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Abstract
Monthly tuberculosis (TB) counts from January 2001 to De-
cember 2018 showed an upward trend (data from SINAN 
- Information System for Notifiable Diseases). The increase 
in the incidence of TB in general is associated with an in-
crease in the rate of extreme poverty, an increase in AIDS 
cases and other factors. Combining the polynomial linear 
regression and stochastic volatility models, the purpose of 
this study was to analyze monthly count data as well as the 
AIDS/TB, extreme poverty/TB and urban/TB rates associ-
ated with the incidence of TB. The results were obtained 
using the Monte Carlo method in Markov chains under a 
Bayesian approach. In analyzing the data with the presence 
of great volatility, despite the growth of TB cases in Bra-
zil, some rates such as AIDS/TB and extreme poverty/TB 
are decreasing in the same period, indicating that TB cases 
have increased in the last few years for all sectors of the 
population of Brazil. The proposed model can be of great 
use for other epidemiological data, in addition to modeling 
TB counts and rates associated with TB.
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to active TB, except in HIV-infected patients where the 
progression can be rapid and fatal. Only a small propor-
tion (5% to 10%) of people infected with M. tuberculo-
sis progress to active TB as reported by the [1]. Despite 
great scientific advances, the evolution of treatment 
and the discovery of a vaccine have contributed to the 
control of TB, it is still among the infectious diseases of 
high lethality in the world. Global trends show that the 
incidence of tuberculosis (TB), prevalence and mortali-
ty rates are gradually decreasing worldwide. TB counts 
in all countries and regions of the world were in great 
decline until the early 1980’s when the first cases of 
patients infected with the HIV virus leading to AIDS 
emerged and consequently leading to a large increase 
in the incidence of TB in the World. After the discov-
ery of new therapies against HIV, TB counts started to 
drop in practically all countries. Tuberculosis remains a 
poverty-related disease with a high burden of disease in 
low- and middle-income countries and in countries with 
a high incidence of HIV [2].

In Brazil, especially with the great economic crisis 
from the years 2014 with the increase of unemployed 
workers and significant increase of individuals living in 
extreme poverty, a new trend of increase in TB cases 
has been observed, regardless of the increase in AIDS 
cases. Many studies related to the count of individuals 
diagnosed with TB have been published in the literature 
in Brazil and in other countries.

In this direction [3], analyzed some estimates made 

Introduction
Tuberculosis (TB) is an infectious disease, caused 

by Mycobacterium tuberculosis. The disease is usually 
presented as pulmonary TB, but it can also affect other 
organs (extrapulmonary TB). Tuberculosis usually pro-
gresses slowly from the latent phase (infection with-
out active disease, LTBI-Latent Tuberculosis Infection) 
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moving average models) or ARCH [14] models (autore-
gressive conditional heteroscedasticity) in the analysis 
of epidemiological series. In this sense, RR Sarkar, et 
al. [15] consider the application of different time series 
models for epidemiological data with application to 
malaria. YL Zheng, et al. [16] use ARIMA models and a 
combination of ARIMA-ARCH models for predicting and 
monitoring monthly tuberculosis morbidity in Xinjiang, 
China. In this case, the ARCH model is suggested to pro-
vide tuberculosis surveillance, providing estimates on 
tuberculosis morbidity trends in Xinjiang, China. Other 
applications in epidemiology can also be seen in [17-25].

In the present study, a new formulation of statistical 
modeling (combination of polynomial linear regression 
models with stochastic volatility models) is proposed for 
the analysis of TB count data and associated rates using 
Bayesian methods of statistical inference. The article is 
formulated as follows: in section 2 the monthly data on 
TB in Brazil for the period 2001 to 2018 are presented; 
section 3 presents the material and methods; section 4 
presents the obtained results; finally, section 5 presents 
conclusions and discussion of the obtained results.

TB Data in Brazil for the Period 2001-2018
This study considers TB count data in Brazil between 

the years 2001 and 2018 and some existing relation-
ships given by other time series in the same period such 
as rates of AIDS patients among patients diagnosed with 
TB, rates of patients living in urban centers among pa-
tients diagnosed with TB, rates of male patients among 
patients diagnosed with TB, rates of patients in extreme 
poverty among patients diagnosed with TB among 
several other factors. Figure 1(a) shows a graph of the 
yearly time series of TB patient counts in Brazil (data 
from the SINAN-Information System for Notifiable Dis-
eases-http://sinan.saude.gov.br/sinan/login/login.jsf) 
for the period between January 2001 and December 

by the WHO and indicators of incidence, mortality, oc-
currence of multidrug resistance and association with 
HIV for tuberculosis in Brazil and worldwide. These au-
thors present estimates (8.7 million new cases per year 
in the world and 116,000 new cases per year in Brazil) 
or actually verified (Brazil in 2000 notified 82,249 new 
cases) pointing out to a serious public health situation, 
mainly in developing countries, which it requires ener-
getic and effective measures for its control. In a country 
of high prevalence like Brazil, the actions for the discov-
ery of new cases, associated with the measures of bio-
safety, are of interest to all health professionals, mainly 
those who work in large hospitals or emergencies.

DC Costa [4] analyzed several aspects that influence 
the pattern of tuberculosis mortality and morbidity: The 
variation in living conditions, the effects of chemother-
apy and the dynamics of disease transmission which 
characterizes the indicators used in the measurement 
of tuberculosis that are built from prevalence surveys 
and notification data. The main indicators are: risk of in-
fection, mortality, incidence coefficient of tuberculous 
meningitis, incidence coefficients of tuberculosis cases, 
especially pulmonary bacilliferous among others. In that 
study, data on the incidence of bacilliferous pulmonary 
cases in the Brazilian provinces of Pará and Rio Grande 
do Sul and mortality from tuberculosis in the capitals of 
Pará, Rio Grande do Sul, Pernambuco and Rio de Janei-
ro were analyzed, which reveal in general, a downward 
trend at that time, still that at a different pace.

Many other studies are presented in the literature. 
LMW Acosta, et al. [5] relate some social determinants 
and the incidence of TB in Porto Alegre, RS, Brazil. Sev-
eral recent studies consider different statistical models 
that capture temporal or spatial effects in the analysis 
of TB epidemiological series [6-12].

Some studies on the incidence of TB have used ARI-
MA [13] time series models (autoregressive integrated 

         

Figure 1: Yearly counts of TB patients in Brazil and yearly rates per 100,000.
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2018 (data set in Appendix 1 at the end of the paper). 
Figure 1(b) also shows the rates (number of TB cases 
in the year divided by the estimates of Brazil's popula-
tion in the year, source IBGE). The data are presented 
in Table 1, from where it is observed an increase in TB 
rates between the years 2001 and 2003; from 2003 on-
wards there was a decline in yearly TB rates until 2016, 
possibly due to the efficacy of drugs to control AIDS; af-
ter that year, an increase in TB rates is observed again, 
perhaps as a result of the great economic crisis affect-
ing Brazil (increase in extreme poverty, increase in the 

unemployed rates, lower investments in health, among 
many other factors). From Figure 1, it is observed two 
change-points: One change-point around 2003 and a 
second change-point close to the year 2017.

Figure 2 shows the monthly TB counts in Brazil (data 
from SINAN) from January 2001 to December 2018 (216 
months). From the graphs presented in Figure 2, it can 
be seen that:

•	 The monthly counts of patients diagnosed with 
TB in the period between January 2001 and De-
cember 2018 (original scale and logarithmic 
scale) show seasonality for the seasons and there 
is clearly a yearly decrease in counts until the year 
2014 where the beginning of an increase in TB 
cases is observed.

•	 It is also observed that until the mid-2014 there is 
a tendency to increase the rates of AIDS patients 
among TB patients; in that year there is a beginning 
of a decrease in the rates of AIDS patients among 
those infected with tuberculosis. This is also seen for 
rates of HIV-positive patients among TB patients. It 
is important to note that the incidence of TB was 
in great decline worldwide until the mid-1980s, the 
year of the beginning of the AIDS epidemic, a factor 
that led to the reappearance of TB in large numbers. 
From these graphs it is possible to conclude that 
there is a strong indication of the increase in TB in 
Brazil for all segments of the population regardless 
of the effect of HIV, as the rates of HIV-infected pa-
tients diagnosed with TB are declining, despite the 
increase in TB cases. 

•	 It is also observed that the rates of urban patients 
among those infected with TB had an annual in-
crease until mid-2012; as of that year, there has 
been a decline in the number of patients living in 

         

Figure 2: Time series of counts and rates of TB patients in Brazil.

Table 1: Yearly counts of TB patients in Brazil and yearly TB 
rates.

Year Total TB Estimated pop 
BR

Yearly TB 
rate/100,000

2001 87265 177196054 49.25
2002 92859 179537520 51.72
2003 93773 181809246 51.58
2004 92980 184006481 50.53
2005 92056 186127103 49.46
2006 86160 188167356 45.79
2007 85779 190130443 45.12
2008 87822 192030362 45.73
2009 87227 193886508 44.99
2010 86146 195713635 44.02
2011 88560 197514536 44.84
2012 86905 199287299 43.61
2013 86208 201035912 42.88
2014 85213 202763739 42.03
2015 85443 204471769 41.79
2016 86026 206163053 41.73
2017 90210 207833823 43.40
2018 94155 209469323 44.95
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nomial linear regression model given by:

Y(t) = βo + β1 months(t) + β2 [months(t)]2 + β3 
[months(t)]3 + є(t) 				            (1)

for t = 1, 2, ..., 216 (months) where є(t) are noises 
considered independent and identically distributed 
random variables with a normal distribution N(0, 2

∈σ  
). Under a classic approach, the regression parameters 
are usually estimated using the least squares method 
(EMQ). An alternative of epidemiological interest would 
be to model the series not only to estimate monthly 
averages, but also to estimate monthly variances (vol-
atilities) that are of interest to the public health area, 
possibly relating these volatilities to the occurrence of 
non-observed factors associated with the months (sea-
son, unemployment rate, extreme poverty rate, among 
others). For this purpose, time series models are used 
in the data analysis, which simultaneously estimate the 
monthly average and the monthly volatility.

Use of polynomial regression models and stochas-
tic volatility for TB data in Brazil

Stochastic volatility (SV) models have been widely 
used to analyze financial time series [29] as a powerful 
alternative to some existing regression models in the 
literature, such as the ARCH (conditional heteroscedas-
tic autoregressive) models introduced by [30] and the 
generalized autoregressive conditional heteroscedas-
tic models (GARCH) introduced by [31], but not wide-
ly used in the health field [32-34]. In one of these few 
health applications, [35] studied neural signals using 
a database of medial temporal lobe (MTL) recordings 
from 96 neurosurgical patients, using time series mod-
els with volatility described by a multivariate stochastic 
latent variable process and lagged interactions between 
signals in different brain regions providing new insights 
into the dynamics of brain function. In the financial 
area, these models are considered for modeling the log-
arithms of financial returns between current data and 
previous data (can be hours, days or months) without 
taking into account the modeling of the means depend-
ing on covariates.

The novelty of this study is the introduction of sto-
chastic volatility models for epidemiological time series, 
in particular, for tuberculosis counting series in Brazil.

For the definition of the models, N ≥ 1 is a fixed in-
teger that records the amount of observed data (in our 
case, it will represent the monthly TB counts on the log-
arithmic scale and also the rates of patients in certain 
groups among those infected with TB).

In the presence of heteroscedasticity, that is, vari-
ances depending on time t, assume that the time series 
Y(t), t = 1, 2, ..., N assume the combined polynomial lin-
ear regression model with the stochastic volatility mod-
el for the analysis of TB count data on the logarithmic 
scale and some rates related to the TB epidemic:

urban centers (people most susceptible to HIV in-
fection) among TB patients. This also shows that 
the incidence of TB is gradually increasing for all 
segments of the population in Brazil, a result of 
great serious impact to the Brazilian heath au-
thorities. The same is observed for patients in ex-
treme poverty (annual decrease in the rates of in-
dividuals in extreme poverty among TB patients).

Figure 2 shows, in most cases, for the data analysis 
and statistical data modeling, the need for polynomial 
linear regression models in the presence of the covari-
ate (independent variable) month (temporal order) that 
can capture possible effects of linearity and that also 
have regression coefficients associated with quadratic 
and cubic effects. A quadratic term or cubic term trans-
forms a linear regression model into a curve. Since the 
regression model has the covariate month squared or 
cube, and not the regression coefficient, the model re-
mains a linear regression model [26,27]. An application 
of polynomial regression models with epidemiology 
data is given by [28]. The presence of a quadratic term 
in the model creates an inverted U- or U-shaped curve, 
as seen in the graphs in Figure 2(b), Figure 2(d), Figure 
2(f), Figure 2(g) and Figure 2(h). A cubic term has two 
distinct parts: one facing up and one facing down, that 
is, the curve goes down, back up and back again (or vice 
versa). This is also seen in some graphs in Figure 2(a), 
Figure 2(c) and Figure 2(e). 

The main goals of the study are:

•	 To model the monthly TB counts in Brazil with 
data on the logarithmic scale from 2001 to 2018, 
assuming stochastic volatility models to estimate 
the time series volatilities;

•	 Also to model some rates of factors associated 
with the incidence of TB using stochastic volatility 
models such as rates of patients diagnosed with 
TB and AIDS, rates of patients diagnosed with 
TB and urban dwellers and rates of patients di-
agnosed with TB and belonging to the socioeco-
nomic groups of extreme poverty.

•	 To study the variability in the rates of patients 
diagnosed with TB and AIDS, rates of patients di-
agnosed with TB and residents of urban centers, 
rates of patients diagnosed with TB and belong-
ing to extreme poverty socioeconomic groups 
that are decreasing despite the growth of TB cas-
es seen in Brazil in recent years.

•	 To model yearly TB rates in Brazil from 2001 to 
2018, assuming linear regression models in the 
presence of change-points.

Material and Methods

Use of standard linear regression models
In a first data analysis, it is assumed a standard poly-

https://doi.org/10.23937/2469-5831/1510035
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counting in Brazil for the period 2001-2018 we know 
consider the TB yearly counting in place of the month 
TB counting. Considering the yearly rates of TB in Brazil, 
we can see (Table 1 and Figure 1) the presence of two 
change-points around the years 2003 and 2016 (upward 
rate until 2003, downward rate between the year 2003 
and year 2016, rising rate after year 2016. In this case 
we also can use a linear regression Bayesian model to 
be fitted by the data in the presence of two points of 
change. In this case it is assumed the linear regression 
model,

Y(t) = βo[j] + β1[j]years(t) + є(t) 		          (4)

for t = 1, 2, ..., N and j = 1, 2, 3 where βo[1] and 
β1[1] are regression parameters for the model (data 
set in logarithmic scale) corresponding to time[t] ≤ ζ1 
(ζ1 is the first change-point); βo[2] and β1[2] are regres-
sion parameters for the model (data set in logarithmic 
scale) corresponding to ζ1 < time[t] ≤ ζ2 (ζ2 is the second 
change-point); βo[3] and β1[3] are regression parame-
ters for the model (data set in logarithmic scale) cor-
responding to time[t] ≥ ζ2 and єj(t) is the error assumed 
to be independently and identically distributed random 
variables with a normal distribution N(0, 2[ ]j∈σ  ), j = 1, 
2, 3 where 2[1]∈σ  for time[t] ≤ ζ1, 

2[2]∈σ  for ζ1 < time[t] 
≤ ζ2 and 2[3]∈σ  for time[t] ≥ ζ2. In the Bayesian analysis, 
discrete uniform prior distributions are assumed for the 
change-points k1 and k2 concentrated around the years 
2003 and 2016; Gamma(1,1) prior distributions for the 
parameters ζj = 21/ [ ],j∈σ  j = 1, 2, 3; βo[1] ~ N(-7,6;1), 
βo[2] ~ N(-7,7;1), βo[3] ~ N(-7,75;1); and β1[j] ~ N(0;0,01). 
We further assume prior independence.

Results
From a preliminary analysis of the data, it is observed 

that in addition to the count times series for the month-
ly number of TB in Brazil, other series are related for 
the data analysis of the monthly counting of TB in Brazil 
from January 2001 to December 2018. In this study we 
consider four series in the data analysis:

•	 Time series for the logarithm of the TB count ver-
sus time order,

•	 Time series for the rate AIDS/TB versus time or-
der,

•	 Time series for the rate urban patients/TB versus 
time order,

•	 Time series for the rate of patients in extreme 
poverty/TB versus time order.

These four series are analyzed in this section. Initial-
ly, polynomial regression models are considered in the 
form (1) considering constant variances and classic least 
squares (LSE) estimation techniques. We consider four 
regression models denoted by,

•	 Model M1: The regression model (1) associated 
with the logarithms of TB counts versus time order,

Y(t) = βo + β1 months(t) + β2 [months(t)]2 + β3 
[months(t)]3 + σ(t)є(t) 				             (2)

where it is assumed that є(t) are noises considered in-
dependent and identically distributed random variables 
with a normal distribution N(0, 2

∈σ ) and σj(t) is the square 
root of the variance of (1) (for simplicity, we can assume 

2
∈σ  = 1). The variance of Y(t) is modeled by 2

∈σ eh(t) where 
h(t) depends on an unobserved latent variable.

Remark: From model (2), it is observed that:

The mean of Y(t) is given by E[Y(t)] = βo + β1 months(t) 
+ β2 [months(t)]2+ β3 [months(t)]3 since E[σ(t)є(t)] = 0.

The variance of Y(t) is given by var[Y(t)] = var[σ(t)є(t)] 
= σ2(t) since we are assuming that var[є(t)] = 2

∈σ  = 1.

To analyze the data set, it is introduced a latent va-
riable (unobserved variable) defined by an auto-regres-
sive model AR (2), for t = 1, 2, 3, ..., N (N = 216 months).

h(1) = μ + ζ(1), t = 1,

h(2) = μ + ϕ1[h(1) - μ] + ζ(2) (3)

h(t) = μ + ϕ1[h(t-1) - μ] + ϕ2[h(t-1) - μ] + ζ(t), t = 3, 4, 
…, N,

where ζ(t) is a noise considered to be independent 
and identically distributed random variables with a nor-
mal distribution N(0, 2

ζσ  ), which is associated to a la-
tent variable h(t). The quantities 2 ,ζσ  μ, ϕ1 and ϕ2 are 
unknown parameters that should be estimated (0 < ϕ1 
< 1, 0 < ϕ2 < 1).

Bayesian inference procedures, based on Mar-
kov Chain Monte Carlo simulation methods (MCMC) 
[34,36,37] have been widely used to analyze stochastic 
volatility models. The main reason for using Bayesian 
methods is that, in general, we may have great difficul-
ties in obtaining inferences (point and interval estima-
tion) for the parameters of interest of the stochastic 
volatility model when using a standard classical infer-
ence approach. These difficulties can appear in the form 
of high dimensionality and likelihood function without 
closed form among other factors.

For a Bayesian analysis of the model (1), we assume 
that the prior distributions for the parameters μ, ϕv and 
ζ = 21/ ,ζσ  v = 1, 2 are respectively given by the normal 
distribution, Beta(b,c) distribution and a Gamma(d,e) 
distribution, where Beta(b, c) denotes a beta distribu-
tion with mean b/(b + c) with variance bc/[(b + c)2(b + 
c + 1)] and Gamma(d, e) denotes a gamma distribution 
with mean d/e and variance d/e2. The hyperparameters 
a, b, c, d, e are assumed to be known and specified pre-
viously. Also assume that the regression parameters βj 
have independent normal distributions with known hy-
perparameters, j = 0, 1, 2, 3.

Change-points for the yearly rate series of TB in 
Brazil

To complete the statistical data analysis of the TB 
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rameters of the model. Thus, the conditional posterior 
distributions for each parameter needed for the Gibbs 
and Metropolis-Hastings algorithms are not presented 
in this study. The convergence of the sample simulation 
algorithm of the joint posterior distribution of interest 
(Gibbs/Metropolis-Hastings algorithms) was verified 
from time series plots of the generated Gibbs samples. 
It was considered a “burn-in-sample” with 51,000 sam-
ples to eliminate the effect of the initial values ​​in the 
iterative method to simulate Gibbs samples for the 
M1 model; after this, it was generated other 120,000 
samples choosing each tenth sample which gives a final 
sample size of 1200 to be used to obtain the posterior 
summaries of interest. Similarly, for models M2, M3 and 
M4, it was considered a “burn-in-sample” with 111,000 
samples; after that, it was generated other 100,000 
samples choosing each tenth sample totaling a final 
sample size of 1,000 to be used to obtain the posterior 
summaries of interest. The posterior summaries of in-
terest (posterior means, posterior standard deviations 
and 95% credibility intervals) for each parameter for the 
four models are shown in Table 3.

From the results presented in Table 3, it is observed 
that the covariate month has significant effects on the 
response in terms of linear effect of month (regression 
parameter β1), quadratic effect of month (β2) and cubic 
effect of month (β3) (intervals corresponding 95% credi-
bility does not contain a zero value) for models M3 (rate 
(urban patients)/TB) and M4 (rate (extreme poverty pa-
tients)/TB); for the M1 model (log (TB rates)) there is a 
significant effect of the quadratic and cubic terms and 
for the M2 model (AIDS/TB rate), there is a significant 
effect of the linear and cubic terms.

Figure 3 shows the graphs of the observed and the 
fitted series assuming the models (Monte Carlo estima-
tors of the responses mean) for the four series. A good 
fit is observed in all cases. Figure 4 shows graphs of the 
quadratic roots of the estimated volatilities.

It is important to point out that from the results 
obtained from Table 2 and Table 3 (LSE and Bayesian 
estimators), it can be seen that the LSE and Bayesian 
estimators have close point values where in most cases 
related to each regression parameter, we have concor-
dance of p-value < 0.05 and credible intervals not con-
taining the zero value. Only for the parameter β1 (linear 
effect) related to models M1 (log (TB counts) versus 
time), and M2 (AIDS/TB rate versus time) it is observed 
significance under the classic approach but no signifi-
cance under the Bayesian approach and for the param-
eter β2 (quadratic effect) for model M4 (rate (extreme 
poverty patients)/TB versus time), we have no signifi-
cance under the classic approach and significance under 
the focus Bayesian we have different inferential results 
in terms of significant effects.

•	 Model M2: Associated with rates of patients with 
AIDS among TB patients versus time order,

•	 Model M3: Associated with rates of urban pa-
tients among TB patients versus time order,

•	 Model M4: Associated with the rates of patients 
living in extreme poverty among TB patients ver-
sus temporal order.

Use of a standard polynomial regression model
Table 2 shows the LSE estimators for the regression 

parameters of each proposed regression model ob-
tained using Minitab® software version 17. The neces-
sary assumptions (normality and constant variance of 
the residuals were verified from the residuals graphics).

Use of polynomial regression models and stochas-
tic volatility

Assuming the volatility model introduced in section 
2 (equations (1) and (2)) for the four series above, also 
denoted here by model M1 (log (TB counts)), model M2 
(AIDS / TB rate), model M3 (rate (urban patients)/TB) 
and model M4 (rate (extreme poverty patients)/TB), let 
us consider the following prior distributions for the pa-
rameters of each model:

•	 Model M1: ϕv ~ U(0,1), v =1,2; ζ ~ Gamma(1,1); μ 
~ N(0,1); β0 ~ N(9,100); βj ~ N(0,1).

•	 Model M2: ϕv ~ U(0,1), v = 1,2; ζ ~ Gamma(1,1); μ 
~ N(0,1); β0 ~ N(0.07, 0.01); βj ~ N(0, 0.01).

•	 Model M3: ϕv ~ U(0,1), v = 1,2; ζ ~ Gamma(1,1); μ 
~ N(0,1); β0 ~ N(0.63, 0.01); βj ~ N(0, 0.01).

•	 Model M4: ϕv ~ U(0,1), v = 1,2; ζ ~ Gamma(1,1); μ 
~ N(0,1); β0 ~ N(0.082,0.01); βj ~ N(0, 0.01).

Further, let us assume prior independence among 
the parameters. The choice of the hyperparameters 
for the prior distributions of the regression parameters 
was made based on previous knowledge obtained from 
the classical regression models for the regression mod-
el (1) assuming normal errors without the presence of 
stochastic volatility (LSE given in Table 2). In this way, 
empirical Bayesian methods were used [35].

In the simulation of samples for the joint posteri-
or distribution of interest, it was used the OpenBUGS 
software [36], which simplifies the computational work, 
since this software only requires the definition of the 
likelihood function and the prior distributions for the pa-

Table 2: LSE for the four assumed models.

Models βo β1 β2 β3

M1 8.9200 0.00107(*) -0.00002(*) < 0.00001(*)

M2 0.06678 0.000052(*) 0.000004(*) < 0.00001(*)

M3 0.6345 0.001222(*) -0.00001(*) < 0.00001(*)

M4 0.0817 0.08174(*) < 0.00001 < 0.00001(*)

(*)significative at 5% (p-value < 0.05).

https://doi.org/10.23937/2469-5831/1510035
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Table 3: Posterior summaries for the assumed models.

Model Mean SD Lower 95% Upper 95%
M1 βo 8.932 0.02269 8.8860 8.9740

β1 0.0008 0.00085 - 0.00073 0.002499
β2 - 0.000019 0.0000089 - 0.000037 - 0.000004
β3 0.00000008 0.000000027 0.00000003 0.00000013
μ - 5.058 0.6944 - 5.5500 - 2.7900
ϕ1 0.1775 0.1411 0.005846 0.5415
ϕ2 0.3424 0.2518 0.01661 0.9020
ζ 4.251 1.575 1.8620 8.1220

M2 βo 0.06851 0.001675 0.06574 0.07243
β1 -0.000002 0.00006 -0.000138 0.000103
β2 0.0000043 0.00000061 0.0000032 0.0000057
β3 - 0.00000002 0.000000002 - 0.00000001  - 0.00000001
μ - 4.259 1.036 - 6.3700 - 2.2760
ϕ1 0.6631 0.1781 0.3372 0.9741
ϕ2 0.3359 0.1778 0.02611 0.6653
ζ 2.168 0.8817 1.001 4.358

M3 βo 0.637 0.004801 0.6281 0.6477
β1 0.001195 0.000151 0.000857 0.000289
β2 -0.0000099 0.00000142 -0.000012 -0.0000068
β3 0.00000002 0.000000004 0.000000014 0.00000003
μ -4.203 1.044 -6.115 -2.182
ϕ1 0.6546 0.2077 0.252 0.9783
ϕ2 0.3427 0.2079 0.0218 0.7514
ζ 2.324 0.8576 1.076 4.418

M4 βo 0.08113 0.00176 0.07796 0.08485
β1 0.000243 0.0000622 0.000102 0.000357
β2 -0.0000036 0.0000006 -0.0000046 -0.0000022
β3 0.00000001 0.000000002 0.000000007 0.000000014
μ -4.359 0.9985 -6.237 -2.372
ϕ1 0.6784 0.1938 0.3097 0.9825
ϕ2 0.3219 0.1943 0.01728 0.6966
ζ 2.552 0.8985 1.172 4.655

Table 4: Posterior summaries for a model with two change-points.

Mean SD Lower 95% Upper 95%
βo[1] -7.59 0.7826 -9.196 -5.954
βo[2] -7.585 0.235 -8.075 -7.125
βo[3] -7.718 0.8682 -9.433 -6.032
β1[1] -0.001627 0.09955 -0.194 0.197
β1[2] -0.01256 0.02407 -0.06036 0.03539
β1[3] -0.00085 0.05843 -0.1162 0.1135
k1 2.104 0.9501 1.0 4.0
k2 16.71 0.976 15.0 18.0

ζ1 = 21/ [1]∈σ 1.327 1.161 0.06158 4.355

ζ2 = 21/ [2]∈σ 7.317 2.771 2.911 13.58

ζ3 = 21/ [3]∈σ 1.744 1.375 0.1363 5.238

https://doi.org/10.23937/2469-5831/1510035
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Figure 3: Graphs of the observed series and estimated means by the models.

         

Figure 4: Graphs of the quadratic roots of the estimated volatilities.

10,000 additional Gibbs samples). Figure 5 shows the 
fitted model (presence of two change-points, one 
change-pint around the year 2003 which corresponds 
to the k1 estimated by 2.104 and a second change-point 
in the year 2016 which corresponds to the k2 estimated 

Use of a change-point model for the yearly rate 
series of TB in Brazil

Table 4 presents the posterior summaries obtained 
using the OpenBUGS software (burn-in sample = 1,000; 

https://doi.org/10.23937/2469-5831/1510035
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Figure 6: Graphs of the quadratic roots of the estimated volatilities (July 2001 to December 2018) for the four models.

         

Figure 5: Fitted model (presence of two change-points).

presented in Figure 6 for the period from July 2001 to 
December 2018, we have:

•	 For the TB count series considered on the loga-
rithmic scale (model M1), there is great variability 
around the year 2007; from that year on, there is 
a decline in variability to be increased again espe-
cially at the end of the period 2001/2018.

•	 For the AIDS/TB rate series (model M2), there is 

by 16.71). The Openbugs program code is presented in 
Appendix 2 at the end of the article.

Discussion of the Obtained Results and Con-
cluding Remarks

From the obtained results using model (2), it is ob-
served a good fit of the models to the four data sets 
denoted here by models M1, M2, M3 and M4. Regard-
ing to the estimated variability (volatility) of the data 

https://doi.org/10.23937/2469-5831/1510035
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9: 9-16.

4.	 DC Costa (1985) Considerações sobre a tendência da tu-
berculose no Brasil. Cad Saúde Pública, Rio de Janeiro, 1: 
313-326.

5.	 LMW Acosta, SL Bassanesi (2014) The Porto Alegre par-
adox: Social determinants and tuberculosis incidence. Rev 
Bras Epidemiol, São Paulo, 17: 88-101. 

6.	 MG Almeida, DRM Barbosa, DFS Almeida (2013) Epidemi-
ologia e distribuição espacial de casos notificados de tuber-
culose multirresistente (TBMR) no Brasil, 2008-2012. Rev 
Epidemiol Control Infect 3: 117-122.

7.	 P Hino (2011) Padrões espaciais da tuberculose e sua as-
sociação à condição de vida no município de Ribeirão Pre-
to. Ciênc Saúde Coletiva 16: 4795-4802. 

8.	 DL Roza, MCGG Caccia-Bava, EZ Martinez (2012) Spa-
tio-temporal patterns of tuberculosis incidence in Ribeirão 
Preto, State of São Paulo, southeast Brazil, and their rela-
tionship with social vulnerability: A Bayesian analysis. Rev 
Soc Bras Med Trop 45: 607-615.

9.	 SHF Vendramini, NSGM dos Santos, MLSG Santos, F 
Chiaravalloti-Neto, MAZ Ponce (2010) Análise espacial da 
co-infecção tuberculose/HIV: relação com níveis socioeco-
nômicos em município do sudeste do Brasil. Rev Soc Bras 
Med Trop 43: 536-541.

10.	R Abellana, C Ascaso, J Aponte, F Saute, D Nhalungo, et 
al. (2008) Spatio-seasonal modeling of the incidence rate of 
malaria in Mozambique. Malar J 7: 228.

11.	IS Chang, SJ Fu, CH Chen, TH Wang, CA Hsiung (2009) 
Estimating temporal transmission parameters from infec-
tious disease household data, with application to Taiwan 
SARS data. Stat Biosci 1: 80-94.

12.	J Kleinschmidt, M Bagayoko, GP Clarke, M Craig, D Le 
Sueur (2000) A spatial statistical approach to malaria map-
ping. Int J Epidemiol 29: 355-361.

13.	G Box, G Jenkins (1970) Time series analysis: Forecasting 
and control. (1st edn), Holden-Day, San Francisco.

14.	RS Tsay (2002) Analysis of Financial Time Series. (1st edn), 
John Wileyand Sons, Canada.

15.	RR Sarkar, C Chatterjee (2017) Application of different time 
series models on epidemiological data - Comparison and 
predictions for malaria prevalence. SM J Biometrics Biostat 
2: 1022.

16.	YL Zheng, LP Zhang, XL Zhang, K Wang, YJ Zheng (2015) 
Forecast model analysis for the morbidity of tuberculosis in 
Xinjiang, China. PLoS One 10: e0116832.

17.	A Earnest, MI Chen, D Ng, LY Sin (2005) Using autoregres-
sive integrated moving average (ARIMA) models to predict 
and monitor the number of beds occupied during a SARS 
outbreak in a tertiary hospital in Singapore. BMC Health 
Serv Res 11: 5-36.

18.	Q Li, NN Guo, ZY Han, YB Zhang, SX Qi (2012) Applica-
tion of an autoregressive integrated moving average model 
for predicting the incidence of hemorrhagic fever with renal 
syndrome. Am J Trop Med Hyg 87: 364-370.

19.	M Gharbi, P Quenel, J Gustave, S Cassadou, G La Ruche, 
et al. (2011) Time series analysis of dengue incidence in 
Guadeloupe, French West Indies: Forecasting models us-
ing climate variables as predictors. BMC Infect Dis 11: 166.

20.	Q Liu, X Liu, B Jiang, W Yang (2011) Forecasting incidence 
of hemorrhagic fever with renal syndrome in China using 
ARIMA model. BMC Infect Dis 11: 218.

great variability around the year 2007/2008 and 
2016/2017, an indication that the AIDS/TB rate 
was in transition, indicating that the number TB 
cases were increasing regardless of whether a 
person have AIDS or not. It is a worrying result, as 
it indicates that TB is increasing in Brazil regard-
less of the increase in AIDS cases.

•	 For the urban patient/TB rate series (model M3), 
it is observed that the variability is declining; with 
this result and the lower average of urban pa-
tient/TB rates, there is an indication that the TB 
epidemic is increasing throughout Brazil regard-
less of being a resident of large cities.

•	 For the extreme poverty/TB rate series (model 
M4), it is observed that the variability is approxi-
mately stable regardless of the great seasonality 
with a slight decline, also indicating that the num-
ber of TB cases is increasing in Brazil, regardless 
the increasing of poverty; these results show that 
the increase in TB cases in Brazil is in a increasing 
phase regardless of the increase in extreme pov-
erty that has been observed in Brazil, especially 
since 2019.

In conclusion, we can emphasize that the proposed 
model can be of great use for other epidemiological 
data in addition to modeling TB counts and rates asso-
ciated with TB. Another important point of an epidemi-
ological character obtained from the data analysis: As 
the number of TB cases is increasing in Brazil and some 
rates such as AIDS/TB and extreme poverty/TB are fall-
ing with the presence of great volatility, there is an in-
dication that TB is increasing indiscriminately in Brazil, 
as AIDS and extreme poverty are two factors widely dis-
cussed in the literature that are associated with TB. This 
is a problem of public health concern.

It is important to point out, that in the present study 
we considered univariate epidemiological time series 
(modelM1 (log (TB counts)), model M2 (AIDS/TB rate), 
model M3 (rate (urban patients)/TB) and model M4 
(rate (extreme poverty patients)/TB). Another possi-
bility is to assume multivariate SV models and to study 
the structure of possible dependence among the series. 
This approach will be the goal of a future study.
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Appendix 1: TB series in Brazil (January 2001 to December 2018).

          TB      AIDS/TB  URB/TB   POVERTY/TB             TB   AIDS/TB  URB/TB   POVERTY/TB
  1      8088      0.064416  0.634891   0.0817260 109      6987      0.099900  0.682553   0.0814370
  2      6542      0.065729  0.627484   0.0764292 110      6471      0.100757  0.687838   0.0698501
  3      8095      0.060531  0.640889   0.0795553 111      8373      0.097098  0.697719   0.0738087
  4      7305      0.061602  0.633676   0.0835044 112      7113      0.093350  0.678335   0.0785885
  5      7656      0.064002  0.643939   0.0858150 113      7039      0.095184  0.692002   0.0761472
  6      6805      0.063630  0.651433   0.0865540 114      6701      0.107745  0.693180   0.0840173
  7      6987      0.064692  0.637613   0.0918849 115      7178      0.105322  0.696155   0.0764837
  8      8065      0.067452  0.628518   0.0838190 116      7463      0.099022  0.687391   0.0758408
  9      6697      0.067344  0.626699   0.0895924 117      7216      0.103520  0.676968   0.0766353
 10      7524      0.069777  0.624668   0.0867889 118      7273      0.098721  0.671662   0.0741097
 11      6874      0.071720  0.620454   0.0853942 119      7096      0.100761  0.671787   0.0735626
 12      6627      0.068206  0.633016   0.0804285 120      7236      0.105445  0.663903   0.0697899
 13      8013      0.067141  0.660302   0.0842381 121      7173      0.101771  0.681305   0.0818347
 14      7346      0.072965  0.641710   0.0811326 122      7335      0.095024  0.671302   0.0837082
 15      7961      0.065444  0.659465   0.0806431 123      7548      0.101881  0.660837   0.0784314
 16      8771      0.064531  0.661612   0.0884734 124      7619      0.098701  0.674629   0.0767817
 17      7784      0.063207  0.674717   0.0908273 125      7765      0.093883  0.678558   0.0830650
 18      6713      0.074631  0.673171   0.0804409 126      7008      0.102312  0.679937   0.0794806
 19      7746      0.076039  0.679706   0.0888200 127      7138      0.102690  0.668535   0.0724293
 20      8330      0.073229  0.650660   0.0828331 128      8062      0.104937  0.674274   0.0769040
 21      7654      0.073948  0.662007   0.0837471 129      7427      0.102195  0.665814   0.0780934
 22      8200      0.071220  0.661098   0.0800000 130      7052      0.108622  0.686188   0.0692002
 23      7532      0.074615  0.660781   0.0896176 131      7439      0.101895  0.665815   0.0807904
 24      6809      0.078866  0.656925   0.0772507 132      6994      0.105376  0.671433   0.0700601
 25      8115      0.066790  0.659766   0.0853974 133      7435      0.106523  0.673571   0.0746469
 26      7985      0.069881  0.655980   0.0821540 134      6830      0.104539  0.676867   0.0784773
 27      7474      0.066899  0.655205   0.0850950 135      7936      0.096018  0.676789   0.0756048
 28      7975      0.067586  0.667712   0.0820063 136      6981      0.097550  0.681135   0.0786420
 29      8024      0.071286  0.685942   0.0844965 137      7649      0.105896  0.682965   0.0738659
 30      7082      0.075402  0.676363   0.0858515 138      6861      0.108731  0.677744   0.0773940
 31      7949      0.071833  0.680463   0.0865518 139      7317      0.105098  0.681017   0.0736641
 32      7585      0.075676  0.676994   0.0843771 140      8060      0.108313  0.675434   0.0763027
 33      8136      0.074115  0.673673   0.0886185 141      6785      0.103021  0.663670   0.0716286
 34      8521      0.077808  0.669405   0.0822673 142      7679      0.102748  0.684725   0.0714937
 35      7624      0.080273  0.677991   0.0836831 143      7010      0.102425  0.676034   0.0766049
 36      7303      0.076818  0.678078   0.0798302 144      6362      0.105942  0.680918   0.0814209
 37      7574      0.080803  0.691048   0.0764457 145      7502      0.104639  0.676220   0.0718475
 38      6743      0.082308  0.669435   0.0904642 146      6209      0.100821  0.659204   0.0753745
 39      8574      0.071495  0.680546   0.0905062 147      7102      0.105182  0.669107   0.0720924
 40      8089      0.071826  0.668068   0.0876499 148      7696      0.104730  0.676975   0.0732848
 41      7763      0.072008  0.684916   0.0888832 149      6996      0.102630  0.674099   0.0697541
 42      7314      0.078616  0.675280   0.0849057 150      6953      0.109305  0.660866   0.0690349
 43      7825      0.080895  0.669776   0.0857508 151      7379      0.104757  0.672042   0.0752134
 44      8232      0.078839  0.651361   0.0823615 152      7931      0.097844  0.661077   0.0742655
 45      7901      0.072902  0.655993   0.0898620 153      7377      0.107090  0.674393   0.0737427
 46      8016      0.070734  0.670659   0.0782186 154      7789      0.107074  0.664270   0.0729234
 47      7753      0.070940  0.677157   0.0882239 155      6939      0.099150  0.661623   0.0704712
 48      7196      0.075875  0.672457   0.0774041 156      6335      0.105762  0.655564   0.0716654
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 49      7432      0.077234  0.674247   0.0805974 157      7670      0.112907  0.653064   0.0724902
 50      6748      0.081654  0.655750   0.0881743 158      7040      0.104545  0.648438   0.0762784
 51      8441      0.072859  0.668049   0.0900367 159      6754      0.106752  0.663459   0.0710690
 52      7958      0.068233  0.661850   0.0913546 160      7260      0.111019  0.657025   0.0796143
 53      8019      0.068837  0.659683   0.0875421 161      7177      0.110631  0.663648   0.0769124
 54      7781      0.075954  0.654543   0.0916335 162      6322      0.102341  0.652800   0.0752926
 55      7282      0.081571  0.677012   0.0891239 163      7516      0.112693  0.667110   0.0671900
 56      8391      0.074365  0.688833   0.0852103 164      7124      0.112858  0.664374   0.0728523
 57      7690      0.080624  0.678674   0.0893368 165      7505      0.110859  0.654897   0.0719520
 58      7186      0.079043  0.676037   0.0843306 166      7470      0.110308  0.656894   0.0681392
 59      7587      0.076447  0.662581   0.0873863 167      6905      0.105431  0.653874   0.0670529
 60      7541      0.086593  0.647792   0.0820846 168      6470      0.108192  0.658733   0.0646059
 61      7466      0.070855  0.663274   0.0877310 169      7114      0.110065  0.674445   0.0653641
 62      6767      0.080095  0.654352   0.0854145 170      6162      0.109380  0.655794   0.0688088
 63      8256      0.080305  0.676841   0.0856347 171      7836      0.104135  0.661052   0.0675089
 64      6901      0.077815  0.666570   0.0785393 172      6877      0.103534  0.661189   0.0665988
 65      7699      0.074295  0.681777   0.0879335 173      6885      0.106609  0.656064   0.0755265
 66      7094      0.081336  0.664787   0.0873978 174      6915      0.113666  0.666377   0.0694143
 67      7220      0.081440  0.676177   0.0853186 175      7529      0.104396  0.662903   0.0761057
 68      7835      0.076707  0.662923   0.0825782 176      7466      0.104875  0.662202   0.0707206
 69      6873      0.078714  0.664484   0.0919540 177      7191      0.111528  0.656098   0.0759282
 70      7089      0.081676  0.666667   0.0846382 178      7344      0.106618  0.649646   0.0761166
 71      6751      0.073619  0.666124   0.0897645 179      7284      0.098298  0.660626   0.0675453
 72      6209      0.083427  0.670800   0.0834273 180      6840      0.097953  0.652047   0.0687135
 73      7436      0.085933  0.676304   0.0809575 181      7025      0.102491  0.655089   0.0743060
 74      6294      0.089609  0.670480   0.0776930 182      6756      0.104056  0.653641   0.0703079
 75      8214      0.086681  0.684076   0.0808376 183      8050      0.099130  0.647578   0.0731677
 76      7373      0.082734  0.686830   0.0846331 184      7335      0.094888  0.657805   0.0711656
 77      7481      0.087555  0.679722   0.0820746 185      7315      0.101162  0.666986   0.0686261
 78      6714      0.089812  0.683944   0.0792374 186      7520      0.098537  0.666755   0.0696809
 79      7283      0.090897  0.681038   0.0856790 187      6993      0.100529  0.665523   0.0775061
 80      7669      0.089842  0.673491   0.0864519 188      7702      0.113217  0.650091   0.0701117
 81      6801      0.086458  0.670931   0.0854286 189      7035      0.095096  0.667662   0.0693674
 82      7550      0.085298  0.678278   0.0778808 190      6590      0.113354  0.645068   0.0687405
 83      6786      0.084586  0.686413   0.0863543 191      7036      0.101904  0.646674   0.0722001
 84      6178      0.104079  0.679994   0.0768857 192      6669      0.099715  0.660819   0.0652272
 85      7459      0.088886  0.669527   0.0833892 193      7475      0.099933  0.658729   0.0707692
 86      6729      0.084559  0.669639   0.0857483 194      6790      0.101915  0.663623   0.0761414
 87      7359      0.098519  0.686914   0.0826199 195      8676      0.099009  0.640964   0.0728446
 88      7717      0.091227  0.675392   0.0855255 196      6774      0.099941  0.669472   0.0786832
 89      6992      0.097254  0.686928   0.0826659 197      8093      0.106759  0.669220   0.0763623
 90      7001      0.089273  0.683617   0.0775603 198      7386      0.102897  0.659762   0.0747360
 91      7777      0.087052  0.693969   0.0786936 199      7221      0.101509  0.662928   0.0811522
 92      7912      0.092139  0.678842   0.0850607 200      8112      0.101085  0.659024   0.0792653
 93      7720      0.090933  0.678756   0.0813472 201      7434      0.104116  0.646220   0.0745225
 94      7643      0.095774  0.681539   0.0754939 202      7793      0.101886  0.653664   0.0728859
 95      6863      0.083928  0.683229   0.0760600 203      7447      0.092789  0.643615   0.0750638
 96      6650      0.094135  0.670376   0.0787970 204      7009      0.092595  0.651733   0.0744757
 97      7180      0.090111  0.692061   0.0803621 205      7878      0.094821  0.656512   0.0759076
 98      6507      0.091747  0.670816   0.0791455 206      6803      0.098045  0.650595   0.0684992
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 99      8231      0.086988  0.681813   0.0816426 207      7893      0.093754  0.659698   0.0741163
100      7584      0.094937  0.680643   0.0901899 208      8126      0.092789  0.665272   0.0756830
101      7245      0.092478  0.695376   0.0864044 209      7878      0.097994  0.662224   0.0714648
102      6799      0.094426  0.694661   0.0897191 210      7688      0.094693  0.648413   0.0736212
103      7513      0.090643  0.701185   0.0805271 211      8085      0.099567  0.662585   0.0752010
104      7450      0.095705  0.688188   0.0783893 212      8932      0.094940  0.656740   0.0704210
105      7478      0.098288  0.687350   0.0850495 213      7663      0.096437  0.659533   0.0695550
106      7359      0.092947  0.677674   0.0852018 214      8691      0.091129  0.658842   0.0699574
107      7088      0.096924  0.681716   0.0747743 215      7682      0.091382  0.653606   0.0741994
108      6793      0.098042  0.680701   0.0791992 216      6836      0.095816  0.649210   0.0751902

Appendix 2: OpenBUGS code (change-points).

model

{   

for (i in 1:N) {

    J[i] <- 1+step(i-k1)+step(i-k2)

    y[i] <- log(yearly.rate.TB[i])

   y[i] ~ dnorm(mean[i],tau[J[i]])

    }

for (i in 1:N) {

mean[i] <- beta0[J[i]]+ beta1[J[i]]*years[i]

fitted.mean[i]<-exp(mean[i])

}

k1 ~ dcat(p1[])

k2 ~ dcat(p2[])                                                                             

tau[1] ~ dgamma(1,1)

tau[2] ~ dgamma(1,1) 

tau[3] ~ dgamma(1,1)                                                                                                         

beta0[1] ~ dnorm(-7.60,1)

beta0[2] ~ dnorm(-7.70,1)

beta0[3] ~ dnorm(-7.75,1)

beta1[1] ~ dnorm(0,100)

beta1[2] ~ dnorm(0,100)

beta1[3] ~ dnorm(0,100)

}
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