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Abstract
Background: Dynamic conditions stimulate the bone 
remodeling process by improving the nutrients transport and 
increasing the expression of osteogenic cells. The purpose 
of this study was to evaluate the effect of mechanical 
stimulation on the osteogenic differentiation of human 
adipose-derived stromal cells.

Methods: Cells were cultured under static and dynamic 
conditions in collagen scaffolds for 14 days. The 
mechanical stimulation was performed using a biaxial 
rotating bioreactor (5 × rpm and perfusion flow rate of 10 × 
rpm). Cell viability was analyzed with a living cell count and 
a MTT assay. Changes in expression of specific stem cell 
marker, osteogenic marker and endothelial markers were 
analyzed on gene (RT-qPCR) and protein (IHC) level. Data 
were statistically analyzed by one-way ANOVA (p = 0.05).

Results: Cell viability was higher under dynamic condition 
and cells migrated deeper in the collagen matrix. Expression 
of stem cell marker (ANPEP/CD13, CD44, THY1/CD90) was 
significant higher under dynamic condition. This was also 
observed for osteogenic markers (collagen 1, osteopontin, 
osteonectin).

Conclusion: The mechanical stimulation increased signifi-
cantly cell viability and differentiation potential of human ad-
ipose-derived stromal cells.
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injured site: Whereas smaller bone defects may 
be spontaneously solved and comprise minimal 
intervention approaches, larger bone defects usually 
require the use of replacement material in order to 
facilitate the healing process [1,2]. Although autologous 
bone grafting is the gold-standard to facilitate bone 
repair, the approach is limited due to the low availability 
of bone material and morbidity of the donor-site. In 
order to overcome these limitations, tissue engineering 
approaches have been developed and have been shown 
a rapidly growth on the field of regenerative medicine. 
The technique simulates the physiological process of 
bone repair by using a combination of osteoprogenitors, 
cytokines and bioactive carriers. In this sense, the use of 
stem cells is the start point to stimulate osteogenesis 
[3-8].

Mesenchymal stem cells play an important role in 
tissue engineering approaches due to their capacity to 
differentiate in multiple cell lineages [2,9]. These cells 
may be acquired from different sources, and their dif-
ferentiation potential depends on the donation site [10-
12]. For the treatment of bone defects, mesenchymal 
cells are typically harvested from the bone marrow [13-
15], which is considered a painful and time-consuming 
procedure. Furthermore, it is associated with a risk of 
cell contamination and graft loss [16].

In this regard, human adipose-derived stem cells 
(hADSCs) present some advantages due to their 
abundant source of osteoprogenitors, easy accessibility 
and the large quantity of donor tissue available [16-19]. 

Introduction
Bone fracture defects require an interventional 

treatment which is dependent from the size of the 
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Although the osteogenic capacity of hADSCs seems to 
be lower in comparison to bone marrow-derived stem 
cells [20], intrinsic and extrinsic inducing factors, as an 
osteogenic medium or mechanical vibration, are used 
to stimulate the osteogenesis [21-26].

Mechanical vibration by means of bioreactors is 
able to simulate the physiological movements occurred 
in vivo during the bone remodeling by mimic in vitro 
physiological mechanostimulation [27]. Under dynamic 
culture, there is an improvement on the nutrients 
transport, associated with an increase on the expression 
of osteogenic cells, favoring the bone remodeling 
processes [28]. Although this method seems to be 
effective to enhance proliferation and differentiation of 
hADSCs [29], the protocol usually comprises the use of 
an osteogenic medium [30,31], and a possible synergistic 
effect cannot be excluded. Thus, the mechanism by 
which the mechanical vibration alone stimulates the 
bone regeneration is not yet fully understood. The 
present study aimed to evaluate whether the mechanical 
vibration would be able to stimulate bone formation 
without using an osteogenic medium.

Material and Methods

Experimental design
In order to evaluate the effect of dynamic stimulation 

on hADSCs, cells were cultured during 14 days in static or 
dynamic conditions without using osteogenic inducing 
factors. Cell proliferation and differentiation analysis 
was performed after 7 and 14 days of culture.

Cell isolation
Human subcutaneous fat tissue was collected under 

sterile conditions from the leftover tissue of patients 
submitted to elective abdominal surgery on the General 
and Visceral Surgery, University Hospital Muenster, 
Germany. Isolation and cell growth were described 
previously [11].

Cell culture
The constant conditions (37 °C, 5% CO2 and 95% 

humidity) were kept during the whole experimental period. 
Cell culture medium was alpha eagle minimal medium 
(α-MEM, Lonza, Switzerland) containing 10% fetal bovine 
serum (10%), amphotericin B, glutamine, and penicillin/
streptomycin (each 1%; all Biochrom Merck, Germany).

Collagen punches with a diameter of 10 mm were 
cut from a collagen membrane (“PARASORB® Fleece 
HD”, Resorba Medical GmbH, Germany) under sterile 
conditions and used as scaffolds. Each scaffold was 
placed into a 24-well culture plate (TPP, Switzerland) 
and fixed on the well bottom with 400 µl low melt 
agarose (4% in α-MEM, Plaque Agarose, Biozym, 
Germany) during 24 h. hADSC were seeded with 1 × 
105 cells onto each collagen scaffold, and incubated for 
initial incubation for 4 days.

After the initial culture, the hADSC were randomly 
divided into two experimental groups based on static 
and dynamic conditions. For the static condition, the 
cells remained in 24-well culture plates for the following 
10 days. For the dynamic condition, after the initial 
incubation, the cells were submitted to mechanical 
vibration during the same period (10 days).

The dynamic condition was simulated by a biaxial 
rotation bioreactor (“TisXell Regeneration System”; 
Quintech Life Science; Singapore) filled with 700 ml of 
α-MEM Running conditions for the TisXell Regneration 
System bioreactor were determined with a biaxial 
rotating of 5 × rpm and a perfusion flow rate of 10 × rpm 
[31]. Cell culture part was repeated three times.

Cell proliferation analysis
Living cell count was performed with the CASY1 

cell counter (Schärfe System, Germany) according 
to manufacture protocol. Proliferation rate were 
estimated with an in-house MTT assay. The conversion 
of the yellow thiazolyl blue tetrazolium bromit (0.5 mg/
ml; Sigma-Aldrich, Germany) to the purple formazan 
was measured at λ 570 nm. All assays were performed 
according to the manufacture protocols and done in 
triplicates.

Real-time quantitative reverse transcription poly-
merase chain reaction (RT-qPCR)

The analysis of the mRNA-expression of osteogenic 
and endothelial markers was performed by RT-
PCR. Total RNA was extracted and purified by the 
“miRNeasy Mini Kit” (Qiagen, Germany). Purity and 
concentration of the isolated total RNA was determined 
by a spectrophotometric reading (NanoDrop™ 2000; 
ThermoFisher Scientific, Germany). Genomic DNA 
contamination was reduced by a DNase I treatment 
(ZeroBase™ DNase I; epicenter, Germany) followed by a 
cDNA synthesis (1 µg RNA; MMLV Reverse Transcriptase 
1st strand cDNA synthesis kit; epicenter, Germany). cDNA 
was amplified on Mastercycler® RealPlex S4 (Eppendorf, 
Germany) using commercially available primers in 
triplicates (Eurofins Genomics GmbH, Germany) and 
the DyNAmo Color Flash SYBR Green qPCR Kit (Biozym; 
Germany). Primers are listed in Table 1. PCR conditions 
were: Initial denaturation at 95 °C during 7 minutes, 
followed by 45 cycles of denaturation at 95 °C for 10 
s, annealing at 54 °C for 15 s and extension at 72 °C for 
20 s. Analysis was performed using the Mastercycler® 
software (Eppendorf, Germany). 

Immunohistochemistry
In order to determine the protein expression of 

specific stem cell markers, osteogenic markers, and 
endothelial markers, an immunohistochemistry was 
performed. hADSC collagen scaffolds were fixed in 
4% of buffered formalin (Fisher Scientific UK limited, 
UK) for 1 h and embedded immediately in HistoGel 
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mouse were tested: CD13 (clone WM 15, dilution 1:100, 
Thermo Fischer Scientific, USA), CD31 (clone JC70A; 
dilution 1:20; Dako, Germany), CD34 (clone QBEnd/10, 
dilution 1:100; EMD Millipore, USA), CD44 (clone A3D8, 
dilution 1:100; Sigma Aldrich, Germany), CD90 (clone 
AF-9; dilution 1:50; Thermo Fischer Scientific, USA), and 
osteocalcin (clone OC4-30; dilution 1:50; TaKaRa, Japan). 
In addition, primary polyclonal antibodies acquired 
from rabbit were evaluated: osteonectin (dilution 
1:200; Merck, Germany), osteopontin (dilution 1:100; 
Merck, Germany), and vWF (#F3520, dilution 1:1600, 
Sigma Aldrich, Germany). Dako “REAL™” Detection 
Kit was used for secondary antibody detection (Dako, 
Germany). Haematoxylin was used for counter-staining 
(Sigma-Aldrich, Germany). Negative as well as positive 
controls were implemented according to manufacturer’s 
protocols. Staining results were summarized in a semi 
quantitative score (IRS) defined as: 0 = no staining, 1 
= staining in less than 20% of cells, 2 = staining in 21 
to 50% of cells, 3 = staining in 51 to 90% of cells, and 
4 = staining in more than 90% of cells. Six slices were 
analyzed for each sample and for each antibody. Samples 
were analyzed by three well-trained professionals with 
experience in histochemical techniques and analysis.

Statistical analysis
The expression factors and IRS score were evaluated 

by one-way ANOVA with a modified Levene test. PostHoc 
analysis was performed with Bonferroni-Holm test. 
Statistical significance was set at p < 0.05. The statistical 
analyses were performed using the software Daniel’s 
XL Toolbox version 6.53, available at http://xltoolbox.
sourceforge.net.

Results 

Cell vitality
Figure 1 shows the results for the living cell count 

and proliferation (MTT). The growth rate is two times 
higher in dynamic culturing conditions, whereas the 
functional activity is 1.2 to 1.5 times higher under 
dynamic conditions in comparison to static conditions. 
The dynamic condition showed a statistically significant 

(Thermo Scientific, Germany). Samples were watered 
and dehydrated through an increasing grades ethanol 
solution. After, the samples were transferred to cedar 
wood oil (Merck, Germany) during 24 h and into warm 
1:1 paraffin-cedar wood oil mixture for 48 h, followed 
by warm paraffin (Paraplast Plus; Tyco Healthcare 
Group LP, USA) for 72 h. After cooling down for 24 h at 
-20 °C, samples were embedded into fresh paraffin and 
sectioned with a microtome (Leica Microsystems GmbH, 
Germany). Sections were mounted onto slides one day 
before staining. Afterwards, they were deparaffinized 
in xylene and rehydrated through decreasing grades 
ethanol solution.

The following primary monoclonal antibodies from 

Table 1: Primers used for RT-qPCR.

Gene Primer sequence
Housekeeping genes
GAPDH-F 5'-CTCAGACACCATGGGGAAGG-3'
GAPDH-R 5'-TCGCTCCTGGAAGATGGTGA-3'
RNA18S5-F 5'-AGAAACGGCTACCACATCCA-3'
RNA18S5-R 5'-CCCTCCAATGGATCCTCGTT-3'
Stem cell marker
CD44-F 5'-CCCATTCGACAACAGGGACA-3'
CD44-R 5'-TGGGGTGTGAGATTGGGTTG-3'
ANPEP-F 5'-TCAACTACACCCTCAGCCAG-3'
ANPEP-R 5'-ATTGCCCTCCATGTACTCGC-3'
THY1-F 5'-CAGCATCGCTCTCCTGCTAA-3'
THY1-R 5'-ACTGGATGGGTGAACTGCTG-3'
Osteogenic marker
BGLAP-F 5'-ACACTCCTCGCCCTATTGGC-3'
BGLAP-R 5'-GATGTGGTCAGCCAACTCGT-3'
SPP1-F 5'-CATCACCTGTGCCATACCAGTT-3'
SPP1-R 5'-TTGGAAGGGTCTGTGGGGCTA-3'
COL1A1-F 5'-CCACCAATCACCTGCGTACA-3'
COL1A1-R 5'-GGCAGTTCTTGGTCTCGTCA-3'
Endothelial marker
CD34-F 5'-AAGCCGAGTAGTGTCTTCCAC-3'
CD34-R 5'-GGGGTAGCAGTACCGTTGTT-3'
PECAM1-F 5'-TCCCCTAAGAATTGCTGCCA-3'
PECAM1-R 5'-TCTTCCCAACACGCCAATGA-3'
VWF-F 5'-ATGCCCCTGGAGAAACAGTG-3'
VWF-R 5'-CCGAAAGGTCCCAGGGTTAC-3'
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Figure 1: Living cell count (p = 0.034) and MTT (p = 0.013) [light bar = static cultivation; dark bar = dynamic cultivation; stan-
dard abbreviation as error marks; at day 4 only information for static cultivation existing].

https://doi.org/10.23937/2469-570X/1410056
http://xltoolbox.sourceforge.net
http://xltoolbox.sourceforge.net


ISSN: 2469-570XDOI: 10.23937/2469-570X/1410056

Jung et al. Int J Stem Cell Res Ther 2018, 5:056 • Page 4 of 7 •

static as under dynamic culturing conditions. Expression 
of CD34 and vWF showed slightly effects between static 
and dynamic culturing conditions (Figure 3C).

Immunohistochemistry
The results of the immunohistochemistry are 

summarized in Figure 4. The statistical analysis showed 
a statistical significance for stem cell markers (p = 
0.000019), osteogenic (p = 0.013) and endothelial 
markers (p = 0.029). A Posthoc test was accomplished for 
protein expression and showed statistical significance 
among each other with at least p = 0.03 (asterisk in 
Figure 4). IHC results mostly affirmed results of gene 
expression analysis. Protein expression of stem cell and 
osteogenic markers remained constant or decrease 
under static conditions and increased under dynamic 
conditions (Table 2). Collagen 1 was not analyzed due to 
the collagen origin of used scaffolds. As well as in gene 
expression analysis, osteocalcin was not expressed. 
Protein expression of endothelial markers also affirmed 
in parts results of gene expression analysis (Table 2). 

difference between dynamic and static condition in 
living cell count (p = 0.034) and proliferation rate (p = 
0.013). Furthermore, the cells migrated deeper into 
scaffold matrix under dynamic conditions, as shown on 
Figure 2. Conversely, under static conditions, cells were 
arranged mostly at the matrix surface. 

Real time PCR
The gene expressions of stem cell, osteogenic and 

endothelial markers are summarized in Figure 3. The 
statistical analysis showed a significance for stem 
cell markers (p = 0.021) and endothelial markers (p 
= 0.043). A Posthoc test was accomplished for gene 
expression and showed statistical significance among 
each other with at least p = 0.05 (asterisks in Figure 
3). For osteogenic marker, there was no significant in 
one-way ANOVA. Nevertheless, gene expression of 
stem cell and osteogenic markers increased along the 
time under dynamic culturing conditions and decreased 
under static culturing conditions (Figure 3A and Figure 
3B). The alteration in gene expression for all analysed 
genes referring to incubation time were significant with 
p = 0.000078 and alteration at day 14 under dynamic 
conditions were significantly higher compared to day 10 
and day 4 under static and dynamic condition with at least 
p = 0.008. The gene expression of BGLAP (osteocalcin) 
and PECAM 1 (CD31) was not observed, neither under 

Figure 2: IHC of osteopontin in static and dynamic culturing 
conditions at day 14 (bold bracket = growth area; 100-fold 
magnification; size bar 100 µm).
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Figure 3: Gene expression factors of stem cell markers [A, 
p = 0.021], osteogenic markers [B], and endothelial markers 
[C, p = 0.043] (black & white bars = static cultivation at day 
10 and day 14; dark & light spots = dynamic cultivation at 
day 10 and day 14; error marks = standard abbreviation).
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In contrast, expression of vWF was under dynamic 
condition very weak and it decreased during incubation.

Discussion
The basic principle of a dynamic culture system 

is a change on the cell cytoskeleton [29], improving 
nutrient transport [28] and enhancing the mechanical 
signals related with cell proliferation pathways [32]. 
The perfusion bioreactor used in this study facilitates 
the fluid of the medium into the scaffold, creating an 
optimal microenvironment for cell differentiation [28]. 
However, as it is usually associated with an osteogenic 
medium, its role on the osteogenesis process is still 
unknown. The present study aimed to evaluate whether 
the mechanical vibration by a perfusion reactor is able 
to induce alone the proliferation and differentiation of 
hADSCs.

The growth and proliferation rates of stem cells, 
such as the gene expression and presence of osteogenic 
markers, were stimulated under dynamic conditions, 
leading to a better response in comparison with static 
cultures. In this respect, the use of mechanical vibration 
seems to increase the effectiveness of cells on the 
treatment of large bone defects. Interestingly, the 
current study showed that the mechanical vibration 
alone was responsible for a higher expression of 
collagen I, osteopontin and osteonectin. These results 
corroborate with previous studies, which showed that 
the use of mechanical vibration alone is able to induce 
osteogenic differentiation, although this seems to be 
greater when an osteogenic medium is used [25,29,33]. 
Pre, et al. claimed that the use of mechanical vibration 
alone induces osteogenic differentiation, although a 
culture medium is favorable to induce bone formation. 
The authors evaluated the effect of high-frequency 
vibration on hADSCs in osteogenic and proliferative 
medium [33]. After 28 days, the highest calcium 
deposition was showed for cells cultured in osteogenic 
medium under mechanical stimulation. The statement is 
supported by Woloszyk, et al. who showed that a higher 
mineralization process was shown in human dental pulp 
stem cells under dynamic conditions, and that was even 

Expression of CD34 was weak and remained constant or 
increased. As well as no gene expression of PECAM 1 
was observable, expression of CD31 was not detectable. 
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Figure 4: Semi quantitative IHC score of stem cell markers 
[A, p = 0.000019], osteogenic markers [B, p = 0.013], and 
endothelial markers [C, p = 0.029] (grey, black & white bars 
= static cultivation at day 4, 10 and 14; dark & light spots 
= dynamic cultivation at day 10 and day 14; error marks = 
standard abbreviations).

Table 2: Semi-quantitative IHC score of stem cell markers, osteogenic markers, and endothelial markers (Standard abbreviation 
in brackets; p = p-value).

Static conditions Dynamic conditions
Culturing conditions Day 4 Day 10 Day 14 Day 10 Day 14
Stem cell markers (p = 1.9 × 10-5)
CD13 3.5 (± 1.2) 4 (± 0) 3.5 (± 1.2) 4 (± 0) 4 (± 0)
CD90 0.7 (± 0.5) 0.8 (± 0.8) 0.8 (± 0.5) 0.7 (± 0.5) 1 (± 0.6)
CD44 1 (± 1.6) 2.2 (± 1.2) 2.3 (± 1.9) 3.2 (± 1.2) 3 (± 0)
Osteogenic markers (*) (p = 0.013)
Osteopontin 3.8 (± 0.4) 3.8 (± 0.4) 2.2 (± 0.5) 3.8 (± 0.4) 4 (± 0)
Osteonectin 4 (± 0) 4 (± 0) 4 (± 0) 4 (± 0) 4 (± 0)
Endothelial markers (**) (p = 0.029)
CD34 0.5 (± 0.5) 0.5 (± 0.8) 0.4 (± 0.7) 0.3 (± 0.5) 0.9 (± 1.4)
vWF 0.2 (± 0.4) 0 (± 0) 0.5 (± 0.6) 0.2 (± 0.4) 0 (± 0)
*Collagen I was not analyzed due to the collagen origin of the scaffolds; Osteocalcin was not detectable; **CD31 was not detectable.

https://doi.org/10.23937/2469-570X/1410056


ISSN: 2469-570XDOI: 10.23937/2469-570X/1410056

Jung et al. Int J Stem Cell Res Ther 2018, 5:056 • Page 6 of 7 •

proliferation capability and osteogenic differentiation 
potential, such as the acquisition facility by minimally 
invasive surgical approaches [10,11,36]. Although their 
potential is improved by under dynamic conditions, the 
association of mechanical vibration with intrinsic factors 
may be useful to stimulate the angiogenesis and bone 
formation.

Conclusion
The mechanical stimulation by means of a bioreactor 

increased the proliferation and differentiation of hADSCs 
in comparison to static cultures.
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um composed with angiogenic factors [34,35]. The bone 
regeneration requires vascularization and osteogenic 
factors to initiate bone formation, such as a microenvi-
ronment composed by proteins, hormones and growth 
factors plays an important role on this process [10]. In 
the study presented by Zhang, et al. the level of min-
eralization was accompanied by angiogenesis in human 
adipose-derived stem cells [26].

Adipose-derived stem cells were chosen due to their 
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