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Abstract
AMD3100 (Plerixafor), a specific antagonist of CXCR4, 
is the most potent small molecule non-peptide inhibitor to 
CXCR4/CXCL12 axis. The chemokine receptor CXCR4 
and its ligand CXCL12 (SDF-1) expressed in a variety of 
tumor cells play an important role in regulating tumor bio-
logical behavior. The tumor microenvironment (TME) is the 
environment around a tumor, comprising blood vessels, 
immune cells, fibroblasts, signaling molecules and the ex-
tracellular matrix which are involved in tumor growth, inva-
sion, metastasis, immune escape and tumor eradication. 
Although AMD3100 has been intensively investigated in tu-
mor biology, it remains unclear how this treatment regimen 
modulates immune cells in the TME, which in turn affects 
the antitumor efficacy of other therapies. In this review, we 
specifically revisit the evidence from our and others’ studies 
that AMD3100 acts as an immunomodulator to regulate im-
mune responses in the TME and provide the perspective 
of synergy of AMD3100 with other therapeutics to prevent 
tumor development, progression, and metastasis.
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suggests that the interaction between tumor and stro-
mal cells is an integral part of the development and 
progression of tumors. The tumor microenvironment 
(TME) is best conceptualized as the composition of a 
variety of cells, such as noncancerous fibroblasts, adi-
pocytes, immune and vascular cells, as well as signaling 
molecules and mediators [3-5].

It is gradually recognized that chemokines and their 
receptors are key communication bridges between 
tumor cells and stromal cells, creating a favorable mi-
croenvironment for tumor growth and metastasis. 
Chemokine 12 (chemokine 12, CXCL12), also known 
as stromal cell-derived factor-1 (SDF-1), is commonly 
expressed in many normal tissue cells and cancer cells 
[6]. In adult individuals, CXCL12 is involved in different 
physiological and pathological processes: Maintain-
ing tissue balance; participating in the survival and re-
cruitment of immune cells; and promoting the invasion 
and migration of certain tumor cells [7,8]. CXCR4 is a 
seven-pass transmembrane G protein-coupled receptor 
that is highly expressed in a variety of cells and certain 
tumor cells (such as breast, lung, and prostate cancer) 
and is associated with early metastasis and poor prog-
nosis [9-11]. Tumor cells with high expression of CXCR4 
bind CXCL12-expressing stromal cells and thus promote 
migration and invasion of tumors [7]. Activation of the 
CXCL12/CXCR4 axis promotes tumor cell proliferation, 

Introduction
Cancer is one of the leading causes of morbidity and 

mortality worldwide [1]. The high mortality rate of can-
cer is mainly related to tumor recurrence, metastasis 
and lack of effective treatment [2]. Increasing evidence 
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invasion, distant metastasis and inhibits various signal-
ing pathways of apoptosis [12]. Therefore, the CXCL12/
CXCR4 signaling pathway has become a very promising 
target for tumor therapy [13,14]. AMD3100, an antago-
nist of CXCR4, blocks the signaling of CXCR4 after binding 
to CXCR4, although cross-reactive to other chemokine 
receptors as previously reported [15], and thus play an 
important role in inhibition of tumor growth and metas-
tasis. Emerging evidence demonstrates that the accu-
mulation of immunosuppressive cells in the TME greatly 
reduce antitumor efficacy of the treatment, making it 
one of the major obstacles to cancer immunotherapy 
[16,17]. Immune cells are involved in different periods 
of tumor progression. In the initial stages of tumor de-
velopment, macrophages directly kill tumor cells to pro-
mote antitumor responses and indirectly recruit and ac-
tivate strong infiltration of other immune cells [18]. An 
intense infiltration of CD8+ T cells is usually associated 
with a good prognosis [19]. The presence of M2-polar-
ized macrophages is widely recognized as a marker of 
poor prognosis [20,21]. Therefore, an important cancer 
treatment strategy is to regroup and redirect immune 
responses in the TME for a long-term elimination of tu-
mor cells [2,22,23]. In this review, we focus on the regu-
lation of immune cells by AMD3100 in the TME and de-
tail four types of immune cells: CD8+ T cells, regulatory 
T cells (Tregs), tumor-associated macrophages (TAMs), 
and myeloid-derived suppressor cells (MDSCs).

Effects of AMD3100 on immune cells in the TME
The occurrence and development of tumors are in-

separable from the TME. AMD3100 not only directly 
targets the CXCR4/CXCL12 axis to inhibit tumor growth 

and metastasis but also acts as a potent immunomodu-
lator to enhance antitumor immune responses and pre-
vent the development of a multi-faceted immunosup-
pressive intratumoral microenvironment (Figure 1).

CD8+ T cells: In the TME, CD8+ T cells play an impor-
tant role in antitumor immunity. CD8+ T cells differen-
tiate into cytotoxic T cells (CTLs) and exhibit cytotoxicity 
against tumor cells. Terminally differentiated effector 
CD8+ T cells are IL-2 dependent and highly cytotoxic [24]. 
The overall survival rate of high-grade gliomas (HGG) 
was associated with the changes of tumor-infiltrating 
CD8+ T cells during treatment. AMD3100 in combination 
with bevacizumab resulted in a significant increase of 
CD8+ T cells [25]. In a pancreatic ductal adenocarcinoma 
(PDA) model, AMD3100 induced rapid accumulation of 
T cells in tumors and synergized with αPD-L1 to produce 
a significant reduction of tumors [26]. In addition, Zeng 
Y, et al. found that combination therapy with AMD3100 
and αPD-1 further increased the infiltration of CD8+ T 
cells in ovarian tumors compared to αPD-1 monothe-
rapy [27]. Some evidence suggests that AMD3100 incre-
ases the proportion of CD8+ memory T cells and enhan-
ces antitumor activity [27,28]. Furthermore, AMD3100 
monotherapy and AMD3100-VIC-008 combination the-
rapy inhibited PD-1 expression on CD8+ T cells in sple-
ens, lymph nodes, and tumors of a mouse model of 
mesothelioma [29]. AMD3100, when combined with 
other therapies, significantly enhanced the expression 
of IFN-γ, TNF-α or IL-2 in CD8+ T cells [27,30].

Regulatory T cells: Regulatory T cells (Tregs) are im-
munosuppressive cells in lymphoid immune cells that 
interfere with antigen presentation by tumor cells and 

         

Figure 1: The tumor microenvironment (TME) was altered after treatment with AMD3100. It increased the proportion of 
CD8+ T cells and CD8+ memory T cells and promoted the conversion of Tregs into T helper-like cells in tumors. When used 
in combination with other therapies, AMD3100 enhanced the production of IFN-γ, TNF- α, or IL-2 in CD8+ T cells. The 
combination treatments also facilitated the polarization of M2 macrophages into M1, decreased the proportion of MDSCs or 
reduced the production of the immunosuppressive cytokines, such as IL-10 and IL-6.
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sing MDSCs in K7M2 osteosarcoma tumors [40]. The 
combined treatment with AMD3100 and αPD-1 signifi-
cantly decreased the proportion of MDSCs and reduced 
the production of immunosuppressive cytokines IL-10 
and IL-6, which might decrease the immunosuppressive 
effect [27]. Transmembrane TNF-α promotes the recru-
itment of MDSCs to tumor tissues by up-regulating the 
expression of CXCR4, but this can be partially blocked 
by treatment with the CXCR4 inhibitor AMD3100 [38]. 
The infiltration of MDSCs into the metastatic liver tu-
mors may be mediated by up-regulating the expression 
of CXCR4, and AMD3100 blocks the interaction of tumor 
and stromal cells in the metastatic cascade to the liver 
[41]. Estrogen plays an important role in the occurren-
ce, metastasis and drug resistance of estrogen receptor 
(ER) positive breast cancer. Ouyang L, et al. reported 
that after treatment with estrogen high levels of SDF-
1α and tumor-infiltrating MDSCs were detected while 
blockade of the SDF-1/CXCR4 axis with AMD3100 neu-
tralized the effect of estrogen on tumorigenesis [42].

Perspective
The application of AMD3100 in cancer treat-

ment has not been well characterized, particularly in 
AMD3100-mediated immune modulation. While ef-
fector T cells execute antitumor activities and elimina-
te tumor cells, immunosuppressive cells participate in 
tumor immune escape through various mechanisms. 
In-depth study of immune cells in the TME can provide 
useful diagnosis, prediction and prognostic information. 
The research of AMD3100 on the regulation of immu-
ne cells has profound significance and lays a solid foun-
dation for future research and treatment, highlighting 
AMD3100 working synergistically with other therapeu-
tics to enhance the antitumor efficacy.
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