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Deriving Transition Probabilities and Evolutionary Distances from 
Substitution Rate Matrix by Probability Reasoning
Xuhua Xia1,2*

Abstract

Substitution rate matrices are used to correct multiple hits 
at the same sites, which requires the derivation of transi-
tion probabilities and evolutionary distances from substi-
tution rate matrices. The derivation is essential in molec-
ular phylogenetics and phylogenomics, and represents the 
only statistically sound way for developing scoring matrices 
used in sequence alignment and local string matching (e.g., 
BLAST and FASTA). Three different approaches are fre-
quently used for deriving transition probabilities and evolu-
tionary distances: 1) The probability reasoning, 2) Solving 
partial differential equations, and 3) Matrix exponential and 
logarithm. The first approach demands the least amount of 
mathematical skills but offers the best way for conceptual 
understanding, and can often generate nice mathematical 
expressions of transition probabilities and evolutionary dis-
tances. This review represents the most systematic and 
comprehensive numerical illustration of the first approach.
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nucleotide, amino acid and codon sequences. All substi-
tution models used in molecular phylogenetics are Mar-
kov chain models characterized by 1) Either a transition 
probability matrix (P) with discrete time or a rate matrix 
(Q) in continuous time where P can be derived from Q, 
and 2) Equilibrium frequencies. The general form of an 
instantaneous rate matrix for nucleotide sequences is, 
in the order of A, G, C, and T:

 = 

A a b c
G g d e

Q
C h i f
T j k l

− 
 − 
 −
 − 

           (1)

Transition probability matrix, often referred to as the P 
matrix, specifies the probability of a nucleotide or amino 
acid changing into another one after time t. It is needed to 
calculate likelihood and to derive evolutionary distances, 
and consequently is needed phylogenetics based on the 
maximum likelihood and distance-based methods as well 
as Bayesian inference. Whether a substitution model can 
be implemented for phylogenetic analysis essentially de-
pends on whether the model’s transition probabilities can 
be calculated.

There are three ways to obtain transition probabilities 
from the Q matrix [1,2] :1) By probability reasoning, 2) By 
solving differential equations involving rates, and 3) By tak-
ing the matrix exponential of the rate matrix. The last two 
require some mathematical background in calculus and 
linear algebra. The first, in contrast, demands little math-
ematical skill except for careful book-keeping and solving 
simultaneous equations. This approach is particularly rel-
evant to biological students not only for gaining a concep-

Introduction

Substitutions occur over time and can overwrite each 
other at the same nucleotide or amino acid site. When 
we compare two homologous nucleotide sequences and 
find differences in N sites, the actual number of substi-
tutions (designated by M) could be much greater than 
N because multiple substitutions could have happened 
at the same site, overwriting each other. Substitution 
models are used to infer the observable M from the ob-
served substitutions from sequence comparisons.

Many substitution models have been proposed for 
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There are some quick ways to check the derived 
transition probabilities. First, we note that when t ap-
proaches infinity, then all entries in matrix P approaches 
¼ if α > 0. This is what we have expected. Second, when 
t = 0, then all diagonal elements in matrix P are 1 and 
all off-diagonal elements are zero. This is again what we 
expected. Third, if α is zero, then no change is possible, 
and we again expect all diagonal elements in matrix P 
to be 1 and all off-diagonal elements to be zero, which 
is also true.

From pij in Eq. (2), the expected proportion of sites 
that are different between two aligned homologous se-
quences (pdiff) is 3*pij(t), i.e.,

43 3  3 ( )  
4 4

t
diff ijp p t e α−= = −                         (4)

Note that pdiff approaches ¾ when t is infinitely large, 
which means that multiple substitutions can no longer 
be corrected. Eq. (4) offers another way of deriving pii(t) 
in Eq. (3), i.e., pii(t) is simply 1-pdiff.

Eq. (4) allows us to derive the JC69 distance (DJC69) 
because a distance is defined as μt where μ is the substi-
tution rate which is equal to 3α in the JC69 model. This 
is the same as the distance that you have driven is the 
product of the speed (rate) and time. Given that DJC69 = 
3αt, we can derive DJC69 (Figure 1g) by substituting αt = 
DJC69/3 into Eq. (4), i.e.,

69

43  ln 1
4 3

diff
JC

p
D

 
= − − 

 
                        (5)

Where pdiff (the expected number of sites that are dif-
ferent between the two homologous sequences) can be 
approximated by the observed proportion of sites (pdiff.

obs) differing between the two aligned sequences. Note 
that pdiff.obs may differ from pdiff even when the under-
lying substitution model indeed follows JC69 because 
of 1) Stochastic factors due to limited aligned length of 
the two sequences, and 2) Distortion caused by subop-
timal sequence alignment. Thus, although pdiff in Eq. (4) 
cannot be greater than 0.75, pdiff.obs could, even when 
sequences evolve strictly according to the JC69 model. 
DJC69 is not defined when pdiff ≥ 0.75 as there is no loga-
rithm for 0 or negative values.

We can optionally show that DJC69 in Eq. (5) is a max-
imum likelihood distance. For two aligned sequences 
of length N, designate the number of sites that differ 
between the two sequences as ND and the number of 
sites identical between the two sites as (N-ND). Now the 
likelihood function is:

69 69
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tual understanding of the substitution models, but also 
to deriving nice mathematical expressions for transition 
probabilities and evolutionary distances. New researchers 
often ask why we can derive evolutionary distances be-
tween two aligned sequences for the TN93 model [3] but 
cannot for the simpler HKY85 model [4] which is a special 
case of the TN93 model, yet another model, F84 (used in 
PHYLIP since 1984), which is also a special case of the TN93 
model, can have its evolutionary distance readily derived. 
One can easily obtain answers to such questions by taking 
the first approach. However, the first approach is not of 
general purpose and cannot handle very complicated sub-
stitution models. In contrast, the last one can be used with 
any substitution models specified by a rate matrix from 
which the matrix exponential can be obtained. In short, all 
these approaches need to be learned by anyone wishing to 
become a molecular phylogeneticist, but this paper will fo-
cus only on the probability reasoning approach illustrated 
with JC69 [5], K80 [6], F84 (the model used in PHYLIP since 
1984), HKY85 [4], and TN93 [3] models.

Probability Reasoning to Obtain Transition Prob-
abilities and Evolutionary Distances

Felsenstein [1] presented nice examples of prob-
ability reasoning to derive transition probabilities and 
evolutionary distances from rate matrices. This section 
presents the approach in a more systematic and acces-
sible way.

JC69 model

Consider nucleotide A in the JC69 model (Figure 1a). 
Imagine that the nucleotide has a rate α of changing into 
any of the four nucleotides, i.e., including changing to it-
self (Figure 1b). This is effectively the same specification 
as the JC69 model. After time t, the expected number 
of substitutions is 4αt and the probability of no substi-
tution is p (x = 0, α, t) = e-4αt according to the Poisson 
distribution, and the probability of having at least one 
change is then p (x ≥ 1, α, t) = 1-e-4αt (Figure 1c). Because 
nucleotide A can change into any one of the four nu-
cleotides (including nucleotide A itself), each nucleotide 
gets 1/4 of p (x ≥ 1, α, t). We therefore have in Figure 1.

4( 1, , ) 1 1( )    
4 4 4

t
ij

p x tp t e αα −≥
= = −          (2)

The transition probability pii(t) is the summation of two 
probabilities: the probability of no change (which is e-4αt) 
and the probability of changing to itself which is the same 
as specified in Eq. (2), as shown in Figure 1e, i.e.,

4 4( 1, , ) 1 3( )    
4 4 4

t t
ii

p x tp t e eα αα− −≥
= + = +      (3) 

The transition probability matrix for the JC69 model 
has only two distinct elements. The four diagonal ele-
ments are the same as specified in Eq. (3) and all the 
off-diagonal elements are the same as specified in Eq. 
(2). Each row in P adds up to 1 as a nucleotide can either 
stay the same or change into some other nucleotides.
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one would have expected. We illustrate the application 
of Eqs. (5) and (8) by using the aligned sequences in Fig-
ure 2 where N = 24, ND = 6, and pdiff = 6/24 = 0.25. So DJC69 
= 0.3041, and var (DJC69) = 0.0176.

The equilibrium frequencies of the π vector can be 
derived by set t = ∞ in Eqs. (2) and (3) which leads to pii 
= pij = ¼. This implies that equilibrium frequencies of the 
four nucleotides will be equal for the JC69 model. This 
is not surprising because the frequencies did not even 
appear in the rate matrix (Figure 1a).

K80 model

The K80 model has a transition substitution rate α 
and a transversion rate β (Figure 3a). We will focus on 
nucleotide A and conceptualize the model with two 
events (Figure 3b), in contrast to only one event in the 
JC69 model. The first event (e1) occurs when nucleotide 
A changes into any of the four nucleotides (including to 
itself). In other words, the original A is replace by a nu-
cleotide randomly drawn from a nucleotide pool with 
equal nucleotide frequencies. This event occurs with a 
rate β. The second event (e2) occurs when nucleotide 
A changes either to G or to itself, i.e., the original A is 
replace by a nucleotide randomly drawn from a purine 
pool with equal number of A and G. This e2 occurs with a 
rate γ. Thus the transition rate α equals β+γ according to 
this conceptualization. Note that, whenever e1 happens, 
the original nucleotide is replace by any one of the four 
nucleotides with equal probability, no matter how many 
e2 events has occur before or after the occurrence of 
e1. It might help to think of a long sequence with L sites 

Where the constant term N*ln(1/4) can be dropped 
in maximizing lnL to obtain the distance estimate, but 
needs to be kept when performing likelihood ratio test 
for comparing different substitution models (e.g., JC69 
against TN93).

We take the derivative of lnL with respect to DJC69, set 
the derivative to 0 and solve for DJC69. The resulting DJC69 
is exactly the same as that in Eq. (5). I used D instead of 
DJC69 in the equations below:

4 /3 4 /3

4 /3 4 /3

( )ln     01 3 3 3
4 4 4 4

43 43 3  ln   ln 1
4 3 4 3

D D
D D

D D

diffD

N N e N ed L
dD e e

pN ND
N

− −

− −

−
= − + =

+ −

 − = − = − −  
   

         (7)

The variance of DJC69 (designated as VJC69) is obtained 
as the negative reciprocal of the second derivative of 
lnL:

69 2 2

2
69
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ln 4

1
3

diff diff
JC

diff

JC

p p
V

d L p
LdD

−
= − =

 
− 

 

         (8)

Note that VJC69 decreases with sequence length L as 

         

Figure 1: Derivation of transition probabilities and the evolutionary distance (D) based on the JC69 model. The d value in the 
diagonal of the rate matrix (a) is constrained by the row sum equal to 0, i.e., d = -3α. P(j|i,t) means the probability of changing 
from the original nucleotide i to nucleotide j after time t, and is synonymous to pij(t) or simply pij in this paper.

         

S1: AAG CCT CGG GGC CCT TAT TTT TTG
||  |   ||| ||| |   ||| ||| ||

S2: AAT CTC CGG GGC CTC TAT TTT TTT

Figure 2: Two homologous sequences for illustrating com-
putation of pairwise evolutionary distances.
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being A at time 0. If these L sites each have experienced 
at least one e2 event, then these sites will either be A 
or G with equal probability (i.e., 0.5), and we expect to 
have L/2 sites being A and the other L/2 sites being G. In 
contrast, if each of these L sites has experienced at least 
one e1 event, then the site will be replaced by either 
A, C, G, or T with equal probability, and we expect to 
observe A, C, G and T in L/4 sites each. Any e2 events 
occurring before or after the e1 event do not change this 
expectation. This means that e1 erases e2, but not vice 
versa. The probability that an e2 event happened is in-
formative only when no e1 event has happened.

After time t, the expected number of substitutions is 
2(α+β)t, i.e., the nucleotide A has two ways of change 
with a rate of α (to A and to G) and another two ways of 
change with a rate β (to C and to T), so the probability of 
no change, according to Poisson distribution, is

2( )
1 2(   0,   0, )  tp e e t e α β− += = =                         (9)

Note that α is conceptualized as (β+γ) in Figure 3, so 
e-2(α+β)t in Eq. (9) is equivalent to e-(4β+2γ)t. The probability 
that at least one e1 event has occurred is

4
1( 0, )  1 tp e t e β−> = −                                     (10)

Thus, the probability that at least one e2 has occurred 
but e1 has not occurred is simply

2 1 1 2 1
2( ) 4

4 2( )

( 0,   0, )  1 (   0,   0, ) ( 0, )

                          1 (1 )
                          

t t

t t

p e e t p e e t p e t
e e

e e

α β β

β α β

− + −

− − +

> = = − = = − >

= − − −

= −

     (11)

These probabilities are also shown in Figure 3c. The 
reason for the condition that “e1 has not occurred” is 
because e1 event can erase e2 event (as we have dis-
cussed before).

Now the probability of the starting nucleotide A 
changing to G during time t, designated as p(G|A,t), is 
the summation of two probabilities. The first is 1/2 of 
the probability of p(e2 > 0, e1 = 0,t) in Eq. (11) because 
the other 1/2 is for A to itself. The second is 1/4 of p(e1 
> 0,t) in Eq. (10) because A→A, A→G, A→C and A→T 
each get ¼, so only 1/4 of p(e1 > 0,t) is for A→G. The 
summation of these two probabilities (Figure 3d) is 
p(G|A,t). This probability is equal to p(A|G,t), p(C|T,t), 
and p(T|C,t) in the K80 model. In other words, the sum-
mation of these two probabilities is the probability of a 
transition (Ps) during time t. Thus,

2 1 1

4 2( ) 4

4 2( )

( 0, 0, ) ( 0, )  
2 4

1     
2 4

1       ( | , )  ( | , )  ( | , )  ( | , )
4 4 2

s

t t t

t t

p e e t p e tP

e e e

e e P G A t P A G t P T C t P C T t

β α β β

β α β

− − + −

− − +

> = >
= +

− −
= +

= + − = = = =

 (12)

Similarly, the probability of the starting A changing 
to C (or to T) is 1/4 of p(e1 > 0,t) in Eq. (10) because 1/4 
is for A→A, ¼ is for A→G and 1/4 is for A→T, so only 1/4 
is for A→C (Figure 3d). This probability is the probability 
for a transversional change during time t,

4
1( 0, ) 1    
4 4

t

v
p e t eP

β−> −
= =                       (13)

As a quick check of the derived transition probabil-

         

Figure 3: Derivation of transition probabilities and the evolutionary distance (D) based on the K80 model. The rate matrix (a) has 
the diagonal elements (d) constrained by the row sum equal to 0, i.e., d = -α - 2β. P and Q are the observed proportion of transitional 
and transversional changes between two aligned homologous sequences. Equating them to their respective expected values, E(P) 
and E(Q), leads to the solution of αt and βt shown, and the evolutionary distance D. P(j|i,t) means the probability of changing from 
the original nucleotide i to nucleotide j after time t, and is synonymous to pij(t) or simply pij in this paper.
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tionary distances based on a substitution model). Meth-
ods for handling such situations are discussed later in 
the section on the GTR model.

We may optionally show DK80 in Eq. (17) to be a max-
imum likelihood estimator of the distance based on the 
K80 model, just like the KJC69 distance in Eq. (5). To see 
this, it is better to re-parameterize the K80 model by 
replacing αt and βt by DK80 and κ using the following re-
lationship:

80   2
  /
KD t t

t t
α β

κ α β
= +

=
                                     (18)

Solving these two equations gives us

80

80

  
2

  
2

K

K

Dt

Dt

κα
κ

β
κ

=
+

=
+

                        (19)

Substituting αt and βt into Eqs. (14) and (15) so that 
P and Q will be functions of DK80 and κ, and the likelihood 
function for deriving DK80 and κ is

1  (1 )
4

1ln   ln ln ln ( ) ln(1 )
4

s v s v

N
N N N N N

s v s v

L P Q P Q

L N N P N Q N N N P Q

− − = − − 
 

 = + + + − − − − 
 

   (20)

Where the constant term N*ln(1/4) can be dropped 
in maximizing lnL to obtain the distance estimate, but 
need to be kept when performing likelihood ratio test 
for comparing different substitution models (e.g., K80 
against TN93).

Taking partial derivatives with respect to DK80 and κ, 
setting them to zero and solving the simultaneous equa-
tions, we have

80
ln(1- 2 - ) ln(1- 2 )  

2 4
obs obs obs

KD
P Q Q

−= −        (21)

2ln(1 2 )  1
ln(1 2 )

obs obs

obs

P Q
Q

κ − −
= −

−           
(22)

Where Pobs = Ns/N, and Qobs = Nv/N. Using the two 
aligned sequences in Figure 2, we have N = 24 and Pobs = 
4/24 and Qobs = 2/24. These lead to DK80 = 0.3151, and κ = 
4.9126. It may be relevant to add that, while DJC69 and DK80 
are maximum likelihood estimates, distance formulae for 
F84 and TN93 models, obtained in the same way by equat-
ing the observed substitutions to expected substitutions, 
are generally not maximum likelihood estimates. This will 
become clear when we deal with these models.

We have previously derived the variance of DJC69 as 
the negative reciprocal of the second derivative of lnL 
with respect to DJC69. This can be used only when the 
log-likelihood function is used to estimate a single par-
ameter. When there are multiple parameters (e.g., DK80 
and κ), we cannot use the same approach unless the 
parameters are not correlated. There are two common-

ities, we note that Ps and Pv are zero when t = 0 (or when  
= 0 and β = 0). This also implies that all diagonal ele-
ments in the transition probability matrix are equal to 1, 
and is what we have expected. When t = ∞, with α > 0 
and β > 0, all entries in matrix P approaches ¼ (the equi-
librium frequency of the K80 model). This is also what 
we expected.

For two aligned homologous sequences, Ps can be 
approximated by the proportion of sites differing by a 
transition (P), and 2Pv by the portion of sites differing by 
a transversion (Q, Figure 3e). Note that the expected Q 
is equal to 2Pv because there are two ways of having a 
transversional change. Therefore,

4 2( )1  
4 4 2

t te eP
β α β− − +

= + −          (14)

4 41 1  2   2   
4 2

t t

v
e eQ P

β β− − − −
= = = 

 
        (15)

We can now first solve for βt from Eq. (15), and then 
substitute the solution for βt into Eq. (14) to solve for 
αt. This leads to 

ln(1 2 ) ln(1 2 )
  

2 4
ln(1 2 )

  
4

P Q Q
t

Q
t

α

β

− − −
= − +

−
= −

        (16)

Recall that evolutionary distance is defined as µt, 
where µ is the substitution rate which is equal to (α+2β) 
in the K80 model. Thus, the evolutionary distance based 
on the K80 model (DK80) is (α+2β)t, which comes to

80

ln(
 2   

1- 2 - ) ln(1- 2 ) 
2 4KD t t
P Q Q

α β= + = − −        (17)

Where P and Q can be approximated by the observed 
proportion of sites differing by a transition or a transver-
sion from two aligned sequences, designated as Pobs and 
Qobs. Similar to what I have mentioned with reference to 
DJC69, P and Q may differ from Pobs and Qobs even if the K80 
model is followed during the sequence evolution. This is 
because 1) Limited aligned length of the two sequences 
may result in stochastic variation in Pobs and Qobs, and 
2) The two observed proportions may be distorted by 
alignment errors (i.e., misidentification of site homolo-
gy). For example, two homologous sequences that have 
diverged for an infinite length of time according to the 
K80 model should have expected P and Q equal to 0.25 
and 0.5, respectively. However, we may actually have 
Pobs > 0.25 or Qobs > 0.5, which would render DK80 inap-
plicable. On the other hand, after sequence alignment 
and deletion of indels (because evolutionary distances 
are typically calculated without using sites with indels), 
Pobs and Qobs may well be much smaller than the expect-
ed 0.25 and 0.5 leading to severer underestimation of 
the true distance. It is also possible to have Pobs and Qobs 
values that, when used to replace P and Q in Eq. (16), 
result in negative αt or βt values that make no biological 
sense. The same applies to DJC69 (in fact to any evolu-
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Where πA, πG, πC and πT are equilibrium frequencies, 
πR and πY are frequencies of purines and pyrimidines, 
and the diagonal elements are constrained by each row 
summing up to 0. The parameter γ in Eq.  (26) is some-
times replaced by κβ, but it is easier to understand the 
F84 model by using QF84 specified in Eq. (26).

We may view the F84 model as featuring two events 
(e1 and e2). Suppose we start with a nucleotide A. Event 
e1 occurs with rate β. When it occurs, the original A will 
be replaced by a nucleotide drawn randomly from a nu-
cleotide pool in which the nucleotide frequencies are 
the same as the equilibrium frequencies. This means 
that the original A has a rate of βπA, βπG, βπC and βπT to 
change to A, G, C and T, respectively, when e1 occurs. 
This is different from the K80 model where, when e1 
occurs, the original A has a rate of 0.25 to change to 
any of the four nucleotides. Event e2 has a rate of γ to 
occur, and will result in the original A being replaced 
by a purine drawn randomly from a purine pool with 
A and G frequencies specified as πA/R and πG/R. Thus, 
the original A has a rate of γπA/πR and γπG/πR to change 
to A and G when e2 occurs. This again differs from K80 
where the original A has a rate of 0.5 of changing to A or 
Gwhen e2 occurs. These events are illustrated in Figure 
4a, where we use x to represent β+γ/πR. Note that it is 
not a good idea to use α to represent β+γ/πR for two 
reasons. First, if we had started with a nucleotide C or T 
instead of A, then we would have β+γ/πY instead of β+γ/
πR which would force us to use α1 and α2 to distinguish 
between the two. A casual reader will then be misled to 
think that F84 has three rate parameters (i.e., β, α1 and 
α2) without knowing that α1 and α2 are used as different 
functions of the same rate parameter γ. Second, I have 
reserved α to represent β+γ in Figure 4b which simpli-
fies the derivation of transition probabilities illustrated 
in Figure 4.

Note that whenever event e1 happens, the original 
A is replace by A, C, G and T with probabilities πA, πG, 
πC and πT, no matter how many e2 events has occur be-
fore or after the occurrence of e1. This is similar to the 
scenario involving the K80 model, except that the K80 
model assumes equal nucleotide frequencies. It might 
help to think of a long sequence with L sites being A at 
time 0. If these L sites each have experienced at least 
one e2 event, then these sites will either be A or G with 
probabilities πA and πG, respectively, and we expect to 
have πAL sites being A and πGL sites being G. In contrast, 
if each of these L sites has experienced at least one e1 
event, then the site will be replaced by A, C, G, or T with 
probabilities πA, πG, πC and πT, and we expect to observe 
A, C, G and T in πAL, πGL, πCL, and πTL sites, respectively. 
Any number of e2 events occurring before or after the 
e1 event does not change this expectation. This means 
that e1 erases e2, but not vice versa. The occurrence of 
an e2 event is informative only when no e1 event has 
happened.

ly used methods for deriving variances of parameters. 
The first is the delta method [7-9], and the second uses 
the Fisher information matrix to obtain the variances 
and covariance matrix for the parameters. The delta 
method, which often yields nice and clean mathematical 
expressions for the variance, is illustrated in the Appen-
dix. The method using the Fisher information matrix is 
shown below.

To estimate variance involving multiple parameters 
such as DK80 and κ, we first take the second order partial 
derivatives of lnL with respective to DK80 and κ, substi-
tuting the estimated DK80 and  κ in Eqs. (21) and (22) into 
the second-order partial derivatives, arranging them 
into what is called a Fisher information matrix (MFI) 
below, and compute the matrix inverse of MFI (designat-
ed by MFI

-1):
2 2

2
80

2 2

2
80 80

ln ln

  
ln ln

K
FI

K K

L L
D

M
L L

D D

κ κ

κ

 ∂ ∂
− − ∂ ∂ ∂ =

 ∂ ∂
− − 

∂ ∂ ∂  

                      (23)

The diagonal elements of MFI
-1 are the variances for 

κ and DK80, and the off-diagonal elements of MFI
-1 are 

covariances. The mathematical expression for the vari-
ance of κ is tedious, but that for the variance of DK80 is 
simpler:

2 2 2

80
( )

1 1
     

1- 2 - 1- 2

( )  , where

, ,   
2

K
a P c Q aP cQ

N

a b
P Q Q

V D

a bc

+ − +

= =

=

+
=

        (24)

With the aligned sequences in Figure 2, we have N = 
24 and empirical P = 4/24 and Q = 2/24. These lead to 
DK80 = 0.3151, and κ = 4.9126. The MFI and MFI

-1 are

1

0.047435 -0.286795
  

-0.286795 49.641105

21.84451668 0.126204037
  

0.126204037 0.020873724

FI

FI

M

M −

 
=  

 
 

=  
 

       (25)

Where the two parameters are in the order of κ 
and DK80, i.e., the variance is 21.8445 for κ and 0.0209 
for DK80. The off-diagonal elements are covariances be-
tween the two parameters.

F84 and HKY85 model

The F84 and HKY85 model accommodate not only 
the differential substitution rates between transitions 
and transversions, but also different equilibrium nu-
cleotide frequencies, in contrast to JC69 and K80 which 
assume equal equilibrium nucleotide frequencies. The 
same probabilistic reasoning used before can be applied 
to derive transition probabilities for the HKY80 model.

The rate matrix for the F84 model is

84  = 

G G R C T

A A R C T
F

A G T T Y

A G C C Y

A
G

Q
C
T

βπ γπ π βπ βπ
βπ γπ π βπ βπ

βπ βπ βπ γπ π
βπ βπ βπ γπ π

− + 
 + − 
 − +
 + − 

    (26)
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+ γ) and β in Eq. (31). The transition probability from the 
original A to C (a transversion, Figure 4e) is simply

1  ( 0, )  (1 )t
AC C Cp p e t e bp p -= > = -        (32)

For other transversions, e.g., pAT, one just need to re-
place πC by πT. The complete transition probability ma-
trix for the F84 model is 

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2 1 2

1 2 1 2

84

3 4 3 4

3 4 3 4

1 1

1 1
 = 

1 1

1 1

t t
A A Y G G G Y G C T

t t
A A Y A G G Y A C T

F t t
A G C C R G T T R T

t t
A G C C R C T T R C

x x x x e e
A

x x x x e eG
P

C e e x x x x
T e e x x x x

β β

β β

β β

β β

π π π π π π π π π π

π π π π π π π π π π

π π π π π π π π π π

π π π π π π π π π π

− −

− −

− −

− −

 + + + − − −
 
 + − + + − −
 
 − − + + + −

 − − + − + + 





 (33)

Where

1 2 3 4  ,   ,   ,   
t t t t

R R Y Y

e e e ex x x x
b a b a

p p p p

- - - -

= = = =     (34)

As a quick check of the transition probabilities, we 
first note that when t = 0 (or when α = 0 and β = 0), then 
the diagonal elements are 1 and all off-diagonal ele-
ments are 0, which is what we expected. Second, when 
t = ∞ with α > 0 and β > 0, then the transition probabil-
ities will approach the equilibrium frequencies, which is 
also what we expected.

To obtain the distance for the F84 model (DF84), re-
call that a distance is defined as µt where µ is the aver-
age substitution rate, i.e., substitution rates in Eq. (26) 
weighted by the equilibrium frequencies:

84   2 ( / ) 2 ( / ) 2F A G R T C Y Y RD t t t t tp p b g p p p b g p p p b= + + + +     (35)

Now we need to obtain βt and γt in order to calcu-
late DF84. We can obtain αt and βt, and then obtain γt = 
αt - βt, remembering that α = β + γ (Figure 4b and Eq. 
(27)]. The method we will use is the same as that for 
the K80 model, i.e., we obtain the expected transitions 
and transversions, designated E(S) and E(V), respective-
ly, from transition probabilities and equate them to the 

After time t, the total flow of the original A to the 
four nucleotides (including itself, Figure 4a and Figure 
4b) is

    ( / )     A G C T R Y R R Yx x xp p bp bp p p b p b g p p b b g a+ + + = + = + + = + =  (27)

So the probability that no substitution has happened 
during time t (Figure 4c), according to Poisson distribu-
tion, is

1 2( ,   0, )  tp e e t e a-= =                        (28)

The rate of A changing to A, G, C, and T through e1 is 
βπA + βπG + βπC + βπT = β, so the probability that at least 
one e1 has occurred during time t is

1( 0, )  1 tp e t e b-> = -          (29)

The probability that e2 has happened but e1 has not 
is then

2 1 1 2 1( 0,  0, )  1 ( ,   0, ) ( 0, )  t tp e e t p e e t p e t e eb a- -> = = - = - > = -   (30)

The reason for the condition that “e1 has not oc-
curred” is because e1 event can erase e2 event. With 
these, it is easy to derive transition probability from A 
to G (Figure 4d) as the summation of 1) A fraction of πG 
of p(e1 > 0,t), which is the probability of e1 event that 
results in the original A being replaced by A, C, G, and T 
with probabilities πA, πG, πC and πT, and 2) A fraction of 
πG/πR of p(e2 > 0,e1 = 0,t), which is the probability that e2 
events not erased by e1. That is,

2 1
1

( 0, 0, )( | , )  ( 0, )  
t t

G G Y G
G G

R R R

p e e t e ep G A t p e t
b ap p p p

p p
p p p

- -> =
= > + = + -  (31)

From now on, p(j|i,t) will be written simply as pij, so 
p(G|A,t) is pAG. With the same reasoning, we can derive 
transition probabilities for other A↔G and C↔T sub-
stitutions. Note that the two rate parameters in the F84 
model (β and γ) have been re-parameterized into α (= β 

         

Figure 4: Derivation of transition probabilities based on the F84 model. πA, πG,πC, πT and πR, πY are equilibrium frequencies 
of A, C, G, T, purine (A + G) and pyrimidine (C + T). Event e1 occurs at a rate of β and leads to the original A being replaced 
by any of the four nucleotides according to their equilibrium frequencies, and event e2 occurs at a rate of γ and results in the 
original A being replaced by either A or G according to their frequencies in the purine pool, i.e., πA/πR, and πG/πR. I used x as a 
shorthand for β+γ/πR. The rate γ does not appear in the final transition probabilities because it has been absorbed into α which 
equals β+γ shown in (b). P(j|i,t) means the probability of changing from the original nucleotide i to nucleotide j after time t, and 
is synonymous to pij(t) or simply pij in this paper.
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librium frequencies. Event e2 occurs with a rate γ and 
results in the original A being replaced by either A or G 
with the probabilities equal to their respective equilib-
rium frequencies. Fictionalized in this way, the expected 
number of substitutions after time t is β(πA+πG+πC+πT) + 
γ(πA+πG) = β+γR. According to the Poisson distribution, 
the probability that no substitution has happened dur-
ing time t is

( )
1 2( ,   0, )  1- Rp e e t e β γ− += =         (42)

The probability that at least one e1 occurred after 
time t is 

1( 0, )  1 e tp e t β−> = −          (43)

The probability that e2 has occurred but e1 has not is
( )

2 1 1 2 1( 0,   0, )  1 ( ,   0, ) ( 0, )  t Rp e e t p e e t p e t e eβ β γ− − +> = = − = − > = −  (44)

The transition probability p(G|A,t), abbreviated as 
pAG, is

( )

1 2 1  ( 0, ) ( 0,   0, )  
R tt

G G Y G
AG G G

R R R

e ep p e t p e e t
β π γβπ π π ππ π

π π π

− +−

= > + > = = + −  (45)

In the same way, we can derive other transition 
probabilities which are shown below:

( ) ( )
( ) ( )

( ) ( )
( ) ( )

1 2 1 2

1 2 1 2

3 4 3 4

3 4 3 4

1 1

1 1
 = 

1 1

1 1

t t
A A G G G G C T

t t
A A A G G A C T

HKY t t
A G C C T T T T

t t
A G C C C T T C

x x x x e e
A

x x x x e eG
P

C e e x x x x
T e e x x x x

β β

β β

β β

β β

π π π π π π π π

π π π π π π π π

π π π π π π π π

π π π π π π π π

− −

− −

− −

− −

 + + + − − −
 
 + − + + − −
 
 − − + + + −
 
 − − + − + + 

 (46)

Where
( ) ( )

1 2 3 4  ;   ;   ;   
R Yt tt t

Y R

R R Y Y

e ee ex x x x
β π γ β π γβ βπ π

π π π π

− + − +− −

= = = =  (47)

As a quick check of the transition probabilities, we 
first note that when t = 0 (or when α = 0 and β = 0), 
then the diagonal elements are 1 and all off-diagonal 
elements are 0, which is what we expected. Second, 
when t approaches infinity with β > 0 and γ > 0, then the 
transition probabilities will approach the equilibrium 
frequencies, which is also what we expected.

We cannot derive the distance for the HKY85 mod-
el by following the same approach as that for the F84 
model. Hasegawa, et al. [4] has tried this approach but 
were not successful because there is no explicit solution 
for βt and γt. However, if we treat the A↔G transition 
and C↔T transition separate, then we can solve for βt 
and γt [10]. In other words, we obtain one set of βt and 
γt from observed A↔G transitions and transversions, 
and another set of βt and γt from observed C↔T transi-
tions and transversions. βt in the two sets are the same 
as that in Eq. (38), but γt is different between the two 
sets of estimates. We can then take a weighted aver-
age of γt. Admittedly, this does sound mathematically 
clumsy and explains why HKY85, while commonly used 
in phylogenetic analysis involving a likelihood frame-
work or Bayesian inference, is almost never used in dis-
tance-based phylogenetics.

Here is the somewhat circuitous protocol to get βt 
and γt from HKY85. The expected numbers of A↔G 

observed S and V to solve for αt and βt. With the prop-
erty of time reversibility (e.g., πA•pAG = πG•pGA), we have

( )  2 2
( )  2 2 2 2

A AG C CT

A AT A AC G GC G GT

E S p p
E V p p p p

p p
p p p p

= +

= + + +
       (36)

Equating E(S) and E(V) to the observed S and V, and 
solving these two equations with the two unknowns (αt 
and βt), we have

( )
2 2

2 2 2 2 2 2

-2( )  ln
2 2

A G R Y C T R Y

R Y A G R Y C T R Y A G Y C T R

t
S V

p p p p p p p p
a

p p p p p p p p p p p p p p p p

æ ö÷+ç ÷ç= ÷ç ÷ç ÷- - + + ÷çè ø
    (37)

  ln 1
2 R Y

Vtb
p p

æ ö÷ç ÷= - -ç ÷ç ÷çè ø
           (38)

Substitute βt and γt (= αt - βt) into Eq. (35) and, af-
ter some algebraic manipulation, we have a more useful 
form of DF84:

( )

2
84 1

3

2 22
1

3

2  ( ) ln( ) ln

          ln ln

F A G C T R Y C T R
R Y

A G Y R Y

xD x
x

x x
x

π π π π π π π π π
π π

π π π π π

  
= − + +  

 
 

+ −  
  

  (39)

Where

1

2
2 2 2 2 2 2

3

 1 ;
2

  ( )(2 )

  2 2

R Y

A G Y C T R R Y

R Y A G R Y C T Y R A G Y C T R

Vx

x V

x S V V

p p
p p p p p p p p

p p p p p p p p p p p p p p p p

= -

= + -

= - + + - -

  (40)

To illustrate the calculation of DF84, we may use the 
two aligned sequences in Figure 2 which gives us πA = 
6/48, πC = 12/48, πG = 10/48, πT = 20/48, S = 4/24, V = 
2/24, αt = 0.5778363341, βt = 0.2076393648, γt = αt - βt 
= 0.3701969693, and DF84 = 0.3198867427. The variance 
of the DF84 can be obtained by either the delta method 
or the method using Fisher information matrix.

A substitution model similar to the F84 model is the 
HKY85 model, with its rate matrix specified as:

( )
( )

( )
( )

85  = 

G C T

A C T
HKY

A G T

A G C

A
G

Q
C
T

β γ π βπ βπ
β γ π βπ βπ

βπ βπ β γ π
βπ βπ β γ π

− + 
 + − 
 − +
 

+ −  

  (41)

Where (β+γ) is often written as α and the diagonal 
elements are constrained by each row summing up to 
0. The HKY85 model and the F84 model differ only in 
the specification of rates involving transitions. qAG and 
qCT are πG(β+γ) and πT(β+γ) in the HKY85 model speci-
fied in Eq. (41), in contrast to πG(β+γ/πR) and πT(β+γ/πY), 
respectively, in the F84 model specified in Eq. (26).  By 
comparing these rates, it becomes obvious that the F84 
model would be equivalent to the HKY85 model if πR = 
πY.

We can obtain the transition probabilities for the 
HKY85 model in the same way as that for the F84 model. 
In short, we again start with a nucleotide A and envision 
two events e1 and e2. Event e1 occurs with rate β, and re-
sults in the original A replaced by any of the four nucleo-
tides with probabilities equal to their respective equi-
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although DHKY85 is consistently but slightly smaller than 
DF84.

The HKY85 model itself may not carry much biologic-
al significance given the existence of the F84 model. 
However, the twists involved in computing the evolu-
tionary distance, i.e., the separate estimation of γA↔G 
and γC↔T, lead very naturally to a very useful TN93 mod-
el that we will cover next.

TN93 model

We have come far, so far that we need hardly any ex-
tra effort to derive transition probabilities for the TN93 
model. There are two equivalent specifications of the 
rate matrix for the TN93 model. The first is

93  = 

G R G R C T

A R A R C T
TN

A G T Y T Y

A G C Y C Y

A
G

Q
C
T

βπ γ π π βπ βπ
βπ γ π π βπ βπ

βπ βπ βπ γ π π
βπ βπ βπ γ π π

− + 
 + − 
 − +
 + − 

  (53)

Where the diagonal elements are constrained by 
each row summing up to 0. The second specification 
simply replaces (β + γR/πR) by α1 and (β + γY/πY) by α2. We 
see that TN93 is reduced to F84 if γR = γY, and to HKY85 
if γR / πR = γY / πY.

The similarity between TN93 and F84 allows us to 
re-use Figure 4 for deriving transition probabilities for 
TN93. We only need to add a subscript R to γ and α in 
Figure 4 so that we have γR and αR as rates for purine, 
keeping everything else the same, and we instantly ob-
tain the transition probabilities for transitional substitu-
tions between purines and for transversional substitu-
tions as shown in Figure 4. To get transition probabilities 
between pyrimidines, we can just replace the original 
nucleotide A in Figure 4 by nucleotide C or T and rename 
γ and α in Figure 4 to γY and αY. Note that our αR = β+γR, 
and αY = β+γY.

The transition probability matrix for the TN93 model 
is ( ) ( )

( ) ( )
( ) ( )
( ) ( )

1 2 1 2

1 2 1 2

93

3 4 3 4

3 4 3 4

1 1

1 1
 = 

1 1

1 1

t t
A A Y G G G Y G C T

t t
A A Y A G G Y A C T

TN t t
A G C C R G T T R T

t t
A G C C R C T T R C

x x x x e e
A

x x x x e eG
P

C e e x x x x
T e e x x x x

β β

β β

β β

β β

π π π π π π π π π π

π π π π π π π π π π

π π π π π π π π π π

π π π π π π π π π π

− −

− −

− −

− −

 + + + − − −
 
 + − + + − −

 − − + + + −

 − − + − + + 






 (54)

Where x1 and x3 are the same as those in Eq. (34), but 
x2 has α replaced by αR and x4 has α replaced by αY, i.e., 

1 2 3 4  ,   ,   ,   
R Yt tt t

R R Y Y

e e e ex x x x
a ab b

p p p p

- -- -

= = = =         (55)

To obtain the distance for the TN93 model (DTN93), re-
call that a distance is defined as µt where µ is the aver-
age substitution rate, i.e., substitution rates in Eq. (53) 
weighted by the equilibrium frequencies, so:

93   2 ( / ) 2 ( / ) 2TN A G R R T C Y Y Y RD t t t t tp p b g p p p b g p p p b= + + + +  (56)

Now we need to obtain αRt, αYt, and βt. The meth-
od we will use is the same as that for the K80 and F84 
models, i.e., we obtain the expected numbers of A↔G 
transitions, C↔T transitions, and transversions, desig-
nated E(SR), E(SY) and E(V), respectively, from transition 
probabilities, and equate them to the observed SR, SY 

and C↔T transitions, designated SR and SY, respective-
ly, and transversions are

( )  2
( )  2
( )  2 2 2 2

R A AG

Y C CT

A AT A AC G GC G GT

E S p
E S p
E V p p p p

p
p
p p p p

=

=

= + + +
       (48)

Setting E(SR) and E(V) to their the observed SR and V, 
and solve for βt and γt, we have

2

  ln 1
2

(2 )1  ln
2

R Y

A G R Y
R

R A G R Y R Y R A G Y

Vt

Vt
S V

b
p p

p p p p
g

p p p p p p p p p p

æ ö÷ç ÷= - -ç ÷ç ÷çè ø
æ ö- ÷ç ÷= ç ÷ç ÷ç - -è ø

       (49)

Where βt is the same as that in Eq. (38), and γRt in Eq. 
(49) is γt estimated from observed SR and V.

Now we obtain another set of solutions for βt and γt 
by setting E(SY) and E(V) to their observed SY and V, and 
solve for βt and γt, we have the same βt but a different 
γt:

2

(2 )1  ln
2

C T R Y
Y

Y C T R Y Y R Y C T R

Vt
S V

p p p p
g

p p p p p p p p p p

æ ö- ÷ç ÷= ç ÷ç ÷ç - -è ø           
(50)

A weighted average of γt could be

  R R Y Yt t tg p g p g= +                       (51)

The distance for the HKY model

85     2 ( ) 2 ( ) 2HKY A G T C Y RD t t t t t tm p p b g p p b g p p b= = + + + +  (52)

To compute DHY85 using the two aligned sequences 
in Figure 2, we have πA = 6/48, πC = 12/48, πG = 10/48, πT 
= 20/48, SY = 4/24, SR = 0, V = 2/24, βt = 0.2076393648, 
γRt = -0.2223239164, γYt = 1.047432870, weighted γt = 
0.624180608, DHKY85 = 0.308904. I intentionally choose 
the aligned sequences in Figure 2 with SR = 0 just to see 
if DHKY85 would behave strangely. It did not. For compari-
son, the same two sequences yield DF84 = 0.319887.

In general, DHKY85 is slightly smaller than DF84. I used 
the eight vertebrate COI sequences in the FASTA file 
VertCOI.fas that comes with DAMBE [11] to compute 
both DHKY85 and DF84 (Figure 5). The difference is minor, 

         
y = 0.9991x - 0.0023

R² = 0.9996

0.09

0.14

0.19

0.24

0.29

0.09 0.14 0.19 0.24 0.29

DH
KY

85

DF84

Figure 5: Evolutionary distances from the HKY85 and F84 
models are nearly identical.
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ferential equations and the other involving matrix expo-
nential and logarithms, are often used in practical com-
putation with the GTR model for nucleotide sequences 
and amino acid-based substitution models. They will be 
numerically illustrated elsewhere.
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and V to solve for αRt, αYt, and βt:
( )  2   
( )  2   
( )  2 2 2 2   

R A AG R

Y C CT Y

A AT A AC G GC G GT

E S p S
E S p S
E V p p p p V

p
p
p p p p

= =

= =

= + + + =
   (57)

The resulting αRt, αYt, and βt are

2

2  ln
2

A G R Y
R

A G R Y R Y R A G Y

a t
S V

p p p p
p p p p p p p p p
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  (58)
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p p p p p p p p p
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  ln 1
2 R Y

Vtb
p p

æ ö÷ç ÷= - -ç ÷ç ÷çè ø
                       (60)

If one wishes to express DTN93 in SR, SY and V, then one 
may just substitute γRt, γYt, and βt into Eq. (56), which 
yields:

[ ] [ ]1 2 1 3
93 1

2 ln( ) ln( ) 2 ln( ) ln( )
  2A G Y C T R

TN R Y
R Y

x x x x
D x

p p p p p p
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Where
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3 2
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             (62)

To illustrate the application of DTN93 with the two aligned 
sequences in Figure 2, we have πA = 6/48, πC = 12/48, πG = 
10/48, πT = 20/48, SY = 4/24, SR = 0, V = 2/24, αRt = 0.13353, 
αYt = 0.90593, βt = 0.20764, γRt = αRt – βt = -0.07411, γYt 
= αRt – βt = 0.69829, DTN93 = 0.35299. The variance of the 
DTN93 can be obtained by either the delta method or the 
method using Fisher information matrix. Note that SR = 0 
means no information for estimating αRt properly.

I should mention that all distance formulations in this 
paper are known as Independently Estimated (IE) distan-
ces because they use information from only two aligned 
sequences and are independent of other pairs of sequen-
ces. Practical molecular phylogenetic analysis typically 
would use Simultaneously Estimated (SE) distances [12,13] 
which use information from all pairs of sequences. SE dis-
tances are implemented in MEGA [14] and DAMBE [11,15]. 
The PhyPA [16] function in DAMBE, which performs phylo-
genetic reconstruction base on pairwise alignment when 
reliable multiple sequence alignment is difficult to obtain 
for highly diverged sequences, uses SE distances only.

In short, the approach of deriving transition proba-
bilities by probability reasoning can go a long way if one 
can do good bookkeeping. In particularly, the probabili-
ty reasoning approach is very useful for conceptual un-
derstanding. However, the approach becomes increas-
ing difficult with more complicated substitution models. 
Two alternative approaches, one involving solving dif-
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