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whether genetic variants of interest are the causal potential. 
More recently, Ward et al. [14] and Edwards et al. [15] depicted a 
systematic flowchart for functional prediction of genetic variants by 
integrating publicly accessible functional genomic data, including 
expression quantitative trait loci (eQTLs), chromatin modification 
and states across diverse cell types and disease relevant tissues/cells, 
transcription factors binding motif. This short article will review the 
latest findings about functional implications of cancer genetic loci 
focusing on QTLs and epigenetic regulation, as well as the interactions 
of cancer-associated variants with environmental and nutritional 
factors. The summary might help to comprehensively understand the 
cancer pathogenesis, and provide an additional direction for future 
cancer genetic studies.

Quantitative Trait Loci

DNA methylation QTL: Numerous studies have revealed a 
common profile of a global DNA hypomethylation and local DNA 
hypermethylation associated with tumorigenesis [16-19], which 
provides a clue to determine the functional feature of identified 
common and rare genetic variants associated with cancer risk. A 
growing attention has focused on the correlation between cancer-
risk variants and DNA methylation levels, a definition referring 
to as the methylation quantitative trait loci (meQTL) [20,21]. 
Heyn et al. first conducted [22] a comprehensive meQTL analyses 
via integrating genome-wide DNA methylation profiles with 109 
GWAS-SNPs in 13 solid cancer types. They found 23 cis-meQTLs, 
accounting for approximately one-quarter of interrogated cancer 
risk polymorphisms. Several other studies also found several 
cancer-associated meQTLs in lung cancer [17], prostate cancer 
[23], myeloma [24], etc. Thus, screening the genomic variants and 
epigenomic modifications at high resolution could elucidate a direct 
functional implication of the underlying genetic genotypes associated 
with DNA methylation at specific sites.

The Infinium Human Methylation 450 and Human Methylation 
27 Bead Chips [22-25] are two popular platforms to measure DNA 
methylation profiles [26]. At present, the measurement of DNA 
methylation levels for meQTL analyses also largely depend on these 
platforms. Nonetheless, a large proportion of human genomic CpG 
sites are still uncovered in the design of DNA methylation chips in 
current microarray-based meQTL studies. It causes that the meQTLs 
accounting for cancer risk variants are far less discovered. So it is 
possible to conduct fine-scale mapping of meQTLs associated with 
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Introduction
Recent advances in genome-wide association studies (GWASs) 

and fine-mapping analyses have yielded a plethora of common and 
rare loci associated with diverse cancers and other complex diseases 
[1-3]. These different penetrant risk loci together substantially unveil 
the heritable fraction of diseases [4]. Due to the majority of cancer 
risk variants reside in intronic or intergenic regions of unknown 
function, how to effectively understand their molecular mechanisms 
has become a challenging but critical question in post-GWAS 
research [5]. Several pioneering studies have revealed some promising 
molecular evidences at both transcriptional and regulatory levels for 
cancer genetic variants [6,7], and the contributions are continuously 
underway, especially in the area of gene expression and regulation.

Thanks to the development of diverse of high-throughput 
technologies, particularly next-generation sequencing (NGS) 
technologies, genome-scale large data sets — including genomic, 
epigenomic, transcriptomic and proteomic information, are 
now freely accessible from large collaborative projects, including 
Encyclopedia of DNA Elements (ENCODE) [8,9], NIH Epigenomics 
Roadmap [10], The Cancer Genome Atlas (TCGA) [11], Genotype-
Tissue Expression (GTEx) [12]. Concomitantly, an integrative 
genomic approach [13] has increasingly adopted to interrogate 
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cancer risk by employing genome-wide bisulfite sequencing or 
targeted bisulfite-sequencing technologies [27,28] in single CpG site 
resolution.

Apart from methylation on cytosine (5-mC) at CpG sites, recent 
studies have discovered several newtypes of DNA modifications [29-
32], including 5-Hydroxymethylcytosine (5-hmC), 5-formylcytosine 
(5-fC), 5-carboxylcytosine (5-caC), andN6-adenine methylation (N6-
methyladenine, 6mA). QTL analysis with these DNA modifications 
may help to reveal novel molecular phenotypes for genetic effects on 
cancer risk.

Expression QTL: Expression QTL analysis has been widely used 
to detect the regulatory feature of genetic variants that influence 
the expression level of genes in cis and trans [15]. Recent works did 
more deep exploration in the study of expression QTLs for cancer-
associated genetic variants. One of the most powerful approaches 
to perform eQTL analyses in cancer genetic studies is the Li et al. 
developed method [33], which directly works through the TCGA 
data sets. The method did a residual linear regression test with 
tumor gene expression adjusted by somatic copy-number alternation 
and CpG methylation. This method shows considerably robust in 
functional annotation of cancer-associated variants. For example, 
Cai et al. applied this model to examine eQTLs for novel discovered 
breast cancer risk variants [34]. Based on this model, Wong et al. 
also identified thousands of expression-associated somatic single 
nucleotide variants (eSNVs) in endometrial cancer [35].

It should be also noted that the non-coding RNAs, including 
long non-coding RNAs (lncRNAs), piRNAs, endogenous siRNAs, 
snoRNAs, have been reported to show aberrant expression in tumors 
[36-38]. However, there are still less findings about whether cancer-
associated genetic variants could functionally control the expression 
of the non-coding RNAs. Studies in other diseases or human traits 
have implicated the relationship between the expression of lncRNAs 
and genetic variants. In the study of Kumar et al. [39], they found 
that the majority of lncRNAs-eQTLs were specific to lncRNA alone 
and did not affect the expression of neighboring protein-coding genes 
in blood. Brown et al. proposed that the most promising molecular 
phenotype for genetic risk variants is cancer-relevant tissue or cell 
type specific eQTLs [40]. Due to high tissue-restricted expression 
pattern for most lncRNAs, exploring the lncRNA-eQTL association 
for cancer risk loci could be conducted to understand the specificity of 
cancer-associated genetic variants. In Addition, relative to genetically 
steady eQTLs, some eQTLs are probably inducible [41], another 
missing layer involved in disease predisposition.

Transcriptional regulation by genetic variants is involved in allelic 
imbalance. The allelic specificity on gene expression is a phenomenon 
where two alleles for heterozygous SNPs show significantly biased 
expression [42]. Recent studies have showed the allelic biased 
expression for cancer risk loci. For example, two breast cancer risk loci 
(rs2046210 at 6q25 and rs418269 at 8q24) are significantly associated 
with allelic specific expression of ESR1 and MYC, respectively [33]. 
Due to the transcriptomic complexity and fine-tune regulation at 
both transcriptional and post-transcriptional levels, genetic variants 
associated with gene expression could be comprehensively analyzed, 
so as to maximize the understanding of cancer risk loci as regulators.

Protein-level QTL: At the translational level, many studies and 
reviews reported the regulatory effects of cancer genetic variants 
by transcription factors (TFs) focused on the difference of binding 
affinity on genetic variants in trans regulation [15,43-45]. Several in 
vitro and in vivo functional assays are developed to determine the 
binding affinity difference at two alleles of a locus of interest, including 
Electrophoretic Mobility Shift Assay (EMAS), gene reporter assays, 
chromatin immune-precipitation followed by quantitative PCR 
(ChIP-qPCR), and the rest [43,44,46,47]. Here one newly discovery of 
the functional relationship of genetic variants with protein abundance, 
termed as protein quantitative trait loci (pQTLs), was first reported 
in the study of Wu et al. [48]. Interestingly, some pQTLs could not 
be detected as eQTLs, providing a new layer for genetic variants in 

molecular phenotypic regulation. Similarly, another study identified 
that the SNP rs6834 was significantly correlated with DIDO1 protein 
levels relevant for cancer chemotherapy [49]. Thus, combining 
genomic and proteomic quantification data could be considered for 
cancer risk variants.

Epigenetic regulation

Although several studies have manifested that cancers and other 
diseases associated causal non-coding variants function as enhancer 
or other cis-regulatory roles [50-52], how to establish the functional 
interaction between cis-regulatory elements and gene regulation 
becomes a critical issue. The latest studies have made some efforts on 
the chromatin architecture scale.

Chromosome conformation capture (3C) and its derived 
methods are the high-throughput molecular biology techniques used 
to analyze the topology of chromosomal regions in viable cells [53]. 
With 3C technology, it is possible to identify the physically local or 
distal interaction between regulatory elements and genetic variants. 
For example, 3C followed by real-time PCR (3C-qPCR) has been 
successfully utilized in determining whether the two pre-defined 
genomic regions are physically interacted [6,33,43,54-56]. More 
recently, the development of targeted 3C and relevant technologies 
[57-60] further allow for a high-resolution survey of the whole 
genome for potential interactions with multiple regions of interest 
simultaneously. With these targeted chromosome architecture 
technologies, several studies have found both intra-chromosomal and 
inter-chromosomal physical interactions in high precision for cancer 
genetic variants. For example, Jager et al. found a regulatory network 
about the looping interactions between ​CCAT2, ​CCAT1 and ​MYC, 
at 8q24 risk locus associated with colorectal cancer [61]. Another 
study also discovered the strongest long-range interaction was not at 
intra-chromosomal locus 8q24 but at inter-chromosomal locus 3q13 
associated with prostate cancer [57]. Therefore, for a given cancer risk 
locus, it may function as a regulatory hub by physical interactions 
with multiple genes important for carcinogenesis, implicating the 
multiple-directional regulation probably exists at specific risk loci.

There are still some issues for current epigenomic assays to link the 
chromosome-level DNA looping with cancer risk loci, because most 
chromosome-capturing assays are carried out in well-established cell 
lines. Due to the potential difference of genetic background between 
cell lines and patient-derived tissues or cells, it will be attractive 
to develop patient-derived cell/tissue system to characterize the 
personalized chromatin interaction landscape for cancer genetic 
studies. In addition, combining with single-cell based genomic and 
epigenomic sequencing technologies [62-64], experiments on the 
patient-derived ex vivo cells could provide a deeper knowledge about 
the genetic and etiologic susceptibility of cancers.

Environmental factors

Besides the genetic and epigenetic implications for cancer risk 
loci, a few studies reported other potential non-(epi)genetic factors in 
association with cancer susceptibility, including gene-trait interaction 
[65,66], gene-nutrition interaction [67,68], genetic-microbiome 
interaction [69], as well as electronic medical record (EMR)-
based genetic integrative analysis [70].Taking one as an example, 
Ramagopalan et al. [71] reported that the vitamin D receptor (VDR) 
binding sites were significantly enriched near cancer and autoimmune 
disease associated genes. Biochemical study demonstrated that the 
chromatin remodeler JMJD3 was regulated by vitamin D in colon 
cancer cells [72]. Clinical surveys also demonstrated that a higher 
vitamin D level was significantly associated with a lower colorectal 
cancer risk [73,74], suggesting that cancer risk variants could be also 
implicated in the interaction with vitamins and other nutrients.

Conclusions and Prospects
In this review, the latest progression in the molecular phenotypes 

for cancer risk variants at multiple levels is summarized. We expect 
that these discussions will provide additional understanding of 
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cancer molecular genetics in post-GWAS functional characterization. 
Undoubtedly, future advances in exploring the gene expression and 
regulation will identify more molecular genetic evidences for cancer 
susceptibility.
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