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Physics Literature [7].

Theory
The “Toy Model” we propose to explicate this effect 

is the following.

We envision a spin system, transformed to the so 
called Tilted Doubly Rotating Frame (TDRF [8]). In this 
frame there will be defined a so-called “effective field.” 
We can write down an effective Hamiltonian for the ap-
plied RF of the following form:

1[ ] [ ] [ ]RF
x zH t I t I tω ω= + ∆            [1]

For the exposition here we consider the Sin/Cos 
pulse, defined as:

1 1 1[ ] Sin[ ]M Mt tω ω ω=          [2a]

1 1[ ] Cos[ ]M Mt tω ω ω∆ =          [2b]

Where 1
Mω  is a constant (See for example the rele-

vant papers of the Garwood Group [9-11].

In the TDRF the effective field can be seen from geo-
metric arguments to be defined as:

1

2 2[ ] [ ] [ ]eff t t tω ω ω= + ∆            [3]

Substituting Eq [2a,b] into Eq[3], one easily appreci-
ates that 1[ ] M

eff tω ω= . So that as required for our argu-
ment the effective field defined as:

1[ ]
M

eff
particle

B t ω
γ

=              [4]

Where particleγ  is the particle gyromagnetic ratio.

Now we consider a Molecular Species in solution 
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Abstract
The effect of the applied RF field in an NMR experiment 
on the magnitude of the Spectral Density for a Dipolar 
Relaxation Mechanism is demonstrated theoretically. 
The effect is shown with Sin Cos Pulse as a concrete 
example. The order of magnitude of the magnetic mo-
ment where these effects will be significant for typical Rf 
amplitude values is derived. The effect may be of utility in 
providing an alternate method of control for MRI Tissue 
Contrast applications with further development. 

Introduction
In contemporary NMR methodologies, it is com-

mon to find experimental scenarios where the re-
laxation of the magnetization during a pulse train is 
important to be able to model and quantify [1-3]. In 
this note we suggest that for some molecular species 
the Rotational Diffusion can be affected and modi-
fied by the Magnetic Field Torque of the applied ra-
dio-frequency pulse. During the course of working on 
this concept, it has come to our attention that the 
Russian investigator Sitnitsky [4] has investigated this 
phenomenon.

This proposed influence may be important in some 
models for explaining experimental data, such as for 
Liquid Crystals [5]. We demonstrate the derivation of 
this effect on the spectral densities following the classic 
treatment of Abragam [6] and gives some ranges of pa-
rameters where this effect may be of importance.

We note that the proposed effects may be useful 
as another avenue to control the spin dynamics of an 
experimental system while the pulse is on. Also, the 
proposed effects have been dealt with rigorously in the 
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tion we have found to program for demonstration of 
our methods.

Please see Appendix I for a detailed definition of the 
terms in the series expression for the PDF.

The PDF can be taken to be the approximate solution 
of the following partial differential Equation using our 
expression for the Potential Energy Term [4].

2
, , 2

2

[ , , ] [ , , ][ , , , ] (2 [ ]) [ , , , ]( [ ] )i u i ui u
R u R i u u R u

w x x K t w x x K tw x x K t K C x w x x K t K C x K
t x x

τ τ τ
∂ ∂∂

= − + + +
∂ ∂ ∂

           
[10a]

1

1
1 1

[ ] Cos[ ]( ) [ | |]
Cos[ ]

bC x dx k x x x Exp x x
k x

λ
−

′ ′ ′ ′= − − −∫    [10b] 

Here b is a constant defined in (4).

In Eq [10] x is defined to be as Cos[ ]θ  where uK  
measure as defined previously the interaction between 
the Moment and the RF field with the definition:

0
u

B

KK
k T

=            [11]

We can use the definition of the PDF to compute the 
Correlation Function as In Eq [9] and then compute the 
corresponding Spectral Density as:

0

[ , , , ] [ , , ] [ ]
t

u p p u p p pJ K t m G t K m Exp i t dtω ω= ∫        [12]

In Figure 1 we show the dependence of the Spectral 
Density as given in Eq [12], for the case mp = 0. 

with a defined dipole moment particleµ .

In a constant field effB , there is a potential energy 
of interaction [12] between the moment and the field 
defined as: 

[ ] Cos[ ]particle
effU Bθ µ θ= −            [5]

Here the angle θ  is defined as the angle between 
the vectoral directions of the dipole moment and the 
constant field.

We change to the convenient notation:

0
particle

effK Bµ=           [6a]

So that:

0[ ] Cos[ ]U Kϑ ϑ= −          [6b]

Knowing the geometry between the effective field 
and the magnetic moment in the TDRF, it is Seen that 
the angle ϑ  is defined as:

1[ ][ ] Tan[ ]
[ ]
tt Arc
t

ωϑ
ω

=
∆

           [7]

Using Eq [2a,b] in Eq [7] we see that:

1[ ] Mt tϑ ω=              [8]

Suppose we take the Nuclear Species of Interest 
to be in a molecule that we model and approximate 
as a sphere. We assume that the Rotational Brown-
ian Motion can be represented as a series of small in-
cremental rotations. We seek to find the Correlation 
Function which characterizes the rotational diffusion. 
As treated, in for example Abragam Chapter VIII or 
other places in the literature [13,14] we can define 
the Correlation Function in terms of the spatial part 
of the Dipolar Interaction Hamiltonian. If we adopt 
the notation of Abragam, we can define the Correla-
tion Function as:

[ , , ] [ ,0, ] [ ,0, ] [ , , , ]Sin[ ] Sin[ ]
p

u p p p p p p pG t K m F m F m W Ku t d d
ϑ ϑ

θ θ θ θ θ θ θ θ∗

Γ Γ
= ∫∫

              [9]

Where we set and consider the case where pm  is 
zero.

So, to carry out this program we need to an expres-
sion for the Probability Density Function.

This PDF will be a solution of the so-called Smo-
luchowski Equation (SE), where the effects of the ap-
plied RF Torque will be included. As one can infer there 
are numerous assumptions one can apply to the for-
mulation of the SE. The solution in general, (see for ex-
ample the classic papers of Coffey’s group [12] are not 
totally trivial, usually the derivation of series solutions 
which involve the solution of iterative expressions for 
the expansion coefficients, or continued fraction solu-
tions.

We have chosen to present and use the solution of 
Sitnitsky [4] which is the most easily implemented solu-
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Figure 1: Dependence of Spectral Density on the Ku pa-
rameter. (See text for definition of Ku).
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Figure 2: Plot of Probability Density Function Theta.
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As can be seen there is found to be an appreciable 
dependence of the Spectral Density on the parameter 

uK  This is taken to indicate that the RF Field, with a 
range of values which will be discussed below, can affect 
the Spectral Density which is used to compute relax-
ation functions [6,13-15]. So that the RF field, through 
interaction on the Rotational Brownian Motion, can in-
fluence the values of the calculated relaxation functions 
during a pulse sequence.

To the knowledge of the author, this possibility has 
not been fully appreciated in the NMR literature.

Discussion
The reader may wonder what is a lower bound on 

the magnetic moment of the particle of Interest for a 
typical value of the pulse amplitude.

In the Garwood papers [9-11], the pulse amplitude 
is typically on the order of 33.610  Hz. Then we reason 
that the interaction energy of the magnetic moment 
with the field in the TDRF should be greater than the 
thermal energy of the surrounding liquid medium.

So, we propose:

1uK 

particle
eff Bu B k T

Or
particle B

eff

k Tu
B



We note that the units of a magnetic moment can be 
seen in CGS units to be 

ergs
Gauss

.

So, at room temperature in CGS units, Bk T  is on the 
order of 1410 ergs−  

effB , is typically on the order of 410−  Gauss.

1010particle ergsu
Gauss

−


Practical lower bound on the magnetic moment of 
the particle for an effect of the RF field on the Rotational 
Brownian Motion of the particle and consequently on 
the Spectral Density for a dipolar relaxation mechanism.
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Appendix I:
The following is the series definition of the Probability Density Function used in the text (see 4), (Figure 2).

2Cos[ ]Sin[ Cos[ ]]
2

1[1 Sin[2 ]]
2

i
n i

n

n
n

q
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q
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