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Abstract
Biomarker targeted two-stage adaptive design is used in-
creasingly in early-stage clinical trials in a variety of ther-
apeutic areas including oncology, where the sample size 
of the trial is re-estimated based on the first stage data. In 
such trials often the sample size is moderate, and so in-
corporating prior information and using robust methods are 
desirable. In this article, to improve upon existing methods 
using parametric normal models, we propose a nonpara-
metric Bayesian approach for designing such adaptive trials 
in a phase IIb/IIIa setting comparing a treatment vs. a con-
trol. Extensive simulation studies are conducted to evaluate 
the performance of the proposed method and compare it 
with the existing normal parametric model. Our results indi-
cate that with good prior information, more reasonable and 
robust inference than with existing parametric methods can 
be obtained.
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trial. It allows for early stopping of the trial for extreme 
results observed in interim stage(s) [8-11].

More recently, Gao, Roy, and Tan [12,13] proposed a 
two-stage adaptive design for biomarker targeted pop-
ulation where only biomarker positive subjects enter 
the trial study. However, the test is imperfect subject 
to false positive and false negative errors. Thus a mix-
ture normal model is used for the biomarker positive 
subjects. The final sample size re-estimation is based 
on the positive predict value (PPV), the proportion of 
true positives among test positives, estimated from the 
first stage data, deviates slight from a more common 
adaptive designs [14-16]. Proschan [17] and Xiong, Tan 
and Boyett [18] discussed sample size re-estimation in 
clinical trials. Since for early-stage clinical trial, often 
the sample size is relatively small, and so incorporat-
ing valuable prior information, if available, and using a 
robust method would be desirable. For the first goal a 
Bayesian model is preferable, while for robustness the 
nonparametric method is more suitable. Thus, we pro-
pose a nonparametric Bayesian method to achieve both 
goals.

The rest of this article is organized as follows. Sec-
tion 2 introduces the problem, then develops the pro-
posed nonparametric Bayesian method, and compares 
with the frequentist parametric method, the two-stage 
sequential test, and sample size re-estimation. In Sec-
tion 3, extensive simulation studies are conducted to 
evaluate the performance of the proposed method, 
compared it with the existing normal parametric mod-
el. We leave the technical details in the Appendix.

Introduction
Biomarker targeted design is an important step to-

wards precision medicine, which can improve efficiency 
of randomized clinical trial [1,2]. Zhou, et al. [3] and Lee, 
et al. [4] proposed Bayesian approach and Wang, et al. 
[5] applied this design in therapeutic trials, Freidlin, et 
al. [6] discussed issues with this design, Tang and Zhou 
[7] proposed a general framework. The two or three 
stage designs are commonly used in recent phase IIb-II-
Ia trials comparing treatment vs. control. Such sequen-
tial monitoring has become an integral part of clinical 

https://doi.org/10.23937/2469-5831/1510030
https://doi.org/10.23937/2469-5831/1510030
crossmark.crossref.org/dialog/?doi=10.23937/2469-5831/1510030&domain=pdf



ISSN: 2469-5831DOI: 10.23937/2469-5831/1510030

Chen et al. Int J Clin Biostat Biom 2020, 6:030 • Page 2 of 13 •

model is more conveniently obtained by the EM algo-
rithm, given in the Appendix.

The proposed method
For early-stage clinical trial often the sample size is 

relatively small, and in some cases there is prior knowl-
edge about the data distribution. A subjectively speci-
fied parametric model however may not be able to de-
scribe the distribution, so a nonparametric prior is pre-
ferred. Thus we adopt a nonparametric Bayesian model 
for this problem.

Let FC and FT be the distribution function of the control 
and treatment arm respectively. Often there are prior 
information for them. Let π(FC) and π(FT) be their priors, 
we assume ( ) ( ( )),C CF Pπ ⋅ D  and ( ) ( ( )),T TF Pπ ⋅ D  
where ( ( ))CP ⋅D  is the Dirichlet process with parameter 
PC(⋅); similarly for ( ( )).TP ⋅D  The distribution PC is the pri-
or knowledge about FC, and similarly for PT.

We adopt the following assumptions assumed in 
Gao, Roy and Tan [13].

A1) µ0C = µ1C = µ0T := µC;

A2) Var(X0C) = Var(X1C) = Var(X0T) = Var(X1T) := σ2
.

The reason for A1) is that a predictive biomarker is 
associated with response or lack of response to a par-
ticular therapy. Ideally, a predictive biomarker positive 
patient receiving therapy is expected to show a sub-
stantially higher response than negatively-biomarker 
patients receiving the therapy as well as those in the 
control group regardless of the marker status. There-
fore, A1) with the treatment potentially making µ1T dif-
ferent from 0C, µ1C and µ0T. Thus, the treatment effect, if 
any, is assumed to be a result of differential response to 
the treatment in the positively-biomarker group. A2) is 
a reasonable assumption to reduce model complexity.

For notational brevity, we will just write nC for nC,1 
and nT for nT,1 etc. At end of stage I, using the non-para-
metric Bayesian formula for mean [19], in our case we 
have for µC and µT

(1) (1)1 ,
1

C
C PC C

C C

nx x
n n

µ= +
+

  

(1) (1)
0 0

1 ( (1 ) ) ,
1

T
T PT PC T

T T

nx x
n n

ω µ ω µ= + − +
+



where µPC and µPT are the prior means of PC and PT. 
We have the estimates for means of the two distribu-
tions

(1) ,C Cxµ =   0

0

(1 ) .T C
T

x xωµ
ω

− −
=
 



Also, using the non-parametric Bayesian formula for 
variance [19], we have 2

Cσ  of Var(XC) and 2
Tσ  of Var(XT ) 

in our case as
2 2

2, 1 12 ( )
,

2 ( 1)( 2)

C C

C C

n n
P i Ci P i Ci

C
C C C

x x
n n n

µ µ
σ = =+ ∑ + ∑

= −
+ + +



Background and the Proposed Method

Background and review of the existing methods
We first introduce the setting by briefly review-

ing the related targeted design in Gao, Roy, and 
Tan [13]. Consider a two-stage clinical trial with 
continuous or response endpoint comparing two 
groups, control and treatment, to assess the effect 
of a new treatment. The observed data at stage k is 

{ , : 1, , , 1, , }
kn Ci Tj Ck TkD x x i n j n= = … = …  from indepen-

dent biomarker test positive individuals (k = 1, 2), xCi is 
response from the i-th individual in the control group, 
and xTj is that from the control group. By convention, 
the sample size nC2 and nT2 include nC1 and nT1; n1 = nC1 
+ nT1 is the planned sample size for stage I; and n2 = nC2 
+ nT2 is the total sample size at end of the trial, which 
is subject to updating based on parameters estimates 
from stage I data. Let µC be the mean response of the 
control group, µT be that for the treatment group, and θ 
= µT - µC be the treatment difference in the overall study 
population. The objective of the trial is to test whether 
there is treatment difference between the two arms, 
i.e. to test H0 : θ = 0 versus HA : θ ≠ 0, with pre-specified 
significance level α and power β, and determine the to-
tal sample size n2.

Since only biomarker test positive patients enter 
the trial, and a proportion ω of them are truly positive. 
Hence the trial population consists of true biomark-
er enrichment group (E) and the non-enrichment (NE) 
group. Let µ0C and µ1C be the mean response for NE and 
E group in control arm respectively; µ0T and µ1T be those 
for NE and E portion in the treatment arm respective-
ly, and µC and µT be those of the control and treatment 
groups. Then 

( ) 0 11C C Cµ ω µ ωµ= − +  and ( ) 0 11 .T T Tµ ω µ ωµ= − +

In Gao, Roy and Tan [13], the following normal mix-
ture model are used

2 2 2(1 ) ( , ) ( , ) ( , ),  ( 1, , ),Ci i C i C C CX B N B N N i nµ σ µ σ µ σ∼ − + ∼ = …
2 2(1 ) ( , ) ( , ),  ( 1, , ),Ti i C i T TX B N B N i nµ σ µ σ∼ − + = …

where Bi ~ Bernoulli (ω).

Let (1)
Cx  and (1)

Tx  be the sample means of the 
control and treatment group at end of stage I, 

(1) (1) (1)ˆ ˆ/ , / ,C C T Tx xµ ω µ ω= =

2 (1) (1) 2 2 2 (1) (1) 2

1

1ˆ ˆ ˆ ˆ ˆ( ) ,   (1 )( ) .
1C Ci C T C T C

C

x x
n

σ σ σ ω ω µ µ= − = + − −
− ∑

Then the total sample size n2 needed for the whole 
trial is estimated as

2 2
/2

2 2

( )
ˆ ,T C

T C

Z Z
n α β σ

µ
−

−

+
=

2
0 0 1 1

2 2 2 2 2 2
1 0 1 0

ˆ ˆ ˆ ˆ ˆ ˆ (1 )( ) ( ) ( ),   
ˆ ˆ ˆ ˆ ˆ ˆ[ (1 )( ) ] [ (1 )( ) ] 2 (1 )( ) .

T C T C T C T C T C

T T C C T C

where andµ ω µ µ ω µ µ ω µ µ σ

σ ω ω µ µ σ ω ω µ µ σ ω ω µ µ
− −= − − + − = − =

+ − − + + − − = + − −

Maximum likelihood estimation (MLE) for mixture 
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Denote ( )
11 1 1Hp P T b= ≥ and 

( )12 2 2 1 1( ) / 2, ,Hp n P T b T b= < <  which is determined 
by n2 given other parameters. Then n2 is determined by 
the least integer satisfies

2
1 1 1 2

1

( )1 1 ,    or   ( )(1 ) ( ).
1
p np p p p n

p
β β+ − ≥ − + − ≥

−

Simulation Study
Extensive simulation studies are conducted to com-

pare three methods, the method of Gao, Roy and Tan 
[13], the proposed nonparametric Bayesian method, 
and the parametric maximum likelihood (MLE) based 
method. We considered both truncated normal and 
skewed normal (with skewness parameter α). The rea-
son for the first is that the treatment effects should be 
negative values; the latter represent departure from the 
normality assumption. For the sequential test, we as-
sume n1 = n2/2, i.e., the sample sizes are the same for 
the two stages. If the re-estimated sample size is less 
than n2, we will keep the original design. Moreover, the 
estimation of 2

Tσ  can be obtained using the formula be-
low

2 2 2
0 0(1 )( )T C T Cσ σ ω ω µ µ= + − −   

which is the formula we actually used in the simula-
tion study.

The results are displayed in Table 1, Table 2, Table 3, 
Table 4 and Table 5, with different parameter settings 
and sample sizes, with estimated treatment effects µT, 
µC, their difference θ, test result, and estimated sample 
size 2ˆ ,n  (if the null hypothesis is not rejected in stage 
I), the probability of reject H0 (so not continue the tri-
al to stage II). In all the tables, results from the meth-
od of Gao, Roy and Tan [13] is named `empirical’; the 
proposed method, named `NP Bayes’, and the MLE 
with EM-algorithm, named `MLE(EM), are compared. 
The sample size estimate n2 depends on the estimated 
PPV is not stable. So we display the mean, median and 
trimmed mean (with trim proportion 10% on both sides) 
from all three methods, with 500 repetitions. Also, the 
corresponding disease prevalence (prev), sensitivity 
(sen), specificity (spec), the true ω0, and the effect size 
(EF, |mean| /s.d) used in the simulation are given at the 
top of each Table.

To reflect the effects on estimated sample size of 
the skewness of the skewed normal and of EF, Figure 1, 
Figure 2, Figure 3 and Figure 4 are shown for the mean 
and trimed mean estimation methods below. We see 
that the empirical Bayesian estimate seems more rea-

22
0 02, 0 02 ( ( (1 ) ))( (1 ) )

,
2 ( 1)( 2)

T T CT P T P PP T C T C
T

T T T

nn
n n n

µ ω µ ω µµ σ ω µ ω µ
σ

+ + −+ + + −
= −

+ + +

  



where 2
2, ( )

CP Cx dP xµ = ∫  is the prior second moment, 
similarly for 2, .

TPµ

To update the estimation of PPV ω, let 
(1) (1) (1)

1 1C TS n x n x= +  be the total responses at end of stage 
I. Since (1)[ ] [ (1 )] ,T T C T CE S n n nω µ ω µ= + + −  we substitute 
means and total responses to estimate ω as

(1)
1 .

( )
C

T T C

S n
n

µω
µ µ

−
=

−





 

The two-stage sequential test
For given significance level α and power β, the deci-

sion boundaries are determined to satisfy type I error 
no greater than α and with power at least β. Consider 
test statistics Tj at stage j (j = 1, …, k), the flexible class of 
boundaries proposed by Wang and Tsiatis [20] are, for 
some (c, γ) to be determined, 

( 0.5)b cj
Under H0, (T1, …, Tk) is multivariate normal distribut-

ed with zero mean vector. The sequential test will reject 
the null hypothesis at stage j if |Tj| ≥ bj. Then we have 
equation

0

0.5

1
{ | |  < } 1

k

H j
j

P T cjγ α−

=
= −

Here we adopt O’Brien-Fleming boundaries having 
shape parameter γ = 0. In our case, k = 2, α = 0.05, c = 
2.7967. The corresponding threshold of p-value at stage 
I is approximately 0.0054.

Sample size re-estimation
If the null hypothesis is not rejected at stage I, the 

sample size for the next stage need be determined by 
considering the required global power. Recall that n1 
and n2 are the sample sizes at the end of stage I and 
II respectively. For simplicity we assume nT = nC = n1/2. 
Then under H0,

( ) ( )

(0,1),     ( 1, 2).
2

j j
T C

j j
x xT n N j

σ
−

= =

Under H1,

1 2( , ) ( , ),TT T N µ Ω

1

2

( )
2 ,
( )
2

T C

T C

n

n

ω µ µ
σµ

ω µ µ
σ

 −
 
 =
 −
 
 

 

1
2

2
2

1

2

1
(1 )( )1 ,

2
1

T C

n
n

n
n

ω ω µ µ
σ

 
 

 − −  Ω = +      
  

with family-wise power function
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kept EF the same for each graph.

From the Tables, the empirical and non-parametric 
Bayesian estimates are close to each other when the 
sample size is relatively large, which is consistent with 

sonable, the empirical methods tend to over-estimate 
the sample size, and the MLE tends to under estimate it, 
and that the trimed mean method is much more stable. 
For comparison, we altered settings for parameters and 

prev = 0.55, sen = spec = 0.85, ω0 = 0.85, EF = 0.81

Table 1: Estimation results from three methods (data from truncated-normal).

Setups Parameters True Empirical NP Bayes MLE (EM)
n1 = 50

Tµ 3.71 3.7381 3.7110 3.7881

() (3.52, 0.89)NTα  Cµ 3.23 3.2266 3.2176 3.2208

() (3.02, 0.89)NCα 

0.48 0.5125 0.5119 0.5673

2
Cσ

0.35 0.3502 0.3463 0.3209

2
Tσ

0.3754 0.3889 0.3781 0.3761

1ω 0.8738 0.85 0.8915 0.8272

Reject H0 - 0.4371 0.4371 0.4910

ˆ ( / / )2n Med Mean Trim - (100,237,115) (100,181,109) (100,201,111)

n1 = 70
Tµ 5.21 5.2313 5.2381 5.3072

() (5.47, 0.87)NTα  Cµ 4.51 4.5168 4.5118 4.5115

() (4.34, 0.87)NCα 

0.70 0.7145 0.7262 0.7958

2
Cσ

0.74 0.7447 0.7087 0.6917

2
Tσ

0.7940 0.8173 0.7829 0.8024

1ω 0.8378 0.85 0.8494 0.8103

Reject H0 - 0.5489 0.5928 0.6128

ˆ ( / / )2n Med Mean Trim - (140,202,145) (140,183,144) (140,194,144)

n1 = 90
Tµ 9.82 9.8387 9.8360 9.9123

() (9.93,1.05)NTα  Cµ 9.04 9.0501 9.0497 9.0445

() (9.03,1.05)NCα 

0.78 0.7885 0.7879 0.8678

2
Cσ

0.93 0.9263 0.8886 0.8704

2
Tσ

0.9971 1.0138 0.9748 0.9986

1ω 0.8738 0.85 0.8519 0.8265

Reject H0 - 0.6627 0.6786 0.7186

ˆ ( / / )2n Med Mean Trim - (180,258,184) (180,285,184) (180,257,185)

https://doi.org/10.23937/2469-5831/1510030
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prev = 0.65, sen = spec = 0.85, ω0 = 0.88

Table 2: Comparison between different response rate (Truncated-normal).

Setups Parameters True Empirical NP Bayes MLE (EM)
n1 = 70

Tµ 2.85 2.8630 2.8675 2.9550

() (2.92, 0.97)NTα  Cµ 2.45 2.4592 2.4601 2.4503

() (2.49, 0.97)NCα 

0.40 0.4038 0.4045 0.5047

EF = 0.485 2
Cσ

0.68 0.6747 0.6464 0.6332

2
Tσ

0.6927 0.6974 0.6670 0.6933

1ω 0.9132 0.88 0.8354 0.8714

Reject H0 - 0.1856 0.1936 0.2335

ˆ ( / / )2n Med Mean Trim - (142,496,241) (140,463,232) (140,460,219)

n1 = 70
Tµ 2.85 2.8631 2.8677 2.9295

() (2.92, 0.793)NTα  Cµ 2.45 2.4546 2.4556 2.4503

() (2.49, 0.793)NCα 

θ 0.40 0.4086 0.4092 0.4124

EF = 0.603 2
Cσ

0.44 0.4421 0.4279 0.4124

2
Tσ

0.4527 0.4633 0.4497 0.4581

1ω 0.9132 0.88 0.8777 0.8245

Reject H0 - 0.3154 0.3134 0.3613

ˆ ( / / )2n Med Mean Trim - (142,340,187) (140,335,180) (140,335,175)

n1 = 70
Tµ 2.85 2.8636 2.8681 2.9225

() (2.92, 0.468)NTα  Cµ 2.45 2.4537 2.4547 2.4511

() (2.49, 0.468)NCα 

θ 0.40 0.4098 0.4104 0.4714

EF = 0.699 2
Cσ

0.33 0.3320 0.3179 0.3083

2
Tσ

0.3427 0.3525 0.3390 0.3483

1ω 0.9132 0.88 0.8691 0.8229

Reject H0 - 0.4371 0.4531 0.5050

ˆ ( / / )2n Med Mean Trim - (140,252,157) (140,273,157) (140,300,156)
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Table 3: Comparison in different scales (Skewed-normal).

Setups Parameters True Empirical NP Bayes MLE (EM)
n1 = 50

Tµ 3.71 3.7335 3.7068 3.7802

() (3.52, 0.89)NTα  Cµ 3.23 3.2273 3.2192 3.2242

() (3.02, 0.89)NCα 

0.48 0.5062 0.5059 0.5560

α = 1 2
Cσ

0.35 0.3476 0.3440 0.3214

2
Tσ

0.3754 0.3853 0.3751 0.3746

1ω 0.8738 0.85 0.8918 0.8357

Reject H0 - 0.4391 0.4691 0.4750

ˆ ( / / )2n Med Mean Trim - (100,252,116) (100,202,110) (100,232,113)

n1 = 50

() (3.52, 0.89)NTα 

() (3.02, 0.89)NCα 

α = 4

Tµ 3.71 3.7344 3.7076 3.7714

Cµ 3.23 3.2271 3.2190 3.2305

θ 0.48 0.5073 0.5070 0.5409

2
Cσ

0.35 0.3489 0.3452 0.3282

2
Tσ

0.3754 0.3868 0.3763 0.3775

1ω 0.8738 0.85 0.8969 0.8701

Reject H0 - 0.4511 0.4810 0.4451

ˆ ( / / )2n Med Mean Trim - (100,253,123) (100,235,116) (100,251,116)

n1 = 50

() (3.52, 0.89)NTα 

() (3.02, 0.89)NCα 

α = 10

Tµ 3.71 3.7347 3.7079 3.7528

Cµ 3.23 3.2269 3.2188 3.2313

θ 0.48 0.5078 0.5075 0.5214

2
Cσ

0.35 0.3494 0.3456 0.3322

2
Tσ

0.3754 0.3873 0.3768 0.3757

1ω 0.8738 0.85 0.8986 0.8933

Reject H0 - 0.4511 0.4850 0.4291

ˆ ( / / )2n Med Mean Trim - (100,294,126) (100,199,117) (100,242,116)

https://doi.org/10.23937/2469-5831/1510030
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n1 = 50

() (3.52, 0.89)NTα 

() (3.02, 0.89)NCα 

α = 25

Tµ 3.71 3.7348 3.7080 3.7526

Cµ 3.23 3.2268 3.2187 3.2314

θ 0.48 0.5080 0.5077 0.5212

2
Cσ

0.35 0.3495 0.3457 0.3326

2
Tσ

0.3754 0.3875 0.3770 0.3754

1ω 0.8738 0.85 0.8988 0.8969

Reject H0 - 0.4511 0.4790 0.4271

ˆ ( / / )2n Med Mean Trim - (100,301,125) (100,200,116) (100,246,116)

n1 = 50

() (3.52, 0.89)NTα 

() (3.02, 0.89)NCα 

α = -1

Tµ 3.71 3.7331 3.7064 3.7880

Cµ 3.23 3.2274 3.2193 3.2207

θ 0.48 0.5057 0.5054 0.5674

2
Tσ

0.35 0.3468 0.3433 0.3182

2
Tσ

0.3754 0.3845 0.3744 0.3731

1ω 0.8738 0.85 0.8911 0.8193

Reject H0 - 0.4251 0.4711 0.4910

( / / )2n Med Mean Trim - (100,221,114) (100,177,109) (100,221,111)

n1 = 50

() (3.52, 0.89)NTα 

() (3.02, 0.89)NCα 

α = -4

Tµ 3.71 3.7320 3.7053 3.7908

Cµ 3.23 3.2277 3.2196 3.2104

θ 0.48 0.5043 0.5041 0.5804

2
Cσ

0.35 0.3453 0.3420 0.3133

2
Tσ

0.3754 0.3829 0.3730 0.3662

1ω 0.8738 0.85 0.8901 0.8124

Reject H0 - 0.4052 0.4551 0.5549

2 ( / / )n Med Mean Trim - (100,203,111) (100,212,109) (100,217,108)
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n1 = 50

() (3.52, 0.89)NTα 

() (3.02, 0.89)NCα 

α = -10

Tµ 3.71 3.7317 3.7050 3.7991

Cµ 3.23 3.2277 3.2196 3.2067

θ 0.48 0.5040 0.5038 0.5924

2
Cσ

0.35 0.3449 0.3416 0.3101

2
Tσ

0.3754 0.3825 0.3726 0.3654

1ω 0.8738 0.85 0.8903 0.8040

Reject H0 - 0.4132 0.4611 0.6008

( / / )2n Med Mean Trim - (100,195,111) (100,180,108) (100,211,109)

N = 50

() (3.52, 0.89)NTα 

() (3.02, 0.89)NCα 

α = -25

Tµ 3.71 3.7316 3.7049 3.8008

Cµ 3.23 3.2277 3.2195 3.2056

θ 0.48 0.5039 0.5037 0.5952

2
Cσ

0.35 0.3448 0.3415 0.3092

2
Tσ

0.3754 0.3824 0.3725 0.3651

1ω 0.8738 0.85 0.8905 0.8017

Reject H0 - 0.4132 0.4691 0.6048

( / / )2n Med Mean Trim - (100,194,110) (100,182,108) (100,200,109)

prev = 0.55, sen = spec = 0.85, ω0 = 0.85, EF = 0.81

Table 5: Comparison in different sample sizes (Skewed-normal).

Setups Parameters True Empirical NP Bayes MLE (EM)
n1 = 30

() (3.52, 0.89)NTα 

() (3.02, 0.89)NCα 

Tµ 3.71 3.7252 3.6858 3.7603

Cµ 3.23 3.2153 3.2025 3.2070

θ 0.48 0.5099 0.5098 0.5533

2
Cσ

0.35 0.3481 0.3421 0.3071

2
Tσ

0.3754 0.3897 0.3729 0.3564

1ω 0.8738 0.85 0.9003 0.8468

Reject H0 - 0.2655 0.2834 0.3273

ˆ ( / / )2n Med Mean Trim - (60,281,95) (60,174,79) (60,301,84)
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prev = 0.55, sen = spec = 0.85, ω0 = 0.85, EF = 0.81, α = -1

n1 = 70

() (5.47, 0.87)NTα 

() (4.34, 0.87)NCα 

Tµ 5.21 5.2311 5.2378 5.3036

Cµ 4.51 4.5205 4.5154 4.5126

θ 0.70 0.7106 0.7224 0.7910

2
Cσ

0.74 0.7455 0.7094 0.6890

2
Tσ

0.7940 0.8177 0.7832 0.7942

1ω 0.8738 0.85 0.8525 0.8130

Reject H0 - 0.5409 0.5868 0.6148

ˆ ( / / )2n Med Mean Trim - (140,219,145) (140,194,144) (140,210,143)

n1 = 90

() (9.93,1.01)NTα 

() (9.93,1.01)NCα 

Tµ 9.82 9.8425 9.8459 9.9307

Cµ 9.04 9.0478 9.0474 9.0390

θ 0.78 0.7947 0.7970 0.8917

2
Cσ

0.93 0.9247 0.8871 0.8618

2
Tσ

0.9971 1.0132 0.9763 0.9994

1ω 0.8738 0.85 0.8482 0.8092

Reject H0 - 0.6866 0.7086 0.7565

ˆ ( / / )2n Med Mean Trim - (180,221,183) (180,211,182) (180,214,184)

Table 4: Comparison in different sample sizes (Skewed-normal).

Setups Parameters True Empirical NP Bayes MLE (EM)
n1 = 30

() (3.52, 0.89)NTα 

() (3.02, 0.89)NCα 

Tµ 3.71 3.7246 3.6861 3.7579

Cµ 3.23 3.2150 3.2022 3.2102

θ 0.48 0.5097 0.5096 0.5477

2
Cσ

0.35 0.3454 0.3400 0.3080

2
Tσ

0.3754 0.3869 0.3708 0.3588

1ω 0.8738 0.85 0.9006 0.8530

Reject H0 - 0.2754 0.2954 0.3253

ˆ ( / / )2n Med Mean Trim - (62,322,97) (60,188,80) (60,269,86)

https://doi.org/10.23937/2469-5831/1510030


ISSN: 2469-5831DOI: 10.23937/2469-5831/1510030

Chen et al. Int J Clin Biostat Biom 2020, 6:030 • Page 10 of 13 •

n1 = 70

() (5.47, 0.87)NTα 

() (4.34, 0.87)NCα 

Tµ 5.21 5.2311 5.2377 5.2956

Cµ 4.51 4.5209 4.5157 4.5186

θ 0.70 0.7102 0.7221 0.7769

2
Cσ

0.74 0.7487 0.7123 0.6901

2
Tσ

0.7940 0.8209 0.7860 0.7984

1ω 0.8738 0.85 0.8540 0.8226

Reject H0 - 0.5289 0.5868 0.5689

ˆ ( / / )2n Med Mean Trim - (140,227,146) (140,200,144) (140,213,143)

n1 = 90

() (9.93,1.01)NTα 

() (9.03,1.01)NCα 

Tµ 9.82 9.8422 9.8456 9.9131

Cµ 9.04 9.0477 9.0473 9.0446

θ 0.78 0.7946 0.7969 0.8686

2
Cσ

0.93 0.9270 0.8892 0.8701

2
Tσ

0.9971 1.0155 0.9784 0.9995

1ω 0.8738 0.85 0.8482 0.8296

Reject H0 - 0.6647 0.6886 0.7246

ˆ ( / / )n Med Mean Trim - (180,220,183) (180,212,183) (180,218,184)

prev = 0.55, sen = spec = 0.85, ω0 = 0.85, EF = 0.81, α = 1

         

  
  

(a) Mean
     

(b) Trimmed Mean
 

Figure 1: Means for different alpha settings (Table 3), EF = 0.81.

to the fact that essential information was captured by 
the prior already. MLE method by EM algorithm can give 
smallest increase in sample size, especially when the 
sample were precisely from normal distribution, with 
zero-skewness. However, the estimators were signifi-
cantly biased, which may be caused by the exceedingly 
high power of the stage-I test than the specified level. 
Therefore, non-parametric Bayesian estimators per-

the Bayes-frequentist estimation theory. However, the 
non-parametric Bayesian estimators were more robust 
than empirical ones, especially in cases where the sam-
ple size is relatively small. The variance of the empirical 
estimators was hugely inflated, which would require 
large increase of patients in stage-II. Moreover, as ex-
pected the non-parametric Bayesian estimators were 
not very sensitive to the selection of the prior, likely due 
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Figure 2: Means for different alpha settings, EF = 0.485.

         

 
(a) Mean     

(b) Trimmed Mean
 

Figure 3: Means for different alpha settings, EF = 0.603.

         

 
(a) Mean

    
(b) Trimmed Mean

 
Figure 4: Means for different alpha settings, EF = 0.699.

they asymptotically converged to empirical estimators, 
indicating unbiasedness with large sample sizes.

Concluding Remarks
We have proposed a nonparametric Bayesian meth-

od for the two-stage adaptive biomarker-targeted clin-

formed the best in the proposed adaptive design since 
they are more robust and require weak assumption on 
prior. They utilize the prior information but are not too 
dependent on prior selection. In smaller scales, it could 
reduce the unexpected variance, which may lead to 
large sample size increase in the next stage. In addition, 
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10. Tan M, Xiong X, Kutner MH (1998) Clinical trial designs 
based on sequential conditional probability ratio tests and 
reverse stochastic curtailing, Biometrics 54: 682-695.

11. Jennison C, Turnbull B (2000) Group sequential methods 
with applications to clinical trials. Chapman and Hall, Boca 
Raton, Florida.
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14. Proschan MA, Hunsberger SA (1995) Designed exten-
sion of studies based on conditional power. Biometrics 51: 
1315-1324.

15. Lan KKG, Trost DC (1997) Estimation of parameters and 
sample size re-estimation. In: Proceedings of the Biophar-
maceutical Section. American Statistical Association, 48-
51.

16. Kieser M, Friede T (2000) Re-calculating the sample size 
in internal pilot study designs with control of the type I error 
rate. Stat Med 19: 901-911.

17. Proschan MA (2005) Two-stage sample size re-estimation 
based on a nuisance parameter: A review. J Biopharm Stat 
15: 559-574.

18. Xiong X, Tan M, Boyett J (2003) Sequential conditional 
probability ratio tests for normalized test statistic on infor-
mation time. Biometrics 59: 624-631.

19. Ferguson TS (1973) A Bayesian analysis of some nonpara-
metric problems. Annals of Statistics 1: 209-230.

20. Wang SK, Tsiatis AA (1987) Approximately optimal one-pa-
rameter boundaries for group sequential trials. Biometrics 
43: 193-199.

ical trial design. Compared with the existing parametric 
model, it has the advantage of incorporating prior in-
formation into the design, and being robust to model 
assumption. Extensive simulation studies are conducted 
to evaluate the performance of the proposed method, 
and compare with the commonly used methods for this 
problem. In our simulation studies, we considered the 
non-skewed and skewed, to reflect correct and incor-
rect model specifications. It was found that the skew-
ness will influence the estimation accuracy in this de-
sign. The estimate is most accurate with left-skewed 
distributions, least accurate with right-skewed distribu-
tions, and modest with truncated normal distributions. 
Cases gave moderate results, and would be the hardest 
to estimate. Moreover, the more left-skewed, the more 
accurate for the estimations.
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Appendix

EM Formula Derivation.
Denote ϕ1 for the pdf of 2

2( , ),  TN µ σ φ  for that of 2( , ).CN µ σ  Under the normal model assumption, the 
likelihood is the following mixture

1 1 2 2
1 1

( | ) ( ) (1 ) ( ) ( )
CT

i i j

nn

X n T T T
i j

f X X Xωφ ω φ φ
= =

 = + − × ∏ ∏X D

It is known that that parameter estimation in mixture model is not easy, and often the EM algorithm is used for such 
computation. For this, let zi be the treatment latent indicator of the i-th observation, i.e., zi = 1 as belonging to the 
treatment group (with pdf ϕ1) and zi = 0 for the control group (with pdf ϕ2), and denote Z = (z1, z2, …, znT).

Then based on the `complete' data (X, Z), the likelihood is

1

1
1 2 2

1 1

( | , ) ( ) ( ) ( ) ( )( ) ( 1 )
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i i

i i j

nn
z z

X n T T T
i j

f X X Xωφ φω φ −
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and the corresponding log-likelihood is
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Given the k-th iteration value 
( )( ) ( ) ( ) 2 ( )( , , , ),
kk k k k

C Tβ µ µ σ ω=  in the E-step we compute
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In the M-step, we set
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to get the following equations (Unrelated terms omitted):
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