discarded as equilibration scans, a TR of 2 seconds, and
a period of 8 volumes (4 music on / 4 music off), a proper onset
was expected to coincide with the second brain volume. However,
a modified analysis with onset at the first brain volume shows
significantly larger activation clusters.

Investigation of the frequency amplitude distribution

BOLD signals are discrete time series, which can be transformed
into frequency components using the Fourier transform. This
transformation maps N signal values in the time-domain to a
single complex number (Z,), which represents a single frequency
component of the time signal. The transformation depends on
the value of the index k, which ranges from 0 to N-1. The Fourier
transform can therefore generate N complex numbers. The inverse
Fourier transform uses N complex numbers to generate one real
number in the time domain. The single complex number resulting
from a (forward) Fourier transform gives rise to the amplitude and
phase of a frequency component. We want to examine the distribution
of the amplitude representing a single frequency component as well
as the distribution of the sum of amplitudes representing the TF and
its harmonics.

An initial approach was based on simple simulation experiments
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Figure 3: 3D - histogram of amplitude values: N = 10,000 standard normal random vectors of length, L = 180 were generated, transformed into frequency space
using the fast Fourier transform in Matlab and plotted as 3D - histogram from bin k = 1 to 89. It can be seen that the shape of the histograms are similar regardless

of frequency bin.
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in which we generated a white (standard Gaussian) noise signal
and evaluated its frequency components. We generated 1,000 time
signals of arbitrary length t = 180 and extracted individual frequency
components from this sample using a Matlab simulation. The
histograms for the individual frequency components starting from k
=2to k=N/2-1areillustrated in figure 3. It became apparent that the
shape of the histograms and the amplitude values for these frequency
components appeared to be identically distributed. Comparing for
example an arbitrary 7" and the 42™ frequency component, we found
that their amplitude values had the same distribution, an observation
that was not intuitively obvious. An empirical investigation using
Matlab’s distribution fitting tool further suggested that the shape
of these histograms appeared to have the contour of a Nakagami
distribution. In the following section, we state this observation as
a theorem, followed by the outline of a mathematical proof. The
rigorous proof of the amplitude distribution theorem is given in the
appendix.

Amplitude distribution theorem

Suppose that X,p.X, are IID standard Normal random variables.
Forany kefR, let us define:

N-1 » N-1 2 N-1 . 2
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Where Z, represents the Fourier transform of a single frequency
bin k, X, represents the real part, Y, the imaginary part, A, the
amplitude of a single frequency and A_ the amplitude of a sum of

frequencies. Assume that the conditions R < (N/2) and the set S =
{k,....K,} are all distinct values satisfying 0 < k, < N/2 for r = I,...,R
are met. We then have that A, is a Nakagami random variable with
parameters m = 1 and Q = N and that A is a Nakagami random
variable with parameters m = R and Q2 = NR. Summarizing, we have:

Let x,,...,x, ~iidN(0,1) then for any 0<k <N /2,

2
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Outline of a proof

We first establish that the real and imaginary part of a random
noise signal are independent and that they are distributed N (0, N/2)
except for the two special cases where k = 0 or k = N/2. Based on these
results we establish the distribution of the amplitude of a frequency
component by squaring and adding the real (X,) and imaginary parts
(Y,) and taking their square root. We work with a joint distribution
of two frequency components because this leads us to a result that is
applicable for the simple case of one frequency component as well as
the case when we consider the sum of several harmonics. A detailed
proof is provided as appendix.

Discussion

The result of a general linear model (GLM) analysis varies from
one investigator to another as it dependents on image preprocessing,
model choices and physiological assumptions. A brief review of the
GLM approach will illustrate this point. This followed by a discussion
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of the motivating ideas behind the TFA approach.
Basic idea of the TFA of fMRI data

The idea of the TFA is that the agreement of the BOLD signal
(in response to a periodic task) and a sine wave with matching
frequency is a measure of brain activity; a measure of this agreement
is the amplitude of the TF. This concept may be best illustrated
using a concrete example: Consider an experiment whereby a
person’s right hand is immersed into a container filled with ice for
8 seconds followed by immersion into tepid water for 8 seconds and
this alternating stimulus is continued for 5 minutes. We now have a
stimulus period of 16 seconds and a stimulus frequency of 1/16 Hertz
(Hz). When observing the BOLD signal time-course, we expect peaks
and troughs of the signal with the same frequency, our TF. As we have
demonstrated in a psychophysical experiment [7] a temporal shift of
this curve occurs if it takes a while as the brain registers the signal as
increasingly unpleasant and there may be a similar lag in the recovery
from each cold stimulus but, on average, the periodicity of the signal
is preserved. After performing a Fourier transform of the observed
BOLD signal we have that the amplitude of the TF is a measure of
agreement of the observed signal with the task and hence a measure
of brain activity.

One might argue that the shape of a sine wave may not be a good
enough match to the observed signal and that the convolution of an
assumed stimulus function and an assumed hemodynamic response
function - as done in the traditional GLM analysis - might be a
better match. Given the discrete nature of fMRI experiments (data
are collected every time a whole brain image is obtained rather than
continuously), the best possible match of the shape of the TF sine
wave can be accommodated by adding the overtones (or harmonics)
to the TF in the analysis. Because our sample rate — determined by
the scan repetition time - is typically low in fMRI experiments, there
are only few harmonics that we can consider. Given this limitation
of a functional fMRI experiment, it is important to realize that all
information from the discrete time-series about the shape of the
sinusoid TF is contained in these harmonics.

In order to establish a statistical measure of the amplitude of
the TF, we need to characterize its distribution. More precisely, if
we wanted to develop a statistical threshold, we needed to establish
the null distribution of the TF amplitude (the distribution of the
TF amplitude when we only have a random noise signal). As we
demonstrated in our mathematical treatment of this concept, the TF
amplitude has a Nakagami distribution. We also prooved that the
amplitude of each frequency component of a random noise signal,
as well as the sum of several frequencies, are Nakagami distributed
with the important exception of the “direct current” (DC) component
and the Nyquist limit frequency. This proof establishes the theoretical
basis by which we can calculate an amplitude threshold value which
can be used to declare brain voxels as active.

There is one important distinction between the TFA and the
GLM approach which affects the issue of multiple comparisons.
The GLM approach is correctly described as a “mass-univariate”
analysis, that is the BOLD signal time course is analyzed for each
brain voxel separately. The result is a three-dimensional map of the
t-statistic generated for each of thousands of brain voxels. There are
several methods to deal with the ensuing multiple comparison issue.
The most widely adopted method requires smoothing of the data
and invokes the concept of Gaussian field theory [8]. By contrast an
adjustment for multiple comparisons is not used in the TFA because
the threshold for active voxels is simply based on the distribution of
the TF amplitude, a single calculated value (outcome) rather than a
statistic. One can understand this important difference better when
realizing that, in the TFA, we extract a single value of interest, the
amplitude of our TF that we are interested in. In the GLM analysis
each brain voxel is represented by a time-series of N values that
are being summarized using the t-statistic. Thus, in the TFA we are
reframing the problem to evaluating a distribution of the amplitude
of a single frequency (A,) whereas in the GLM we are evaluating a

three-dimensional matrix of t-statistics which requires considerations
multiple comparisons.

Synopsis of the general linear model analysis of fMRI data

The GLM based analysis of fMRI data can be thought of as an
extension of a simple bivariate regression where we examine the
correlation of observed MRI intensity values and predicted MRI
intensity values. There are several physiological assumptions when
constructing the predicted MRI intensity values. The predicted
signal is actually derived as a convolution of 2 functions, a stimulus
function, g(t) and the hemodynamic response function (hrf), h(t)
where t denotes time. In a block design, it is generally assumed that
the stimulus function, g(¢) is a “stick function” that takes on two
values: one during the task and zero in the absence of the task. It is
needless to say that this assumption is hardly realistic for cognitive
experiences such as pain, because the intensity of pain typically builds
up and gradually disappears after the stimulus is removed. Utilizing
the classic example of the cold pressor test as experimental pain
model, we showed that this assumption is not valid at all [7]. In fact,
certain experimental tasks may even produce BOLD decreases rather
than increases, a phenomenon that would completely negate the GLM
model assumption [9]. The shape of the hrf, h(t) is determined by the
hemodynamic coupling of a neurological impulse and the associated
change in regional brain blood flow; that is, a neurological event in
the brain triggers a change in regional cerebral perfusion to that brain
area. Nikos Logothetis [10] is credited with characterizing the shape
of the hrf in combined electrophysiological and MRI experiments
in the primate brain. In analysis packages, the hrf is often modeled
as a mixture of two gamma probability distribution functions [11].
Although the hrf appears to be consistent when evaluated within
the context of visual experiments (and the vision cortex), there
is considerable doubt that the shape of this function is consistent
across a variety of brain regions [12]. This is another important
assumption that is likely not met. Disregarding the potential violation
of assumptions, we would construct the predicted BOLD response as
convolution function, f (t) = (g * h) (¢). Finally, the requirement for
spatial smoothing as a prerequisite to calculate a suitable family-wise
error threshold based on random field theory is another prerequisite
that has been seen as counterintuitive to the pursuit of higher spatial
resolution in fMRI imaging. It may be for these reasons that Poline et
al. wondered whether the “love for the GLM would last forever” [13].

We revisited existing analysis approaches in search of a method
that would neither require knowledge of the shape of the stimulus
or hemodynamic response function. A frequency based analysis
approach appeared to fit that profile. Bandettini and Hyde introduced
this approach early in the development of fMRI analysis methods
[14]. In their paper, Bandettini et al. investigated a signal both in
time and frequency domain. They also paid attention to the first
harmonic of the task frequency and determined that this frequency
carries some information about the task. Two years later Sereno et al.
published a result on a frequency-based approach to analyze vision
data [15]. However, the frequency based methods used in retinotopic
experiments where design to make use of phase-differences in the
stimuli. When one intends to develop a more flexible approach the
focus on frequency phase may not be desirable. In years to follow,
most investigators focused on analyses in the time rather than
frequency domain and, most recently, frequency based approaches
were revisited by scientists interested in resting-state fMRI [16].

Our interest in a frequency-based approach was directed at finding
an analysis tool that did not require many assumptions, yet allowed us
to remove any confounding information in the signal, that is unwanted
noise or signal drift. The analysis concept proposed in our paper is that, in
a block design fMRI experiment, the amplitude of the TF (the frequency
that correlates with the experimental stimulus) represents the agreement
of MRI signal and experimental task, i.e. brain activity. We demonstrate
that the frequency amplitude of a random signal, after Fourier transform,
has a Nakagami probability distribution with the shape parameter m = 1
and dispersion parameter Q) = N. The sum of the TF and its harmonics
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has a Nakagami (m = R, Q = NR) distribution where N is the signal
length and R the number of harmonics included. The applied rationale
of this work is to establish a null distribution of the amplitude of a single
frequency or the sum of frequencies, as a frame of reference to which
we can compare the alternate distribution of an observed signal obtained
while a periodic task is applied. The null distribution (white noise) can
be viewed as a distribution of a random variable that informs us about
the probability of observing extreme amplitude values in a brain voxel
simply by chance.

The Nakagami distribution is ubiquitous in applications in the
technical sciences. This distribution was originally proposed at a
symposium on radio wave propagations refined models for the pdf
of signal amplitude exposed to fading of a wireless communication
signal [17]. In medical imaging the distribution has been proposed to
characterize ultrasound tissue because the envelope of the ultrasound
radiofrequency (RF) signal can be described by this distribution and
the parameters can be used to distinguish tissue types [18]. A new
application of the Nakagami distribution, in functional magnetic
resonance imaging (fMRI) research, is described here. In an fMRI
block design, a person receives a certain stimulus in a periodic
fashion. The repeated application is intended to overcome the
problem of a relatively low signal-to-noise ratio. During the stimulus
application, repeated brain images are obtained. The agreement of
the time-course of the fMRI signal and the period of the stimulus
application can be used to detect regions in the brain that respond
to the experimental task. The Nakagami distribution is related to
the Gamma and ¥ distribution, which are more commonly used in
statistics. In particular, the Nakagami distribution can be generated
froma ¥ - distribution with degrees of freedom equal to two times the
shape parameter, followed by a scaling transformation. In particular,
if v ~x(2m), then X =vQ/2m-Y ~ Nakagami(m,Q).

In the auditory example, included as proof of concept, we have
extracted the frequency component of the signal that corresponds to
the auditory task. We contrast the results of a simple GLM analysis
with those of the newly introduced TFA. It can be seen that activation
of the auditory cortex is observed with either method (see figure 2),
thus providing the qualitative evidence in support of our hypothesis.
In addition, the TFA method we propose provides results with a very
fast computational sequence. Results are unaffected by phase shifts
of the stimulus and variations in stimulus or hemodynamic response
function. We introduce the theoretical distribution of the frequency
amplitude as a means to generate a statistical threshold defining the
probability of false positive results.

In summary, we propose the TFA method as alternative tool to
analyze fMRI data because the method is computationally efficient
and is not affected by misspecifications of anticipated BOLD response
in terms of onset, shape or variability across different regions of the
brain. As such the method should have great utility as screening tool
or as supplementary analysis of block design fMRI experiments.

IRB

UAB protocol numbers F081016014 and X081016014. Most recent

approval period: 8-27-14 to 8-27-2015. Signed by Maureen Doss

References

1.

1

o

1

a

12.

1

w

14.

15.

16.

1

~

1

oo

Bornhévd K, Quante M, Glauche V, Bromm B, Weiller C, et al. (2002)
Painful stimuli evoke different stimulus—response functions in the amygdala,
prefrontal, insula and somatosensory cortex: a single-trial fMRI study. Brain
125: 1326-1336.

Jacobs J, Hawco C, Kobayashi E, Boor R, LeVan P, et al. (2008) Variability
of the hemodynamic response as a function of age and frequency of epileptic
discharge in children with epilepsy. Neuroimage 40: 601-614.

Aguirre GK, Zarahn E, D'esposito M (1998) The variability of human, BOLD
hemodynamic responses. Neuroimage 8: 360-369.

Oldfield RC (1971) The assessment and analysis of handedness: the
Edinburgh inventory. Neuropsychologia 9: 97-113.

Xia M, Wang J, He Y (2013) BrainNet Viewer: a network visualization tool for
human brain connectomics. PLoS One 8: e68910.

Goertzel G (1958) An Algorithm for the Evaluation of Finite Trigonometric
Series. Am Math Mon 65: 34-35.

Frélich MA, Bolding MS, Cutter GR, Ness TJ, Zhang K (2010) Temporal
characteristics of cold pain perception. Neurosci Lett 480: 12-15.

Worsley KJ, Friston KJ (1995) Analysis of fMRI time-series revisited--again.
Neuroimage 2: 173-181.

Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional
MRI response correlates with decreases in neuronal activity in monkey visual
area V1. Nat Neurosci 9: 569-577.

. Logothetis NK (2003) The underpinnings of the BOLD functional magnetic

resonance imaging signal. J Neurosci 23: 3963-3971.

. Friston KJ, Fletcher P, Josephs O, Holmes A, Rugg MD, et al. (1998) Event-

related fMRI: characterizing differential responses. Neuroimage 7: 30-40.

Ances BM, Leontiev O, Perthen JE, Liang C, Lansing AE, et al. (2008)
Regional differences in the coupling of cerebral blood flow and oxygen
metabolism changes in response to activation: implications for BOLD-fMRI.
Neuroimage 39: 1510-1521.

. Poline JB, Brett M (2012) The general linear model and fMRI: does love last

forever? Neuroimage 62: 871-880.

Bandettini PA, Wong EC, Hinks RS, Tikofsky RS, Hyde JS (1992) Time
course EPI of human brain function during task activation. Magn Reson Med
25: 390-397.

Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, et al. (1995)
Borders of multiple visual areas in humans revealed by functional magnetic
resonance imaging. Science 268: 889-893.

van den Heuvel MP, Hulshoff Pol HE (2010) Exploring the brain
network: a review on resting-state fMRI functional connectivity. Eur
Neuropsychopharmacol 20: 519-534.

.Hoffman WC (1958) Statistical Methods in Radio Wave Propagation:

Proceedings of a Symposium Held at the University of California, Los
Angeles.

. Caixinha M, Jesus DA, Velte E, Santos MJ, Santos JB (2014) Using

ultrasound backscattering signals and Nakagami statistical distribution to
assess regional cataract hardness. IEEE Trans Biomed Eng 61: 2921-2929.

Frolich et al. Int J Clin Biostat Biom 2015, 1:2

ISSN: 2469-5831 e Page 6 of 6«


http://www.ncbi.nlm.nih.gov/pubmed/12023321
http://www.ncbi.nlm.nih.gov/pubmed/12023321
http://www.ncbi.nlm.nih.gov/pubmed/12023321
http://www.ncbi.nlm.nih.gov/pubmed/12023321
http://www.ncbi.nlm.nih.gov/pubmed/18221891
http://www.ncbi.nlm.nih.gov/pubmed/18221891
http://www.ncbi.nlm.nih.gov/pubmed/18221891
http://www.ncbi.nlm.nih.gov/pubmed/9811554
http://www.ncbi.nlm.nih.gov/pubmed/9811554
http://www.ncbi.nlm.nih.gov/pubmed/5146491
http://www.ncbi.nlm.nih.gov/pubmed/5146491
http://www.ncbi.nlm.nih.gov/pubmed/23861951
http://www.ncbi.nlm.nih.gov/pubmed/23861951
https://courses.cs.washington.edu/courses/cse466/12au/calendar/Goertzel-original.pdf
https://courses.cs.washington.edu/courses/cse466/12au/calendar/Goertzel-original.pdf
http://www.ncbi.nlm.nih.gov/pubmed/20493237
http://www.ncbi.nlm.nih.gov/pubmed/20493237
http://www.ncbi.nlm.nih.gov/pubmed/9343600
http://www.ncbi.nlm.nih.gov/pubmed/9343600
http://www.ncbi.nlm.nih.gov/pubmed/16547508
http://www.ncbi.nlm.nih.gov/pubmed/16547508
http://www.ncbi.nlm.nih.gov/pubmed/16547508
http://www.ncbi.nlm.nih.gov/pubmed/12764080
http://www.ncbi.nlm.nih.gov/pubmed/12764080
http://www.ncbi.nlm.nih.gov/pubmed/9500830
http://www.ncbi.nlm.nih.gov/pubmed/9500830
http://www.ncbi.nlm.nih.gov/pubmed/18164629
http://www.ncbi.nlm.nih.gov/pubmed/18164629
http://www.ncbi.nlm.nih.gov/pubmed/18164629
http://www.ncbi.nlm.nih.gov/pubmed/18164629
http://www.ncbi.nlm.nih.gov/pubmed/22343127
http://www.ncbi.nlm.nih.gov/pubmed/22343127
http://www.ncbi.nlm.nih.gov/pubmed/1614324
http://www.ncbi.nlm.nih.gov/pubmed/1614324
http://www.ncbi.nlm.nih.gov/pubmed/1614324
http://www.ncbi.nlm.nih.gov/pubmed/7754376
http://www.ncbi.nlm.nih.gov/pubmed/7754376
http://www.ncbi.nlm.nih.gov/pubmed/7754376
http://www.ncbi.nlm.nih.gov/pubmed/20471808
http://www.ncbi.nlm.nih.gov/pubmed/20471808
http://www.ncbi.nlm.nih.gov/pubmed/20471808
https://books.google.co.in/books?id=Npk4BQAAQBAJ&pg=PR7&lpg=PR7&dq=Statistical+Methods+in+Radio+Wave+Propagation:+Proceedings+of+a+Symposium+Held+at+the+University+of+California&source=bl&ots=ON9kJ9_znh&sig=eiJUmXiq6roPUtRy2ELSXfXN074&hl=en&sa=X&ved=0CCwQ6
https://books.google.co.in/books?id=Npk4BQAAQBAJ&pg=PR7&lpg=PR7&dq=Statistical+Methods+in+Radio+Wave+Propagation:+Proceedings+of+a+Symposium+Held+at+the+University+of+California&source=bl&ots=ON9kJ9_znh&sig=eiJUmXiq6roPUtRy2ELSXfXN074&hl=en&sa=X&ved=0CCwQ6
https://books.google.co.in/books?id=Npk4BQAAQBAJ&pg=PR7&lpg=PR7&dq=Statistical+Methods+in+Radio+Wave+Propagation:+Proceedings+of+a+Symposium+Held+at+the+University+of+California&source=bl&ots=ON9kJ9_znh&sig=eiJUmXiq6roPUtRy2ELSXfXN074&hl=en&sa=X&ved=0CCwQ6
http://www.ncbi.nlm.nih.gov/pubmed/25014952
http://www.ncbi.nlm.nih.gov/pubmed/25014952
http://www.ncbi.nlm.nih.gov/pubmed/25014952

	Title
	Corresponding author
	Abstract
	Keywords
	Summary statement
	Introduction 
	Materials and Methods
	Subjects and recruitment
	Technical information and GLM analysis
	Target frequency analysis (TFA)

	Results
	Results from an auditory experiment
	Investigation of the frequency amplitude distribution
	Amplitude distribution theorem
	Outline of a proof

	Discussion
	Basic idea of the TFA of fMRI data
	Synopsis of the general linear model analysis of fMRI data

	IRB
	Figure 1
	Figure 2
	Figure 3
	appendix
	References

