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Abstract
We propose to approximate a model for repeated measures 
that incorporated random effects, correlated stochastic 
process and measurements error. The stochastic process 
used in this paper is the Integrated Ornstein-Uhlenbeck 
(IOU) process. We consider a Bayesian approach which is 
motivated by the complexity of the model, thus, we propose 
to approximate the IOU stochastic process into a continuous 
spatial model that constructed by convolving a very simple 
and independent, process with a kernel function. The 
goal of this approximation is to offer some advantages 
over specification through a spatial process of computing 
covariance, variogram, and extremal coefficient functions, 
also to add to the extremal coefficient plots the empirical 
estimates. This approximation is attractive because it 
facilitates calculations especially that contain a huge amount 
of data in addition it reduces the computational execution 
time, also it extends beyond simple stationary models.
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time, to understand the effect of the covariates on the 
response variable, and to understand the within subject 
correlation structure.

Let ( )i ijY t  be the longitudinal process of subject 
i  at time   0ijt ≥ . Values of ( )i ijY t  are measured 
intermittently at some set of times ijt . The observed 
longitudinal data on subject i  may be subject to "error", 
thus we observed only ( )  i ijX t  whose elements may 
not exactly equal the corresponding ( )i ijY t . Given a 
specification for ( )i ijY t , the observed longitudinal data 
are taken to follow 

( ) ( ) ( ) =  +i ij i ij i ijY t X t tε            (1.1)

Where ( )i ijtε  is an intra subject error. 

In this paper, following Taylor, et al., Xu and Zeger, 
Wang and Taylor, and Abu Bakar, et al. [3-6] we consider 
a model of the form 

( ) ( ) ( ) =  i ij i ij i ijY t X t tε+

( ) ( ) ( ) =  bt  Z  W+ + +i ij i ij i ij i ijX t a t tβ  (1.2)

With the notations (N) denotes for Normal 
Distribution, and ( )inN  denotes for Multivariate Normal 
with dimension in . ( )i ijY t  denotes the observed value 
of a continuous time-dependent covariates (disease 
marker or longitudinal measurements) for subject 

( ),   1, ..., Mi i =  at ( )  1, ..., n ;  Mij it j =  number 
of the subjects in the study; in  number of repeated 
measurements for subject i  and may be different for 
each subject, ( )i ijX t  is the true value of the marker 
at time ijt , a i  are independent random intercept of 
subject i  follow the normal distribution with mean 

aµ  and variance ( ){ }2 2, , ,  ba i a aa Nσ µ σ  is fixed 
slope, ( )Zi ijt  is the covariates for subject i  at time 
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Introduction
A longitudinal data consists of measurements of 

a single variable taken repeatedly over time from an 
individual. Any approach used to analyze such data 
must properly consider the correlations among the 
observations, see Li, N., et al. [1]. The typical structure 
of longitudinal data is numerous measurements of a 
possible multivariate response variable on each subject. 
There could also be covariates, possibly time varying, 
that influence the response variable [2]. The aim in 
the analysis of such data is to understand the changes 
in the mean structure of the response variable with 
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ous white noise with a kernel, whose shape determines 
the covariance structure of the resulting process. This 
approach is an alternative to traditional geostatistical 
techniques, where a covariance function is specified 
directly, but allows for increased flexibility, since the 
choice of the kernel also allows for features such as 
non-stationary, anisotropy, and edge effects. Moreover, 
model (1.2) is temporal longitudinal model, by applying 
the proposed approximation, the dimensionality of the 
complex temporal process significantly reduced.

The model we propose for ( )i ijX t  at time ijt  is

( ) ( ) ( ) =    i ij i ij i ij i ijX t a bt Z t U tβ+ + + ,

Where U  is a mean zero Gaussian process, and is an 
approximation of the IOU stochastic process W . Hence, 
model in (1.2) becomes

( ) ( ) ( ) =  i ij i ij i ijY t X t tε+

( ) ( ) ( ) =    + + +i ij i ij i ij i ijX t a bt Z t U tβ               (2.1)

But rather than specify ( )U t  through its covariance 
function, it is determined by the latent process ( )U t∗  
and the smoothing kernel ( )K t  . The restriction on the 
latent process ( )U t∗  to be nonzero at the spatial sites 

{ }1 1 2 2  ,   ,  ...,  
i ii i m imt t t t t t t∗ ∗ ∗ ∗= = = =  in a space 

time t and define ( ) ( ) ( ){ }1 ,  ..., 
imU t u t u t∗ ∗ ∗ ∗ ∗ ∗= . Each 

u∗  is then modeled as independent draws from a mean 
zero Gaussian distribution with variance 2

uσ .

Hence, U ∗  will follow a multivariate normal with 
mean zero and variance covariance matrix 

2 I
im uσ=∑  , here im is the number of space times 

over spatial sites t∗ . 

The new Gaussian process ( )iU t  is then

( ) ( ) ( )1
 =  ∗ ∗ ∗

=
−∑ im

i ij ij r i rr
U t K t t U t         (2.2)

Where ( ). rK t∗−  is a kernel centered at rt
∗ .

The resulting covariance function for ( )U t  depends 
only on the displacement vector d = t − s and is given by

( ) ( ) ( )( ) ( ) ( ) Cov ,   = = − −∫s
C d U t U s K u t K u s du       (2.3)

Table 1 shows kernels that give standard Gaussian, 

ijt  with corresponding unknown regression parameter 
( ) ( )2,  0,i ijt N εβ ε σ  represents deviations due to 

measurement error and “local” biological variation that 
is on a sufficiently short time scale that ( )i ijtε  may be 
taken independent across j, and ( ) ( )0,

ii ij nW t N ∧  
is a vector of independent IOU stochastic process, the 
covariance matrix ∧  with parameters wα  and 

2
wσ ; only 

depends on i  through the number in  of observations 
and through the time points ijt  at which measurements 
are taken, see Henderson, Diggle and Dobson [7]. 

In this paper, we introduce an approximation of 
the IOU process which still gives an efficient inference 
of model parameters and reducing the dimensionality 
and complexity of the model. The details of this simple 
approach are given in the following sections, including an 
approximate formulation, the likelihood and parameter 
estimations. The usefulness of this modeling approach 
is then demonstrated by simulations. 

The Stochastic Process and Approximation
The main disadvantage of the IOU process is that it 

is not stationary; hence it is necessary to have a natural 
time zero for each individual. In some applications, it may 
be that there is no natural time zero, or that time zero 
is not exactly known. Large Longitudinal datasets are 
often defined on naturally heterogeneous fields or have 
other inherently spatially varying conditions. Therefore, 
it is unreasonable to expect a response variable to 
be well-modeled by a stationary process over a large 
domain space. However, using non-stationary models is 
difficult in practice due to the conceptual challenges in 
specifying the model and the computational challenges 
of fitting the model when the data is so large that 
memory constraint prevent formation of the covariance 
matrix.

We propose to approximate the IOU stochastic 
process iW  into flexible spatial model that can be con-
structed by convolving a very simple and independent, 
process with a kernel function. This approximation for 
constructing a spatial process introduces a number of 
advantages over specification through a spatial covar-
iogram. In particular, this process convolution specifi-
cation leads to computational simplifications and easily 
extends beyond simple stationary models. Our modeling 
approach is similar to that in Higdon [8], provide simple 
representations of such model by convolving continu-

Table 1: Various kernels and their induced covariance functions in the two-dimensional plane.

Kernel Covariance function

( ) ( )2  Exp 1 2K t tα − ( ) ( )2
 Exp 1 2 2C d dα −

( )   I  1 2K t tα  <   ( ) ( ) ExpC d dα −

( ) ( ) [ ]
33 3  1K t t s I t sα − < ( ) ( ) [ ]3 1 3 2 1 2 1C d d d I dα − + <
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( ) ( )( ){
( ) } [ ] [ ] [ ]2 2 2 2 2

2
1 1

, ,  ,        

, , , , ,
= =

         ×         

  ∏ ∏ i

i w w i a a a a u

N n
i ij i i ii j

U t a b

Y t a b X U t

ε

ε

α σ µ σ µ σ β σ σ

β σ      (3.2)

To fit the full model and make inference about the 
population parameters, Adaptive Rejection Metropolis 
Sampling (ARMS), and Gibbs and ARMS sampling tech-
niques are used. These methods are a MCMC technique 
for drawing dependent samples from complex high 
dimensional distributions, see Waezizadeh, and Meh-
rpooya [15]. The posterior distribution converges was 
checked by Gelman-Rubin convergence statistic R (pos-
terior consistency), as modified by Brooks and Gelman 
[16]. In order to apply one of these methods on our 
model, posterior for each parameter must be derived, 
and then a proposed prior density for each of these pa-
rameters must be chosen. Based on the likelihood func-
tions in (3.1) and (3.2), with the notations (IG) denotes 
for Inverse Gamma, and (N) denotes for Normal, the 
conditional densities of the unknown model parameters 
are given as follows:

For the error parameter 2
εσ

( ) ( )2 2 2
1 1

.  , , , ,in n
i ij i i ij ii j

Y t a b Z t Uε ε εσ α σ σ
= =

        ∏ ∏
( ) ( ) ( )( )( )2

2
21 1 2

1 exp  
2

i i ij i ij i ij i ijn n

i j

Y t a bt X t U t
ε

εε

β
α σ

σσ= =

 − − + + +      
 
 

∏ ∏

( )

( ) ( ) ( )( )( )
1

2

1 1 2
2

2 2

1 exp  
2

i

n
ii

n n
i ij i ij i ij i iji j

n

Y t a bt X t U t
ε

ε

ε

β
α σ

σ
σ

=

= =

 − − + + +      ∑  
 

∑ ∑

( )
( ) ( ) ( )( )( )1

2

1 1 1 12 22
2

2
exp   

n i
ii

n nn
i ij i ij i ij i iji j

Y t a bt X t U t
ε ε

ε

β
α σ σ

σ

=
  
  − − + = =  
    

 ∑ − − + + +      
 
 

∑ ∑

( ) 2
0 0 ,IG εα α β σ  

Where 
1

0  1
2

m
ii

n
α == −∑ , and ( ) ( ) ( )( )( )2

1 1
0  

2

im n
i ij i ij i ij i iji j

Y t a bt X t U tβ
β = =

− + + +
=

∑ ∑

In the same manner we found:

The intercept variance 2
aσ : ( )2 2

0 0.  IG ,a aσ α α β σ       , 

where 0  1
2
nα = − , and ( )2

1
0  

2

n
i ai

a µ
β =

−
= ∑

The intercept mean aµ : ( )[ ]0 0.   ,a aNµ α α β µ   , 

where 1
0

n
ii

a
N

α == ∑ , and 
2

0  a

n
σβ =

The random intercept ia , for ( )0 0 1,2, ....n, .   N ,ii a α α β=    , 
where 

( ) ( )( )( ) 1
1

0 2 2 2 2

1
in

ij ij i ij i ijj a i

a a

Y bt X t U t n

ε ε

β µα
σ σ σ σ

−
=

 − + +   = + +     

∑

 

and 
1

0 2 2

1 i

a

n

ε

β
σ σ

−
 

= + 
 

The average rate of the slope b : ( )[ ]0. ,bb N m bα β   , 
where

exponential, and spherical covariograms for the process 
( )U t , [9]. In addition, the covariogram induced by the 

biwieght kernel Cleveland [10] is also shown.

The process convolution approach gives an approach 
to build dependent spatial processes, see Ver Hoef and 
Barry [11]. The basic idea is to build processes ( )U t  that 
share part of a common latent process in their construc-
tion. Perhaps the biggest attraction to these process 
convolution models is that they give a framework for 
developing new classes of space and space-time mod-
els that allow for more realistic space-time dependence 
while maintaining some analytic tractability. Generally, 
one can construct a space-time process by first defining 
a simple, possibly discrete, process over space and time, 
and then smoothing it out with one or more kernels, 
giving a smooth process over space and time.

This constructive approach is appealing since the 
resulting models can be extended to allow for general-
izations such as non-stationarity, non-Gaussian models, 
and non-separable space-time dependence structures. 
See Wolpert and Ickstadt [12], and Higdon, et al. [13] for 
some purely spatial applications, and Higdon [14] for a 
space-time model. In addition, models can be construct-
ed in such a way to facilitate computation - such as re-
stricting the underlying process to reside on a lattice so 
that fast Fourier transforms can be employed.

The Likelihood and Priors
Based upon our previous assumptions, the unknown 

parameters in model (2.1) are

{ }2 2 2 ,  ...., , , , , , ,i n a a ua a b εβ σ µ σ σΩ = . The 

contribution of subject i  to the conditional likelihood 
function is given by

( ) ( )( )1
,  X ,  Xin

i ij i i ij ij
Y t Y t

=
   Ω = Ω   ∏

( ) ( ) ( )( )2
1

, , , , ,in
i ij i i ij i ijj

Y t a b Z t U tεβ σ
=

 =  ∏

( ) ( ) ( )( )( )2

21 2

1 exp
22=

 − − + + + =  
 
 

∏ i i ij i ij i ij i ijn

j

Y t a bt Z t U t

εε

β

σπσ
    (3.1)

Where, [ ].  and . .    denote marginal and conditional 
densities, respectively, Ω  denotes all model unknown 
parameters.

For the prior density of Ω  we assume that 
2 2 2, , , , ,  a a ub andεβ σ µ σ σ  have independent prior 

densities, so that { }, 1,...,ia i n=  are independent and 
normally distributed with parameters aµ  and 2

aσ , also 
{ }, 1,...,iU i n=  are independent stochastic process 
with parameter 2

uσ .

From the independency assumptions, the posterior 
density of all unknown model parameters dataΩ    is 
proportional of

https://doi.org/10.23937/2469-5831/1510020
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0  1
m

ii
t

m
α

∗

= −∑
, and 

1
1

0  
m T

i ii
U A U
m

β
−

== ∑
, 

( ) ( ){ }U ,....,i i i i miu t u t∗ ∗= , 
1

1
2
u

A
σ

−
− ∑

= , and ∑  is given 

in (2.2).

Since all posterior densities are in standard form, 
then it is easy to choose conjugate priors for all model 
(2.1) parameters, drawing random variates using 
Gibbs sampler from their full conditional distributions 
is straightforward since their full conditional densities 
are standard distributions. Therefore, we use the 
full conditional density as proposal density. At each 
updating step for these parameters, a new draw from 
the full conditional density is always accepted.

Simulation
To illustrate our proposed model, we setup our 

simulation study represents a randomize clinical 
trial, in which M = 500 subjects are randomized. 
Each longitudinal marker in model (2.1), ( )i ijY t , 

1,..., , 1,..., ii M j n= =  was simulated as the sum of the 
trajectory function ( )il ijX t  and the error terms ( )i ijtε
, each subject has its observed longitudinal measured 

( ) ( ) ( )( )( )1 1

2
1 1

i

i

n n
ij i ij i i ij i iji j

b n n
iji j

t Y t a X t U t
m

t

β
= =

= =

− + +
=

∑ ∑
∑ ∑

 and 

0 2
1 1

 
i

n

n n
iji j

t
εσβ

= =

=
∑ ∑

The effect of the regression parameter on the marker 

( )[ ]0, 1,..., : . ,
ll l ll p N mββ β α β β=    , where

-1

( ) ( ) ( ) ( )( ) ( )( )( )
( )

1 1

2
1 1

i

l i

n n
il ij i ij i ij i ij i iji j

n n
il iji j

X t Y t a bt l X l t U t
m

X t
β

β
= =

= =

− + + − − +
=

∑ ∑
∑ ∑  

and ( )i

2

0 n n 2
i=1 j=1

= 
∑ ∑ il ijX t

εσβ ,

( ) ( )1 1 1 0,..., , ,...,− +− = l llβ β β β β  and ( )iX l−  are 
the remaining covariates after thl  covariate ilX  is 
excluded from iX . 

For the stochastic process ( )U t  parameter 2
uσ : 

( )2 2
0 0.  IG ,u uσ α α β σ       , where

3.96     3.98      4.00     4.02     4.04      4.06

120  80      40    0

0        100      200       300      400       500

4.02        3.98

4.014      4.008      4.002

0        100       200      300      400       500
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0        200       400      600      800     1000

4.02         3.98 0        200      400       600      800     1000

250      150      50 0

3.98       4.00       4.02      4.04       4.06

400      200    0

3.96               4.00                4.04

4.06      4.02       3.98

0           500         1000       1500        2000 0           500         1000       1500        2000

4.012     4.006     4.000

Figure 1: Histogram, time series and average values plots respectively for the parameter values µα at 500, 1000, and 2000 
iterations respectively, using Gibbs sampler.
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We obtained 3000 iterations after a burn-in of 1000 
iterations. Convergence was checked by monitoring 
histories of sampled quantities with several different 
starting points. The histogram, the time series plots of 
one sequence of Gibbs samples for different number of 
iterations and the average number of these iterations 
for the parameter aµ  are presented in Figure 1.

We also used the Gelman-Rubin convergence statis-
tic, as modified by Brooks and Gelman [15]. They em-
phasize that one should be concerned both with con-
vergence of R is the ratio pooled-width within-width 
(the ratio of width of the central 80% interval based 
on pooled runs and the average width of 80% intervals 
within the individual runs), to one, and with conver-
gence of both the pooled and within interval widths to 
stability. For our analyses, all R's converged to 1 within 
3000 iterations and hence the burn-in of 1000. The anal-
ysis for the 500 simulated data sets for a single scenario 
took approximately 2:30 hours to run the model under 
the approximate model. While it took almost 6 hours to 
run the analysis without approximations.

10in =  at time points { }1 100.1,..., 1t t t= = = . For the 
simulations considered in this research the smoothing 
kernel ( ).K  will be a radially symmetric kernel, such 

that ( ) 21exp
2

K t tα  − 
 

, with variance covariance 

function ( )
21exp

2 2
t sC d α

 − −     
, and defining the 

latent process support so that the jt∗  are m = 5 equally 
spaced points ranging from -0.1 to 1.2. Note that this 
combination of kernel width and spacing of the jt∗  yields 
a spatial process ( )U t  via (2.3) that is nearly stationary. 
If the spacing become much larger, or if the kernel width 
is reduced, the covariance structure ( )C d  for ( )U t  
becomes unduly influenced by sparseness artifacts.

Since the calculations for the simulation study 
were highly computationally intensive, we have used 
the cluster with about 20 nodes with AMD Quad-Core 
Opteron 835X, 4 × 2G Hz, and 16 GB RAM per node. 

Table 2: Monte Carlo Summary statistics of the parameter estimates.

parameter True Value Estimated Value MCSD MSE 95% CCR BP MCE

aµ 4 4.001 0.019 3.52 × 10-4 98% -0.02% 4.2 × 10-3

2
aα 0.02 0.02 0.004 2.57 × 10-4 99% 0.00% 1.9 × 10-3

b -3.5 -3.498 0.033 7.78 × 10-4 95% -0.06% 6.4 × 10-3

β 1 0.998 0.038 1.71 × 10-3 96% -0.19% 5.8 × 10-3

2
εσ 0.05 0.051 0.009 6.79 × 10-5 94% 0.14% 2.9 × 10-3

2
uσ 2.5 2.48 0.083 6.21 × 10-3 93% -0.45% 7.3 × 10-3

Table 3: Posterior estimates from proposed and IOU models.

parameter Approximated Model IOU Model
Mean SD Bias% 95% HPD Mean SD Bias% 95% HPD

aµ 4.001 0.014 -0.10% (3.975, 4.026) 4.001 0.015 -0.10% (3.974, 4.027)

2
aσ 0.02 0.526 0.10% (0.00, 0.041) 0.02 0.613 0.10% (0.00, 0.042)

b -3.498 0.102 -0.10% (-3.69, -3.29) -3.489 0.11 -1.10% (-3.71, -3.273)

β 0.998 0.028 0.30% (0.942, 1.052) 0.992 0.082 0.80% (0.814, 1.168)

2
εσ 0.051 0.011 -0.81% (0.029, 2.132) 0.051 0.011 -0.10% (0.029, 2.132)

2
uσ 2.48 0.108  (2.165, 2.795)     

wα     1. 53 0.283 2.00% (0.950, 2.110)

2
wσ     0.119 0.016 0.10% (0.088, 1.50)

https://doi.org/10.23937/2469-5831/1510020
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model, the proposed model results in improved esti-
mates almost for all parameters. The proposed model 
demonstrated significant reductions in execution time. 
This approach effectively eliminates the deficiency of 
non-spatial huge data access by replacing such patterns 
in hotspots of applications with spatial sites data at a 
space time t at runtime. The execution time reduced by 
60% illustrate the efficiency of proposed model.
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Error and it can be evaluated as follows : In our simulate 
study we used 500 data replications, thus the resulting 
estimates are subject to sampling variation (Monte 
Carlo Error), this variation for the point estimate can 
be calculated as ˆ 500p MCSD= , the MCE then can be 

found by ( )ˆ ˆ1
 

500
p p

MCE
−

=

Results in Table 2 assert the convergence of the Mar-
kov Chain and the samplers reached the convergence 
after 2,000 iterations after 1,000 iterations are burn-in. 
Posterior means, posterior standard deviations, Bias as 
percent of true parameter and 95% highest posterior 
density intervals for each parameter in the proposed 
and IOU models, are represented in Table 3. The esti-
mates of all parameters from the approximate model-
ling analysis are quite accurate and efficient.

Discussion and Conclusion
We have proposed a new model for repeated mea-

sures that incorporated random effects, correlated sto-
chastic process and measurements error, we proposed 
to approximate the IOU stochastic process iW  into a 
spatial model that can be constructed by convolving 
a very simple and independent, process with a kernel 
function. This approach offered some advantages over 
specification through a spatial process of computing co-
variance, variogram, and extremal coefficient functions, 
also added to the extremal coefficient plots the empir-
ical estimates. This approximation is attractive because 
it facilitates calculations, especially that contain a huge 
amount of data also it easily extends beyond simple 
stationary flexible models. Moreover, this structure can 
be used to significantly reduce the dimensionality of a 
complex temporal process.

The limitation in the proposed model is that the 
latent process ( )U t∗  must be nonzero at the spatial 
sites t∗  in a space time t. To overcome this problem 
with the covariance function of ( )U t  and ( )U s  the 
differences through the displacement vector d = t – s 
was performed.

A Bayesian approach was taken to fit the proposed 
model through a simulation study. The numerical re-
sults demonstrate that the propose modelling meth-
od results in efficient estimates and good coverage for 
the population parameters. The estimates are close to 
the true values of the parameters and have good cov-
erage rates. The small biases of the estimates are due 
to Monte Carlo simulation error. Compared to the IOU 
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