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Abstract

Investigations of the genetic basis of cancers have identified
hundreds of robust risk loci associated with cancers using large-
scale, case-control, candidate gene studies as well as genome-
wide association studies (GWASSs) during the past ten years. Most
leading single nucleotide polymorphisms (SNPs) associated with
cancer sensitivity lie in non-protein-coding regions, suggesting the
potentially regulatory functions as targets for susceptible variants.
That is a critical question to understand the molecular mechanisms
and causality within cancer susceptible loci. In this short review,
the latest findings about functional implications of genetic variants
in cancer etiology were summarized on the basis of genetics,
epigenetics and environmental factors. Several helpful directions
in post-GWAS functional determinants of cancer-associated
polymorphisms were also previewed.
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Introduction

Recent advances in genome-wide association studies (GWASs)
and fine-mapping analyses have yielded a plethora of common and
rare loci associated with diverse cancers and other complex diseases
[1-3]. These different penetrant risk loci together substantially unveil
the heritable fraction of diseases [4]. Due to the majority of cancer
risk variants reside in intronic or intergenic regions of unknown
function, how to effectively understand their molecular mechanisms
has become a challenging but critical question in post-GWAS
research [5]. Several pioneering studies have revealed some promising
molecular evidences at both transcriptional and regulatory levels for
cancer genetic variants [6,7], and the contributions are continuously
underway, especially in the area of gene expression and regulation.

Thanks to the development of diverse of high-throughput
technologies, particularly next-generation sequencing (NGS)
technologies, genome-scale large data sets — including genomic,
epigenomic, transcriptomic and proteomic information, are
now freely accessible from large collaborative projects, including
Encyclopedia of DNA Elements (ENCODE) [8,9], NIH Epigenomics
Roadmap [10], The Cancer Genome Atlas (TCGA) [11], Genotype-
Tissue Expression (GTEx) [12]. Concomitantly, an integrative
genomic approach [13] has increasingly adopted to interrogate

whether genetic variants of interest are the causal potential.
More recently, Ward et al. [14] and Edwards et al. [15] depicted a
systematic flowchart for functional prediction of genetic variants by
integrating publicly accessible functional genomic data, including
expression quantitative trait loci (eQTLs), chromatin modification
and states across diverse cell types and disease relevant tissues/cells,
transcription factors binding motif. This short article will review the
latest findings about functional implications of cancer genetic loci
focusing on QTLs and epigenetic regulation, as well as the interactions
of cancer-associated variants with environmental and nutritional
factors. The summary might help to comprehensively understand the
cancer pathogenesis, and provide an additional direction for future
cancer genetic studies.

Quantitative Trait Loci

DNA methylation QTL: Numerous studies have revealed a
common profile of a global DNA hypomethylation and local DNA
hypermethylation associated with tumorigenesis [16-19], which
provides a clue to determine the functional feature of identified
common and rare genetic variants associated with cancer risk. A
growing attention has focused on the correlation between cancer-
risk variants and DNA methylation levels, a definition referring
to as the methylation quantitative trait loci (meQTL) [20,21].
Heyn et al. first conducted [22] a comprehensive meQTL analyses
via integrating genome-wide DNA methylation profiles with 109
GWAS-SNPs in 13 solid cancer types. They found 23 cis-meQTLs,
accounting for approximately one-quarter of interrogated cancer
risk polymorphisms. Several other studies also found several
cancer-associated meQTLs in lung cancer [17], prostate cancer
[23], myeloma [24], etc. Thus, screening the genomic variants and
epigenomic modifications at high resolution could elucidate a direct
functional implication of the underlying genetic genotypes associated
with DNA methylation at specific sites.

The Infinium Human Methylation 450 and Human Methylation
27 Bead Chips [22-25] are two popular platforms to measure DNA
methylation profiles [26]. At present, the measurement of DNA
methylation levels for meQTL analyses also largely depend on these
platforms. Nonetheless, a large proportion of human genomic CpG
sites are still uncovered in the design of DNA methylation chips in
current microarray-based meQTL studies. It causes that the meQTLs
accounting for cancer risk variants are far less discovered. So it is
possible to conduct fine-scale mapping of meQTLs associated with
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cancer risk by employing genome-wide bisulfite sequencing or
targeted bisulfite-sequencing technologies [27,28] in single CpG site
resolution.

Apart from methylation on cytosine (5-mC) at CpG sites, recent
studies have discovered several newtypes of DNA modifications [29-
32], including 5-Hydroxymethylcytosine (5-hmC), 5-formylcytosine
(5-fC), 5-carboxylcytosine (5-caC), andN°-adenine methylation (N°-
methyladenine, 6mA). QTL analysis with these DNA modifications
may help to reveal novel molecular phenotypes for genetic effects on
cancer risk.

Expression QTL: Expression QTL analysis has been widely used
to detect the regulatory feature of genetic variants that influence
the expression level of genes in cis and trans [15]. Recent works did
more deep exploration in the study of expression QTLs for cancer-
associated genetic variants. One of the most powerful approaches
to perform eQTL analyses in cancer genetic studies is the Li et al.
developed method [33], which directly works through the TCGA
data sets. The method did a residual linear regression test with
tumor gene expression adjusted by somatic copy-number alternation
and CpG methylation. This method shows considerably robust in
functional annotation of cancer-associated variants. For example,
Cai et al. applied this model to examine eQTLs for novel discovered
breast cancer risk variants [34]. Based on this model, Wong et al.
also identified thousands of expression-associated somatic single
nucleotide variants (eSN'Vs) in endometrial cancer [35].

It should be also noted that the non-coding RNAs, including
long non-coding RNAs (IncRNAs), piRNAs, endogenous siRNAs,
snoRNAs, have been reported to show aberrant expression in tumors
[36-38]. However, there are still less findings about whether cancer-
associated genetic variants could functionally control the expression
of the non-coding RNAs. Studies in other diseases or human traits
have implicated the relationship between the expression of IncRNAs
and genetic variants. In the study of Kumar et al. [39], they found
that the majority of IncRNAs-eQTLs were specific to IncRNA alone
and did not affect the expression of neighboring protein-coding genes
in blood. Brown et al. proposed that the most promising molecular
phenotype for genetic risk variants is cancer-relevant tissue or cell
type specific eQTLs [40]. Due to high tissue-restricted expression
pattern for most IncRNAs, exploring the IncRNA-eQTL association
for cancer risk loci could be conducted to understand the specificity of
cancer-associated genetic variants. In Addition, relative to genetically
steady eQTLs, some eQTLs are probably inducible [41], another
missing layer involved in disease predisposition.

Transcriptional regulation by genetic variants is involved in allelic
imbalance. The allelic specificity on gene expression is a phenomenon
where two alleles for heterozygous SNPs show significantly biased
expression [42]. Recent studies have showed the allelic biased
expression for cancer risk loci. For example, two breast cancer risk loci
(rs2046210 at 6q25 and rs418269 at 8q24) are significantly associated
with allelic specific expression of ESRI and MYC, respectively [33].
Due to the transcriptomic complexity and fine-tune regulation at
both transcriptional and post-transcriptional levels, genetic variants
associated with gene expression could be comprehensively analyzed,
so as to maximize the understanding of cancer risk loci as regulators.

Protein-level QTL: At the translational level, many studies and
reviews reported the regulatory effects of cancer genetic variants
by transcription factors (TFs) focused on the difference of binding
affinity on genetic variants in trans regulation [15,43-45]. Several in
vitro and in vivo functional assays are developed to determine the
binding affinity difference at two alleles of a locus of interest, including
Electrophoretic Mobility Shift Assay (EMAS), gene reporter assays,
chromatin immune-precipitation followed by quantitative PCR
(ChIP-qPCR), and the rest [43,44,46,47]. Here one newly discovery of
the functional relationship of genetic variants with protein abundance,
termed as protein quantitative trait loci (pQTLs), was first reported
in the study of Wu et al. [48]. Interestingly, some pQTLs could not
be detected as eQTLs, providing a new layer for genetic variants in

molecular phenotypic regulation. Similarly, another study identified
that the SNP rs6834 was significantly correlated with DIDO1 protein
levels relevant for cancer chemotherapy [49]. Thus, combining
genomic and proteomic quantification data could be considered for
cancer risk variants.

Epigenetic regulation

Although several studies have manifested that cancers and other
diseases associated causal non-coding variants function as enhancer
or other cis-regulatory roles [50-52], how to establish the functional
interaction between cis-regulatory elements and gene regulation
becomes a critical issue. The latest studies have made some efforts on
the chromatin architecture scale.

Chromosome conformation capture (3C) and its derived
methods are the high-throughput molecular biology techniques used
to analyze the topology of chromosomal regions in viable cells [53].
With 3C technology, it is possible to identify the physically local or
distal interaction between regulatory elements and genetic variants.
For example, 3C followed by real-time PCR (3C-qPCR) has been
successfully utilized in determining whether the two pre-defined
genomic regions are physically interacted [6,33,43,54-56]. More
recently, the development of targeted 3C and relevant technologies
[57-60] further allow for a high-resolution survey of the whole
genome for potential interactions with multiple regions of interest
simultaneously. With these targeted chromosome architecture
technologies, several studies have found both intra-chromosomal and
inter-chromosomal physical interactions in high precision for cancer
genetic variants. For example, Jager et al. found a regulatory network
about the looping interactions between CCAT2, CCATI and MYC,
at 8924 risk locus associated with colorectal cancer [61]. Another
study also discovered the strongest long-range interaction was not at
intra-chromosomal locus 8q24 but at inter-chromosomal locus 3q13
associated with prostate cancer [57]. Therefore, for a given cancer risk
locus, it may function as a regulatory hub by physical interactions
with multiple genes important for carcinogenesis, implicating the
multiple-directional regulation probably exists at specific risk loci.

There are still some issues for current epigenomic assays to link the
chromosome-level DNA looping with cancer risk loci, because most
chromosome-capturing assays are carried out in well-established cell
lines. Due to the potential difference of genetic background between
cell lines and patient-derived tissues or cells, it will be attractive
to develop patient-derived cell/tissue system to characterize the
personalized chromatin interaction landscape for cancer genetic
studies. In addition, combining with single-cell based genomic and
epigenomic sequencing technologies [62-64], experiments on the
patient-derived ex vivo cells could provide a deeper knowledge about
the genetic and etiologic susceptibility of cancers.

Environmental factors

Besides the genetic and epigenetic implications for cancer risk
loci, a few studies reported other potential non-(epi)genetic factors in
association with cancer susceptibility, including gene-trait interaction
[65,66], gene-nutrition interaction [67,68], genetic-microbiome
interaction [69], as well as electronic medical record (EMR)-
based genetic integrative analysis [70].Taking one as an example,
Ramagopalan et al. [71] reported that the vitamin D receptor (VDR)
binding sites were significantly enriched near cancer and autoimmune
disease associated genes. Biochemical study demonstrated that the
chromatin remodeler JMJD3 was regulated by vitamin D in colon
cancer cells [72]. Clinical surveys also demonstrated that a higher
vitamin D level was significantly associated with a lower colorectal
cancer risk [73,74], suggesting that cancer risk variants could be also
implicated in the interaction with vitamins and other nutrients.

Conclusions and Prospects

In this review, the latest progression in the molecular phenotypes
for cancer risk variants at multiple levels is summarized. We expect
that these discussions will provide additional understanding of

Zhang. Int J Cancer Clin Res 2016, 3:054

ISSN: 2378-3419 e Page 2 0f4 e



cancer molecular genetics in post-GWAS functional characterization.
Undoubtedly, future advances in exploring the gene expression and
regulation will identify more molecular genetic evidences for cancer
susceptibility.
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