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of the validity of the data and scientific hypothesis generated. The 
prevailing statistical technique is the general linear model (GLM). It 
is used ubiquitously because it is very flexible, but it typically requires 
certain data manipulations and depends on specific physiological 
assumptions, which may not be met. For example, the response to 
a task has been shown to be stimulus specific [1] and the response 
changes with age or from person to person [2]. It has been documented 
that the fMRI response depends on the subject as well as the day and 
time of the scanning session [3]. It can easily be demonstrated that 
just minor modifications of the input onset values used in existing 
imaging analysis packages alter the results significantly (an example 
is given in figure 1). The subjective nature of imaging analyses makes 
the interpretation of functional imaging studies, particularly those 
that investigate complex cognitive tasks, problematic. In classical 
statistical applications, the investigator can use descriptive methods 
to provide an overall sense of the data. However, the complex nature 
of neuroimaging analysis makes it difficult to generate a simple 
statistic that provides an intuitive description of the experiment.

With the goal in mind to find a method for block design fMRI 
experiments that is unconstrained by many of the assumptions 
of the GLM method, we first contemplated a simple analysis of 
the temporal signal variance. The basic idea was that a brain MRI 
signal recorded over time from a person at a resting state (i.e. not 
subject to an experimental stimulus) would have temporal variability 
attributable only to the random noise of the MRI signal. By contrast, 
the signal time course of a person exposed to a repeated task would 
have a larger variability in areas of the brain that respond to the task, 
reflecting both the variance due to the task as well as the variance 
due to the random noise. Unfortunately, this simplistic approach 
fails to identify task related activity as it ignores other very important 
sources of variances such as the MRI signal drift and physiological 
noise (rhythmic signal changes due to heart beat and respiration). 
We realized that any useful method would have to somehow extract 
the signal due to the periodic task while ignoring any other signal 
variability (noise). This thought gave rise to the target frequency 
analysis (TFA) proposed in this paper. This approach builds on 
existing frequency based analysis concepts with a new focus on the 
amplitude of a single frequency. We also generalize the concept 
slightly to include the target frequency (TF) and its harmonics and 
prove the theoretical foundation of the proposed method rigorously. 

Abstract
Background: The field of functional magnetic resonance imaging 
(fMRI) has grown in usage, applications, and complexity. The 
results of a general linear model (GLM) analysis vary from one 
investigator to another as they depend on image preprocessing, 
model choices and physiological assumptions. There is a need for 
a simple, efficient and consistent analysis method.

Methods: We propose the target frequency analysis (TFA) as 
an intuitive, computationally efficient method to analyze data 
from block design fMRI experiments. We illustrate its utility with 
a traditional auditory experiment and develop the theoretical 
foundation on which the method is based.

Results: We show that the TFA correctly identifies activation of the 
primary and secondary auditory cortex in response to a periodic 
auditory stimulus. We demonstrate that the amplitude of a single 
frequency component or the sum of several frequency components 
of a white noise signal have a Nakagami probability distribution. 
The percentiles of this null distribution can be used to determine the 
activation threshold of an fMRI experiment.

Conclusions: The proposed TFA approach does not require 
assumptions of the GLM approach such as the a priori knowledge 
of the shape of the stimulus function or hemodynamic response 
function. The method is computationally efficient and has 
great potential as supplementary analysis of block design fMRI 
experiments.
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Summary statement
We provide the theoretical foundation of a frequency based fMRI 

analysis approach, which does not depend on many assumptions of 
existing GLM based approaches. We illustrate its application using an 
auditory fMRI example.

Introduction
Functional magnetic resonance imaging (fMRI) methods 

have expanded in scope and level of sophistication. Yet, the user 
dependent nature of fMRI analyses has led some to become skeptical 
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Figure 1: Phase dependence of GLM based image analysis. The auditory experiment was timed such that the stimulus onset was expected to coincide with the 
2nd recorded brain volume. A modified analysis with onset at Volume 1 shows more activation, an onset at Volume 3 shows no activation at all.

Figure 2: Illustration of Results for Auditory fMRI experiment in 12 human volunteers, analyzed in the time domain using a mass-univariate t-test with an FWE 
corrected threshold at a p = 0.05 level versus a TF based analysis using only one (the first) harmonic and a threshold determined by the 95th percentile of amplitude 
distribution under the null hypothesis of a white noise signal (Nakagami [1,150]).
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We then designed an fMRI experiment for the empirical comparison 
of the traditional GLM analysis and the new TFA approach. We chose 
an auditory task for this experiment since this type of stimulus has 
been well validated in BOLD fMRI experiments. Our hypothesis was 
that the TFA approach would produce qualitative comparable result 
when compared to the traditional GLM analysis.

Materials and Methods
Subjects and recruitment

To demonstrate the concept of the TFA we conducted an auditory 
fMRI study in 12 human volunteers. Participants were recruited by 
public advertisement. During a screening visit we performed a focused 
history and physical examination and we obtained written informed 
consent. Handedness was assessed using the Edinburgh Handedness 
Inventory [4]. We included healthy right-handed volunteers ages 21 
– 40. Exclusion criteria were any significant preexisting pulmonary or 
cardiac disease, a body mass index > 40 kg/m2, a history of substance 
abuse and a current prescription of any neurotropic medication. On 
a separate day, participants underwent an fMRI session consisting 
of an orientation scan, a structural MRI scan and a 5-minute echo 
planar imaging (EPI) session on a Siemens Allegra 3T scanner.

Technical information and GLM analysis

We acquired 150 functional images at a near isovolumetric voxel 
resolution of 4 mm and a repetition time of 2000 ms. Functional MRI 
data were stored in Siemens DICOM format and then converted to 
4D-single Nifti files and realigned in Matlab R 2012b (Mathworks, 
Natick, MA) using tools built into statistical parametric mapping (SPM 
12, London, UK). These were the only preprocessing steps needed for 
the TFA. The GLM analysis required a few extra steps: after realignment, 
images were co-registered to the structural scan, spatially normalized and 
smoothed with the default 8 by 8 by 8 mm smoothing kernel. To define 
the expected fMRI activation time course, we used the default parameters 
in SPM where the fMRI BOLD response is modeled as a convolution of 
a box-car function per experiment design and a 2-component gamma 
mixture model for the hemodynamic response function (canonical hrf). 
To select the most parsimonious model, no motion regressors, temporal 
or dispersion derivatives were added.

During the functional scans, volunteers listened to eight second 
blocks of music (created from royalty free audio clips of varying music 
genres), starting at the 8th second and alternating with 8-seconds 
of silence. Music stimulus and scanner start were synchronized by 
count down. We used the fMRI compatible headset provided from 
the manufacturer (Siemens) both to shield subjects from scanner 
noise as well as to play the auditory stimulus (music segments). The 
first two brain volumes, taking up the first 4 seconds after scanner 
start, were not recorded as they constitute equilibration ("dummy") 
scans. We performed two analyses: a traditional GLM analysis using 
the statistical parametric mapping (Welcome Trust Centre for 
Neuroimaging, London) and a TFA analysis. A family-wise error 
correction threshold of p = 0.05 was used for the results report. 
Average activation was calculated as the mean of the SPMs for each 
participant. The resulting t-maps were then rendered to an inflated 
brain surface using the BrainNet Viewer [5].

Target frequency analysis (TFA)

We define the TF as the particular frequency that corresponds to 
the experimental task. In the auditory example, we play 8 – second 
sequences of music that alternate with 8 – second sequences of silence. 
This gives a task period of 16 seconds or, in terms of frequency, a 
task frequency of 1/16 Hz. In the analysis, we target the same 
frequency component, the 1/16 Hz frequency component and call 
this our TF. Realigned images were loaded as 4-dimensional matrix 
into Matlab 2014a (Mathworks, Natick, MA). After removing low 
signal intensities, which represent voxels outside the brain, images 
were mean-centered and scaled by subtracting the temporal mean 
signal and dividing by the temporal signal standard deviation for all 
brain voxels, using matrix commands in Matlab. This was followed 

by extracting the TF - the one signal frequency with a period of 8 
seconds that corresponds to the period of the auditory experiment 
- using the Goertzel algorithm in Matlab [6]. Images were then co-
registered manually to match in anterior commissure (origin), size 
and spatial rotation with the t-maps generated via the GLM analysis 
to allow for the illustration of both methods in figure 2. As statistical 
threshold, we used the 95% percentile of the Nakagami (m = 1, Ω 
= 150) distribution [the rationale for this will be explained below]. 
Average activation was calculated as mean amplitude values across 
participants.

To establish a threshold for declaring voxels active, we 
investigated the behavior of a random noise BOLD signal, i.e. a signal 
that one could expect if no stimulation was presented to a subject. 
First, we used simulation methods to generate independent Gaussian 
distributed noise. After a Fourier transform of this random signal, 
we studied the characteristics of all frequency components as well 
as individual frequencies using three-dimensional histograms and 
the distribution fitting tool in Matlab (Figure 3). Based on empirical 
observations, we postulated that the amplitude of a single frequency 
of a white noise signal has a Nakagami distribution. We then applied 
standard mathematical methods to provide a proof to support our 
observation.

Results
Results from an auditory experiment

The results of our auditory study are illustrated in figure 2. The 
left auditory cortex, located within the lateral fissure and the superior 
aspect of the temporal gyrus, is shown to be active in each of twelve 
participants. It can also be seen that there is considerable variability 
from one person to another. However, the location of activation within 
the superior temporal gyrus appears to be relatively consistent across 
analysis methods (GLM vs. TFA). In addition to cortical renderings 
for each participant we show the average activation. The threshold 
of the amplitude variable is based on the null distribution, which we 
have derived as Nakagami (m = 1, Ω = 150). The 95th percentile of 
this distribution equals 23.22. When this threshold is applied to the 
auditory experiment we know that 5% of the voxels displayed may be 
included simply by chance.

One of the advantages of the TFA is that the method is 
independent of the phase shift of the signal or delayed onset time of 
the perceived stimulus. In a GLM based analysis the same variations 
would drastically alter the results as we demonstrate in figure 1, which 
shows the results of a GLM based analysis with varying onset times. 
The onset of auditory activation was timed to occur at the end of 
the second volume. Given the stimulus start at 8 seconds, the first 
2 volumes discarded as equilibration scans, a TR of 2 seconds, and 
a period of 8 volumes (4 music on / 4 music off), a proper onset 
was expected to coincide with the second brain volume. However, 
a modified analysis with onset at the first brain volume shows 
significantly larger activation clusters.

Investigation of the frequency amplitude distribution

BOLD signals are discrete time series, which can be transformed 
into frequency components using the Fourier transform. This 
transformation maps N signal values in the time-domain to a 
single complex number (Zk), which represents a single frequency 
component of the time signal. The transformation depends on 
the value of the index k, which ranges from 0 to N-1. The Fourier 
transform can therefore generate N complex numbers. The inverse 
Fourier transform uses N complex numbers to generate one real 
number in the time domain. The single complex number resulting 
from a (forward) Fourier transform gives rise to the amplitude and 
phase of a frequency component. We want to examine the distribution 
of the amplitude representing a single frequency component as well 
as the distribution of the sum of amplitudes representing the TF and 
its harmonics.

An initial approach was based on simple simulation experiments 
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in which we generated a white (standard Gaussian) noise signal 
and evaluated its frequency components. We generated 1,000 time 
signals of arbitrary length t = 180 and extracted individual frequency 
components from this sample using a Matlab simulation. The 
histograms for the individual frequency components starting from k 
= 2 to k = N/2 - 1 are illustrated in figure 3. It became apparent that the 
shape of the histograms and the amplitude values for these frequency 
components appeared to be identically distributed. Comparing for 
example an arbitrary 7th and the 42nd frequency component, we found 
that their amplitude values had the same distribution, an observation 
that was not intuitively obvious. An empirical investigation using 
Matlab’s distribution fitting tool further suggested that the shape 
of these histograms appeared to have the contour of a Nakagami 
distribution. In the following section, we state this observation as 
a theorem, followed by the outline of a mathematical proof. The 
rigorous proof of the amplitude distribution theorem is given in the 
appendix.

Amplitude distribution theorem

Suppose that x1,...,xN are IID standard Normal random variables. 
For any  k ∈R , let us define:
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Where Zk represents the Fourier transform of a single frequency 
bin k, Xk represents the real part, Yk the imaginary part, Ak the 
amplitude of a single frequency and A+ the amplitude of a sum of 

frequencies. Assume that the conditions R < (N/2) and the set S = 
{k1,…,KR} are all distinct values satisfying 0 < kr < N/2 for r = 1,…,R 
are met.  We then have that Ak is a Nakagami random variable with 
parameters m = 1 and Ω = N and that A+ is a Nakagami random 
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Outline of a proof

We first establish that the real and imaginary part of a random 
noise signal are independent and that they are distributed N (0, N/2) 
except for the two special cases where k = 0 or k = N/2. Based on these 
results we establish the distribution of the amplitude of a frequency 
component by squaring and adding the real (Xk) and imaginary parts 
(Yk) and taking their square root. We work with a joint distribution 
of two frequency components because this leads us to a result that is 
applicable for the simple case of one frequency component as well as 
the case when we consider the sum of several harmonics. A detailed 
proof is provided as appendix.

Discussion
The result of a general linear model (GLM) analysis varies from 

one investigator to another as it dependents on image preprocessing, 
model choices and physiological assumptions. A brief review of the 
GLM approach will illustrate this point. This followed by a discussion 

Figure 3: 3D - histogram of amplitude values: N = 10,000 standard normal random vectors of length, L = 180 were generated, transformed into frequency space 
using the fast Fourier transform in Matlab and plotted as 3D - histogram from bin k = 1 to 89. It can be seen that the shape of the histograms are similar regardless 
of frequency bin. 

http://clinmedjournals.org/articles/ijcbb/ijcbb-1-007-apendix.pdf
http://clinmedjournals.org/articles/ijcbb/ijcbb-1-007-apendix.pdf
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three-dimensional matrix of t-statistics which requires considerations 
multiple comparisons.

Synopsis of the general linear model analysis of fMRI data

The GLM based analysis of fMRI data can be thought of as an 
extension of a simple bivariate regression where we examine the 
correlation of observed MRI intensity values and predicted MRI 
intensity values. There are several physiological assumptions when 
constructing the predicted MRI intensity values. The predicted 
signal is actually derived as a convolution of 2 functions, a stimulus 
function, g(t) and the hemodynamic response function (hrf), h(t) 
where t denotes time. In a block design, it is generally assumed that 
the stimulus function, g(t) is a ”stick function” that takes on two 
values: one during the task and zero in the absence of the task. It is 
needless to say that this assumption is hardly realistic for cognitive 
experiences such as pain, because the intensity of pain typically builds 
up and gradually disappears after the stimulus is removed. Utilizing 
the classic example of the cold pressor test as experimental pain 
model, we showed that this assumption is not valid at all [7]. In fact, 
certain experimental tasks may even produce BOLD decreases rather 
than increases, a phenomenon that would completely negate the GLM 
model assumption [9]. The shape of the hrf, h(t) is determined by the 
hemodynamic coupling of a neurological impulse and the associated 
change in regional brain blood flow; that is, a neurological event in 
the brain triggers a change in regional cerebral perfusion to that brain 
area. Nikos Logothetis [10] is credited with characterizing the shape 
of the hrf in combined electrophysiological and MRI experiments 
in the primate brain. In analysis packages, the hrf is often modeled 
as a mixture of two gamma probability distribution functions [11]. 
Although the hrf appears to be consistent when evaluated within 
the context of visual experiments (and the vision cortex), there 
is considerable doubt that the shape of this function is consistent 
across a variety of brain regions [12]. This is another important 
assumption that is likely not met. Disregarding the potential violation 
of assumptions, we would construct the predicted BOLD response as 
convolution function, f (t) = (g * h) (t). Finally, the requirement for 
spatial smoothing as a prerequisite to calculate a suitable family-wise 
error threshold based on random field theory is another prerequisite 
that has been seen as counterintuitive to the pursuit of higher spatial 
resolution in fMRI imaging. It may be for these reasons that Poline et 
al. wondered whether the “love for the GLM would last forever” [13]. 

We revisited existing analysis approaches in search of a method 
that would neither require knowledge of the shape of the stimulus 
or hemodynamic response function. A frequency based analysis 
approach appeared to fit that profile. Bandettini and Hyde introduced 
this approach early in the development of fMRI analysis methods 
[14]. In their paper, Bandettini et al. investigated a signal both in 
time and frequency domain. They also paid attention to the first 
harmonic of the task frequency and determined that this frequency 
carries some information about the task. Two years later Sereno et al. 
published a result on a frequency-based approach to analyze vision 
data [15]. However, the frequency based methods used in retinotopic 
experiments where design to make use of phase-differences in the 
stimuli. When one intends to develop a more flexible approach the 
focus on frequency phase may not be desirable. In years to follow, 
most investigators focused on analyses in the time rather than 
frequency domain and, most recently, frequency based approaches 
were revisited by scientists interested in resting-state fMRI [16].

Our interest in a frequency-based approach was directed at finding 
an analysis tool that did not require many assumptions, yet allowed us 
to remove any confounding information in the signal, that is unwanted 
noise or signal drift. The analysis concept proposed in our paper is that, in 
a block design fMRI experiment, the amplitude of the TF (the frequency 
that correlates with the experimental stimulus) represents the agreement 
of MRI signal and experimental task, i.e. brain activity. We demonstrate 
that the frequency amplitude of a random signal, after Fourier transform, 
has a Nakagami probability distribution with the shape parameter m = 1 
and dispersion parameter Ω = N. The sum of the TF and its harmonics 

of the motivating ideas behind the TFA approach.

Basic idea of the TFA of fMRI data

The idea of the TFA is that the agreement of the BOLD signal 
(in response to a periodic task) and a sine wave with matching 
frequency is a measure of brain activity; a measure of this agreement 
is the amplitude of the TF. This concept may be best illustrated 
using a concrete example: Consider an experiment whereby a 
person’s right hand is immersed into a container filled with ice for 
8 seconds followed by immersion into tepid water for 8 seconds and 
this alternating stimulus is continued for 5 minutes. We now have a 
stimulus period of 16 seconds and a stimulus frequency of 1/16 Hertz 
(Hz). When observing the BOLD signal time-course, we expect peaks 
and troughs of the signal with the same frequency, our TF. As we have 
demonstrated in a psychophysical experiment [7] a temporal shift of 
this curve occurs if it takes a while as the brain registers the signal as 
increasingly unpleasant and there may be a similar lag in the recovery 
from each cold stimulus but, on average, the periodicity of the signal 
is preserved. After performing a Fourier transform of the observed 
BOLD signal we have that the amplitude of the TF is a measure of 
agreement of the observed signal with the task and hence a measure 
of brain activity.

One might argue that the shape of a sine wave may not be a good 
enough match to the observed signal and that the convolution of an 
assumed stimulus function and an assumed hemodynamic response 
function – as done in the traditional GLM analysis - might be a 
better match. Given the discrete nature of fMRI experiments (data 
are collected every time a whole brain image is obtained rather than 
continuously), the best possible match of the shape of the TF sine 
wave can be accommodated by adding the overtones (or harmonics) 
to the TF in the analysis. Because our sample rate – determined by 
the scan repetition time – is typically low in fMRI experiments, there 
are only few harmonics that we can consider. Given this limitation 
of a functional fMRI experiment, it is important to realize that all 
information from the discrete time-series about the shape of the 
sinusoid TF is contained in these harmonics.

In order to establish a statistical measure of the amplitude of 
the TF, we need to characterize its distribution. More precisely, if 
we wanted to develop a statistical threshold, we needed to establish 
the null distribution of the TF amplitude (the distribution of the 
TF amplitude when we only have a random noise signal). As we 
demonstrated in our mathematical treatment of this concept, the TF 
amplitude has a Nakagami distribution. We also prooved that the 
amplitude of each frequency component of a random noise signal, 
as well as the sum of several frequencies, are Nakagami distributed 
with the important exception of the “direct current” (DC) component 
and the Nyquist limit frequency. This proof establishes the theoretical 
basis by which we can calculate an amplitude threshold value which 
can be used to declare brain voxels as active.

There is one important distinction between the TFA and the 
GLM approach which affects the issue of multiple comparisons. 
The GLM approach is correctly described as a “mass-univariate” 
analysis, that is the BOLD signal time course is analyzed for each 
brain voxel separately. The result is a three-dimensional map of the 
t-statistic generated for each of thousands of brain voxels. There are 
several methods to deal with the ensuing multiple comparison issue. 
The most widely adopted method requires smoothing of the data 
and invokes the concept of Gaussian field theory [8]. By contrast an 
adjustment for multiple comparisons is not used in the TFA because 
the threshold for active voxels is simply based on the distribution of 
the TF amplitude, a single calculated value (outcome) rather than a 
statistic. One can understand this important difference better when 
realizing that, in the TFA, we extract a single value of interest, the 
amplitude of our TF that we are interested in. In the GLM analysis 
each brain voxel is represented by a time-series of N values that 
are being summarized using the t-statistic. Thus, in the TFA we are 
reframing the problem to evaluating a distribution of the amplitude 
of a single frequency (Ak) whereas in the GLM we are evaluating a 
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has a Nakagami (m = R, Ω = NR) distribution where N is the signal 
length and R the number of harmonics included. The applied rationale 
of this work is to establish a null distribution of the amplitude of a single 
frequency or the sum of frequencies, as a frame of reference to which 
we can compare the alternate distribution of an observed signal obtained 
while a periodic task is applied. The null distribution (white noise) can 
be viewed as a distribution of a random variable that informs us about 
the probability of observing extreme amplitude values in a brain voxel 
simply by chance.

The Nakagami distribution is ubiquitous in applications in the 
technical sciences. This distribution was originally proposed at a 
symposium on radio wave propagations refined models for the pdf 
of signal amplitude exposed to fading of a wireless communication 
signal [17]. In medical imaging the distribution has been proposed to 
characterize ultrasound tissue because the envelope of the ultrasound 
radiofrequency (RF) signal can be described by this distribution and 
the parameters can be used to distinguish tissue types [18]. A new 
application of the Nakagami distribution, in functional magnetic 
resonance imaging (fMRI) research, is described here. In an fMRI 
block design, a person receives a certain stimulus in a periodic 
fashion. The repeated application is intended to overcome the 
problem of a relatively low signal-to-noise ratio. During the stimulus 
application, repeated brain images are obtained. The agreement of 
the time-course of the fMRI signal and the period of the stimulus 
application can be used to detect regions in the brain that respond 
to the experimental task. The Nakagami distribution is related to 
the Gamma and χ  distribution, which are more commonly used in 
statistics. In particular, the Nakagami distribution can be generated 
from a χ - distribution with degrees of freedom equal to two times the 
shape parameter, followed by a scaling transformation. In particular, 
if ( ) ~ 2Y mχ , then ( )/ 2  ~ , .X m Y Nakagami m= Ω ⋅ Ω

In the auditory example, included as proof of concept, we have 
extracted the frequency component of the signal that corresponds to 
the auditory task. We contrast the results of a simple GLM analysis 
with those of the newly introduced TFA. It can be seen that activation 
of the auditory cortex is observed with either method (see figure 2), 
thus providing the qualitative evidence in support of our hypothesis. 
In addition, the TFA method we propose provides results with a very 
fast computational sequence. Results are unaffected by phase shifts 
of the stimulus and variations in stimulus or hemodynamic response 
function. We introduce the theoretical distribution of the frequency 
amplitude as a means to generate a statistical threshold defining the 
probability of false positive results.

In summary, we propose the TFA method as alternative tool to 
analyze fMRI data because the method is computationally efficient 
and is not affected by misspecifications of anticipated BOLD response 
in terms of onset, shape or variability across different regions of the 
brain. As such the method should have great utility as screening tool 
or as supplementary analysis of block design fMRI experiments.
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