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Introduction 
Acute myeloblastic leukemia (AML) is characterized by the 

accumulation of immature myeloid cells, which lose their ability 
to differentiate into normal mature cells. The initial observations 
of the possibility of treatment with agents which induce terminal 
differentiation of myeloid leukemic cells were made by Leo Sachs 
and co-workers for more than 4 decades ago [1]. Although, several 
compounds which can induce differentiation of myeloid leukemic 
cells have been shown in vitro, only the retinoic acid, a derivative of 
Vitamin A, was transformed into a clinical benefit for patients with 
acute promyelocytic leukemia (APL). Since 1991, when all-trans 
retinoic acid (ATRA) became available on the market for clinical use, 
number of studies have shown that addition of ATRA to conventional 
chemotherapy has changed the poor outcome of patients with APL 
[2,3]. For a long period of time, the use of agents which can induce 

terminal differentiation of leukemic cells has also been considered as 
an important approach for the treatment of AML patients other than 
non- APL.

Glucocorticoid-induced Differentiation and/or Apop-
tosis of Myeloid Leukemic Cells in vitro

Since mid 1970s, a number of experimental studies have shown 
that dexamethasone (Dex) and prednisolone are the most potent 
agents for the induction of differentiation of mouse myeloid leukemic 
cells into macrophages and granulocytes [4-6]. Furthermore, high-
concentration of Dex has shown to complete arrest of mouse myeloid 
leukemic cell proliferation and also prolonged the survival of mice 
inoculated with sensitive M1 cells [7]. The effects of glucocorticoids 
(GCs) on human myeloid leukemic cells (HL-60) have been studied 
in vitro, in the early 1980s [8,9]. In further studies, differentiation 
and/or apoptosis inducing effects of Dex or metylprednisolone (MP) 
on different subtypes of primary AML cells [10-12], and on human 
myeloid leukemia cell lines (HL-60, U937, K-562, HIMeg and t(8;21) 
–positive Kasumi-1 and Skno-1 cells) have been shown in a dose-
dependent manner [13-18]. Various effects of GCs on mouse and 
human myeloid leukemic cells were reviewed in detail previously 
[19-20].

Short-course High-dose Methylprednisolone Treat-
ment Induces Differentiation and Apoptosis of My-
eloid Leukemic Cells in vivo

We first observed remarkable antileukemic effects of GC in 
1987, in two AML children who had received high-dose MP ( 
HDMP, 20-30 mg/kg/day) for the treatment of severe respiratory 
symptoms due to pulmonary eosinophilic infiltration. Subsequently, 
HDMP alone has shown effective in the treatment of a patient 
with AML-M4 who did not respond to chemotherapy and also in 
relapsed children with AML-M1 and AML-M2 [21]. Sugawara et 
al have also reported a complete remission in a 17-year-old male 
who was resistant to chemotherapy by using MP at a dose of 20 
mg/kg/day combined with granulocyte colony-stimulating factor 
[22]. In addition, Shimohakamada et al  reported morphologic and 
cytogenetic remission in an adult patient with t(8;21)-positive AML 
and pneumonia, who was treated with HDMP alone [23].

 Based on the experimental studies with mice, morphologic 

Abstract
Differentiation therapy with all-trans retinoic acid significantly 
improved the outcome of patients with acute promyelocytic 
leukemia (APL). Therefore, researchers are still exploring the 
possibility of differentiation therapy for patients with acute 
myeloblastic leukemia (AML) other than APL. On the other hand, 
based on in vitro experiments on induction of differentiation of 
mouse myeloid leukemic cells with certain steroid hormones, 
we have demonstrated that short-course (3 to 7 days) high-
dose methylprednisolone (HDMP) treatment can induce terminal 
differentiation of leukemic cells in children with APL and in other 
subtypes of AML (AML-M1, AML-M2, AML-M4 and AML-M7). 
HDMP treatment has also been shown to induce apoptosis of 
myeloid leukemic cells in vivo and in vitro. The addition of HDMP 
to chemotherapy increased the complete remission rate to 89% 
and prolonged the duration of remission in newly diagnosed 
children with AML and improved the outcome of patients who had 
myeloid tumor. In conclusion, future studies with HDMP as an initial 
treatment combined with chemotherapy could provide important 
benefits for further improvements in the outcome of patients with 
AML and possibly, in patients with some other malignancies. 

Keywords 

High-dose methylprednisolone, Differentiation, Apoptosis, Acute 
myeloblastic leukemia, Myeloid tumor, Myeloid-derived suppressor 
cells, Glucocorticoids

https://doi.org/10.23937/2469-570X/1410033
https://doi.org/10.23937/2469-570X/1410033
https://doi.org/10.23937/2469-570X/1410033


• Page 2 of 4 •Hiçsönmez G, Int J Stem Cell Res Ther 2015, 3:033

DOI: 10.23937/2469-570X/1410033 ISSN: 2469-570X

evidence of in vivo differentiation of myeloid leukemic cells to mature 
granulocytes has been shown in a case with AML-M4 treated with 
HDMP alone in 1991 [24]. In our further studies, short-course (3 
to7 days) after HDMP treatment, in addition to marked decrease in 
blast cells in both peripheral blood (PB) and bone marrow (BM) , 
morphologic and cell surface antigen changes by flow cytometric 
analysis associated with induction of differentiation of leukemic cells 
to granulocytes have been shown in children with different subtypes 
of AML (AML-M1, AML-M2, AML-M3, AML- M4 and AML-M7) 
[25-27]. Interestingly, platelet producing micromegakaryocyte-like 
cells were also detected after 6 hours incubation of BM cells obtained 
from a case with AML-M7 with high-concentration of MP (10-6 M) 
[11]. Furthermore, in preclinical study, MP-induced differentiation 
of AML cells (Kasumi-1) with t(8;21) translocation has also been 
reported in a dose-dependent manner by Corsello et al [17]. 

Moreover, they have demonstrated that treatment of Kasumi-1 
and primary patient AML cells with MP revealed a dramatic decrease 
of AML1-ETO protein in a proteasome and GC receptor-dependent 
manner.

HDMP treatment has also been shown to induce apoptosis of 
myeloid leukemic cells in vivo and in vitro [28,11]. Short-period after 
HDMP treatment alone, the characteristic morphology of various 
stages of apoptosis in BM cells were detected by light and electron 
microscopic studies in a case with AML-M3 and AML-M4 in whom 
terminal differentiation of leukemic cells was also detected [28]. 

Interestingly, in addition to rapid resolution of pleural effusion 
due to infiltration of malignant cells in children with chronic 
myelomonocytic leukemia, examination of pleural effusion 24 and 48 
hours after HDMP treatment revealed maturation of leukemic cells 
and numerous apoptotic cells with marked increase in cells expressing 
the CD95 antigen [29]. These results might indicate the possible 
role of HDMP treatment in inducing differentiation and apoptosis 
of myeloid leukemic cells also at extramedullary site. Remarkable 
reduction of PB blast cells associated with the apperance of apoptotic 
cells in PB, 6 hours after MP (20 mg/kg/day) treatment has also been 
reported in elderly patients with AML secondary to myelodysplastic 
syndrome (MDS) by Suzuki et al [30]. Furthermore, treatment with 
MP has been shown to induce a dose-dependent increase in apoptosis 
of Kasumi-1 cells and decreased the apoptosis suppressing Bcl-2 
protein level [17].

Following the administration of short-course (4 to 7 days) HDMP 
(20-30 mg/kg at a single dose, orally, not exceeding 1 g/day) treatment, 
dramatic clinical improvements and marked decrease in PB and BM 
blasts were noted in children with AML. Marrow blasts decreased 
below 5% in 12(32%) out of 37 patients evaluated. Addition of short-
course HDMP to chemotherapy increased the remission rate to 87% 
(n = 23) and 89% (n = 45) in newly diagnosed children with AML 
who had no extramedullary infiltration (EMI) and improved the 
outcome of the patients. 5-year disease-free survival rate was 44% and 
36% respectively [31]. More importantly, administration of HDMP as 
a single agent resulted in remarkable decrease in the size of EMI and 
myeloid tumors in children with different subtypes of AML and MDS 
as well [31-33]. After HDMP treatment, dramatic improvements 
of myeloid tumors (orbital, spinal and abdominal) in children with 
AML-M2 and t(8;21) in an unexpectedly short period of time were 
also reported by others [34-36]. HDMP as an initial treatment 
combined with chemotherapy also improved the outcome of these 
children with the exception of patients who presented with gingival 
infiltration. Therapeutic role of short-course HDMP in patients who 
presented with EMI or myeloid tumor has been reviewed previously 
[31,37]. 

During our clinical study, short-course HDMP treatment was 
well tolerated without significant side effects and no life threatening 
events have occured [31]. However, in 25% of the 53 AML children 
evaluated, white blood cell count increased starting 24 hours and 3 
days after administration of HDMP treatment, while PB blast cells 
have decreased significantly. The increase in leukocyte count was well 
controlled by the administration of cytotoxic drugs.

Unlike with cytotoxic agents, short-course (4 to 7 days) 
HDMP treatment has also an important role for the early recovery 
of chemotherapy-induced leukopenia by affecting on some 
hematopoietic regulatory cytokines and stimulating CD34-positive 
progenitor cells [38-40]. Pretreatment with short- course HDMP, 
before consolidation therapy, reduced the duration and severity of 
neutropenia in AML children [41]. Furthermore, HDMP treatment 
during induction therapy, resulted in rapid increase in PB T4+, T8+ 
and natural killer cells possibly by the stimulation of CD34+ cells 
which may contribute to antileukemic effects [42]. It has also been 
reported that pharmacological concentration of MP can induce rapid 
in vitro differentiation of CD34+ hematopoietic precursors to NK 
cells [43]. 

The use of agents that induce differentiation and/or apoptosis 
has also been considered as a potential therapeutic approach for the 
cancer patients. Several in vitro studies have shown antiproliferative 
effect of GCs, some were associated with findings of apoptosis or 
morphological changes in the human cancer (glioma, lung, ovarian, 
breast, chondrosarcoma, osteosarcoma, melanoma) cell lines [44-
49]. In addition Dex has been shown in vivo to inhibit tumor growth 
significantly in murine osteosarcomas dose-dependently [50]. More 
recently, several researchers have indicated the important role of 
the eradication of myeloid-derived suppressor cells (MDSCs) in 
the treatment of cancer patients [51,52]. MDSCs are heterogenous 
immature myeloid cells which arise from BM progenitor cells at 
different stages of differentiation that can suppress T cell responses 
and support tumor invasion and metastasis. The use of short-course 
HDMP treatment might also provide the elimination of MDSCs 
by inducing apoptosis and/or differentiation of these cells into 
mature non-suppressive cells in patients with cancer. Interestingly, 
Dex treatment has shown in vivo inhibition of the mouse tumor 
(melanoma) growth and lung metastasis by the alteration of BM 
derived CD11b+ myeloid cells [53].

 Although, the factors involved in the mechanisms of MP effects 
at high-doses in inducing differentiation and apoptosis of myeloid 
leukemic cells are not well known, it may function via genomic and/or 
non-genomic pathways which initiate a variaty of signaling cascades 
and is effective through complex mechanisms to target several 
antileukemic pathways. In a few number of preclinical studies, it was 
demonstrated that MP at high-doses dramatically reduced AML1-
ETO and Bcl-2 protein levels in t(8;21)-positive myeloid leukemic 
cells [17]. It was also reported that in leukemic cell lines (HL-60 
and K-562), serine/threonine protein phosphatases and JAK/STAT 
pathways play an important role in the signaling pathways that induce 
differentiation and apoptosis following HDMP treatment [15,18,54]. 
MP may also exert inhibitory actions on leukemic blasts through the 
suppression of NF-kappaB [55]. In addition, it would be interesting 
to evaluate whether HDMP could have a therapeutic role targeting 
EZH2 histone methyltransferase which can promote leukemogenicity 
by promoting differentiation blockage in AML. Overexpression of 
EZH2 has been reported in patients with AML and EMI [56,57] and 
interestingly, synergistic anti-tumor activity of EZH2 inhibitors and 
GC receptor agonist has been shown in non-Hodgkin lymphoma cells 
in a preclinical study [58].

In conclusion, we believe that future clinical and laboratory 
studies with high-dose GCs will provide important benefits to further 
improvements in the outcome of patients with AML and possibly in 
patients with some other malignancies. 
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