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Abstract

NF-κB essential modulator (NEMO) syndrome is an immu-
nodeficiency disease. NF-κB proteins, which regulate the 
expression of genes that moderate important physiological 
processes, are called regulatory of cell homeostasis. NEMO 
is a protein in the IKK inhibitor complex that many organ 
systems normally do not grow. Cells (as well as organ and 
tissues) do not grow proteins they express proteins. The dis-
ease occurs due to mutation in the IKBKG gene. The IKBKG 
gene, located in the Xq28 chromosomal region or located in 
the X chromosome. The disease indicates an impairment of 
NF-κB activation and the initial treatment of NEMO is very 
difficult. About 70-80% of patients have similar DNA rear-
rangements. Epilepsy is observed in about 50% of patients 
with these disorders. Therefore, there is little information 
about the NEMO disease and more research is needed to 
further examine the syndrome.
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tors include five proteins: RelA, RelB, c-Rel, p100, and 
p105. All of these have relative homology (RHD), which 
is involved in binding to DNA and interacting with lκB in-
hibitors [2,3]. Three groups of Rel homology domain A, 
B, and C have the transcription activation domain, but 
other groups (p100 and p105) do not have transcrip-
tion activation domain (TAD). In fact, these proteins 
are a precursor to NFκB and the p50/RelA subunit is ex-
pressed in most cells [4]. Therefore, the functions of this 
transcription factor (NF-κB) are important to the central 
nervous system (CNS). This transcription factor plays a 
regulatory role in the response to synaptic transmission 
and neuronal survival. In general, diseases caused by 
NF-κB signaling mechanisms lead to many abnormalities 
in the immune system, vascular system, skin, bones, and 
CNS [5,6]. One of the most important features of NF-κB 
transcription factors is their association with IKB inhibi-
tors [1]. This protein inhibitor is found in the cytoplasm 
cell and consists of three members: IκBα, IκBβ, and IκBε 
[1]. In the N-terminal of these inhibitors, the protected 
sequence contains two Serine residues, which can be 
altered by phosphorylation [7]. Serine phosphorylation 
is performed by the IκB kinase complex (IKK). The main 
components of this kinase complex include IKK1 and 
IKK2 subunits and regular subunit, NEMO [8]. NEMO is 

Introduction

NF-κB proteins, which regulate the expression of 
genes that moderate important physiological processes 
(immunity, inflammation, death, and cell proliferation), 
are called regulatory of cell homeostasis. NF-κB is regu-
lated by a number of different stimuli [1]. The NF-κB fac-
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this disease, the first symptoms are whiteness of skin and 
inflammatory response. Afterward, hyperkeratoscopic 
lesions are created (the melanin uptake eliminates parts 
of the hyperpigmentation). Then, there are the lines of 
Blaschko, which often disappear in the second decade, 
but it is possible to observe skin allergies and lack of 
hair follicle in adults. The patients can suffer from den-
tal, ocular, skin, and nervous problems, as well as nerve 
dystrophy in very rare cases. More than 80% of patients 
are observed to have inappropriate, incomplete, or ex-
cess teeth [13]. Approximately 35% of patients have eye 
problems mostly abnormalities of the retina; in certain 
cases, acute blindness may occur [14]. Neurological ab-
normalities are found in about 30% of these patients. 
Problems like epilepsy, skin disease, hemiparesis, cere-
bellar ataxia, microsphere, mental retardation, and spas-
ticity in early life are associated with rare cases of CNS 
disorders and can be fatal. Seizures caused by severe 
cerebrovascular injury cause thalamus bleeding, isch-
emia, and necrosis in both hemispheres [15].

Genetics and Mutations in NEMO

The Bloch-Siemens encoding gene is located in the 
chromosomal region Xq28 [16]. NEMO is in a position 
where its gene is mutated. PCR analysis of the NEMO 
gene in male IP (Incontinentia Pigmenti)-embryonic cells 
reveals a lack of proliferative fragments of exon 10-4 
[17]. About 70-80% of patients suffer from loss of exon 
NEMOdel. This process results from nonallelic homolo-
gous recombination (NAHR) between two sequences of 
MER67B at the upstream of exon 4 and downstream of 
exon 10 NEMO (Figure 1) [1].

a binding domain (NBD) containing the IKK interaction 
sequence in the N-terminal, NEMO ubiquitin binding in 
the mid-section, and the Z-finger (ZF) structure in the 
C-terminal [9].

IKBKG mutations and NEMO defect were first detect-
ed in 1999. This syndrome is a genetic mutation associ-
ated with the defect of the NEMO protein which many 
organ systems normally do not grow including immune 
deficiency. The NEMO syndrome is a disease caused by 
genetic mutations in the X-linked gene. The syndrome is 
observed in different people in different ways. The most 
common symptoms are skin disease and bacterial infec-
tions [1]. NEMO is an IKK regulatory subunit that has af-
finity to polyubiquitinated chains and leads to the use of 
upstream activators and catalytic IKK activity. Cells that 
do not activate NEMO NF-κB are eliminated through the 
main pathway [10].

Genetic Diseases Associated with NEMO

Bloch-Siemens syndrome

Clinical features: Bloch-Siemens syndrome is a ge-
netic disease associated with chromosome X that oc-
curs in males at an early stage of development and is 
fatal before the second trimester. But in females, due 
to the inactivation of chromosome X, the reduction of 
genetic defects and pathology is more severe and vari-
able [1,11,12].

One of the most common features of this syndrome 
is the presence of severe dermatosis, which often begins 
two weeks after birth and lasts for months and years. In 

         

Figure 1: DNA rearrangements of the NEMO and ψ-NEMO loci. In the upper part of the figure, the genomic organization of 
the NEMO gene and the pseudogene ψ-NEMO (IP locus) is shown together with the genomic organization of the neighboring 
gene G6PD, which shares promoter elements with NEMO. In the lower part of the figure are shown the main rearrangements 
occurring in the IP locus. Among them is the recurrent one that deletes exon 4-10 of NEMO in approximately 70% of IP patients 
(Red frame) [1].
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LCRs. Polymorphic changes in pseudoNEMOdel or its 
point mutation causes pathogenic IP mutations [19-
21]. The rearrangements include the removal of NEMO 
and ψ-NEMO and G6PD. In some cases, NHEJ (non-ho-
mologous end-joining) is shown to produce benign and 
pathologic alleles, NHEJ, and the Alu-Alu recombina-
tion. NEMO reinsertion in IP leads to short versions of 
NEMO [19,21,22].

There is an exception namely microdeletion (dele-
tion of the amino acid K90). The mutation in K90 is asso-
ciated with intense IP status, which is not necessary for 
the interaction of NEMO with catalytic subunits of the 
IKK. However, the deletion of aa in this section is suffi-
cient to disrupt the amino acids E89, F92, and L93 and 
the remaining D738, T735, and F734 (IKK2). It is worth 
noting that there are a few missense mutations in the 
NEMO of these patients (Figure 3) [23,24]. The muta-
tion in the A323P causes the development of IP and CNS 
disorders. There is evidence that these mutations affect 
the signaling pathways of NF-κB. The mutation in E57K 

The NEMO map or IP location in the centromeric re-
gion overlaps with the glucose-6-phosphate dehydro-
genase (G6PD) gene. The promoter region protected 
in these two genes is Promoter B. But the special pro-
moter for NEMO is Promoter A [18]. In the telomeric 
region, NEMO is in the part of 35/7 kb, which has a low 
or non-functional copy called pseudoNEMO (ψ-NEMO). 
The two LCRs-functional gene (LCR1) and false gene 
expression (LCR2) are homologous and susceptible to 
recombination. Evidence suggests that the IP gene site 
undergoes NAHR production, pathological rearrange-
ment (NEMOdel), or MER67Bdup and pseudoNEMOdel 
(Figure 2) [1,18].

Also, some other findings indicate that pseudoNE-
MOdel and MER67Bdup variants are known as risk al-
leles for the IP [1]. Findings by Ardia, et al. show the 
sequencing exchange between LCR1 and LCR2, which 
refers to the occurrence of inverse events from the op-
posite direction. Additionally, evidence suggests that 
recombination by NAHR takes place between the two 

         

Figure 2: Chromosomal deletions affecting the NEMO gene in IP. The various deletions that have been identified are 
compiled. In several instances, G6PD is also affected. The largest one identified so far (deletion IP-48) also eliminates 
ψ-NEMO [1,18].

         

Figure 3: NEMO missense mutations and short internal deletions of NEMO found in pathology. Red arrows indicate IP-
related missense mutations, green arrows indicate EDA-ID-related missense mutations, blue arrows indicate OL-EDA-ID-
related missense mutations, and gray arrows indicate ID-related missense mutation. A short internal deletion of NEMO 
associated with ID is also indicated with a gray bar. Compiled from Refs. [19,37,45]. Formally and putatively (question mark) 
demonstrated molecular defects are also indicated.

https://doi.org/10.23937/2378-3648/1410033


DOI: 10.23937/2378-3648/1410033 ISSN: 2378-3648

Zinatizadeh et al. J Genet Genome Res 2018, 5:033 • Page 4 of 6 •

stimulates the interaction of NEMO and TRAF6, creat-
ing a dual interaction between NEMO and TRAF6, which 
does not interact with IKK [1,23,24].

IP (Incontinentia Pigmenti) Treatment

Although there are no phenotypic symptoms in these 
patients, the initial treatment of NEMO is very difficult. 
As stated above, 70-80% of patients have similar DNA 
rearrangements.

The statistics show that it only affects 50% of the 
patients. Epilepsy is observed in about 50% of patients 
with these disorders. Reports show that appropriate 
treatments are sometimes ineffective. It should be 
noted that skin anomalies in the disease of the IP are 
similar to psoriasis. However, it is not yet clear whether 
inhibiting a process can lead to the elimination of mu-
tated cells [25-27].

NEMO-linked Immunodeficiency [NEMO-ID]

According to findings on mutated NEMO, men with 
immunodeficiency syndrome are not associated with 
ectodermal dysplasia (EDA) (Figure 3). These patients 
do not show a specific infection; therefore, they can be 
differentiated from EDA-ID patients. At the moment, it 
is difficult to understand that NEMO mutations do not 
cause EDA. Mutations that contribute to protein ex-
pression have a great impact on cellular immunity. The 
NEMO frameshift mutation in alanine 37 amino acids 
is located near methionine 38 and causes immunode-
ficiency without any symptoms of EDA. However, this 
problem is interesting because it involves two muta-
tions occurring only in an immunodeficiency, which re-
sults in short deletions in 276-271 and 373-353 domain, 
which have not been determined yet [28-33].

Anhidrotic Ectodermal Dysplasia with Immu-
nodeficiency [EDA-ID]

As stated, Bloch-Siemens syndrome is due to the 
lack of NEMO mutation. NEMO hypomorphic mutations 
cannot completely inhibit NF-κB activation. Evidence 
suggests that the X-linked pathology is associated with 
EDA-ID. It affects the male, but in rare cases, it also it 
affects females that is mildly similar to IP. The charac-
teristics of this disease (EDA-ID) are severe immunode-
ficiency and skin problems, including problems in teeth, 
sweat glands, and hair [34,35].

Clinical Features

The patients suffer from frequent bacterial and viral 
infections. The most common pathogens are S. pneu-
moniae and S. aureus. In most cases, chronic mycobac-
terial infections are observed, and some of these pa-
tients also suffer from HSV encephalitis [1]. The disease 
is associated with poor prognosis and progress. It stimu-
lates adaptive immunity in some patient; defects in the 
production of specific antibodies have been observed in 
hyper IgM syndrome [36,37].

Defective cell B causes CD40 disorder. In rare cases, 
T-cell deficiency has been reported, which affects myco-
bacterial infections as well as viruses. However, its mo-
lecular and clinical diagnosis is difficult [38]. Colon in-
flammation has been reported in some EDA-ID patients. 
The disease is similar to Crohn’s disease, but it is still 
unclear whether it is due to mycobacteria or whether 
EDA-ID causes a defect in the Nod2 signaling pathway. 
Also, this EDA-ID leads to problems such as pale hair, 
lack of eyebrows and eyelashes, severe oligodontia, and 
the absence or reduction of sweat [1,39-42]. Studies 
using biochemical analysis show that these abnormali-
ties lead to a mutation in the signaling pathway of ec-
todysplasin EDA receptor, which is related to EDA. The 
receptor of edema ectodysplasin is bound to IKK/NF-κB 
by NEMO. The OL-EDA syndrome is one of the rare cas-
es that causes a defect in the RANK signaling pathway. 
In fact, this syndrome is caused by disturbances in the 
signaling pathway of VEGFR3 [43,44].

Genetic and Molecular Aspects of EDA-ID

NEMO mutations in EDA-ID are more dangerous 
than IP mutations, and survival rate is lower in males. 
Hypomorphic mutations show a change in NEMO activ-
ity, which indicates heterogeneity of the EDA-ID phe-
notype. The frameshift and nonsense mutations cause 
EDA-ID. The mutations in some cases result in the re-
moval of NEMO ZF. In most patients, deletions are seen 
through missense mutations [37,45,46].

Moreover, the factor that affects the oligomerization 
and activation of NF-κB is due to a mutation in the EDA-
ID or an A288G mutation in the CC2 region of the NEMO 
[47]. On the other hand, the mutation associated with 
OL-EDA-ID or X420W causes severe protein deficiency 
[47,48]. However, it is still unclear whether the NEMO 
expression defect is responsible for the OL-EDA-ID. It 
is also noteworthy that OL-EDA-ID is due to the Q157P 
mutation in the NEMO region, leading to EDA-ID or IP.

EDA-ID Treatment

If the patients become infected, the plasma protein 
C concentration does not increase (due to a defect in 
the TLR-signaling pathways); therefore, they should 
be treated with intravenous antibiotics. The infection 
in EDA-ID patients can be dangerous; therefore, the 
recommended method is to restore some protective 
functions of the allogeneic HSCT. But this method of 
treatment also has problems and is not always success-
ful. In patients who show bowel inflammation before 
the transplant, a transplant may worsen the condition 
[47,49-51].

Conclusion

Diseases of the NEMO mutation indicates an impair-
ment of NF-κB activation. Recent findings indicate that 
NEMO plays a specific protective role in blood vessels 
and may lead to IP-related abnormalities in the event of 
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its functional impairment. This provides molecular tar-
gets for new therapies. There is little information about 
the NEMO disease and more research is needed to fur-
ther examine the syndrome.
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