

SHORT REPORT

Which Aligner Software is the Best for Our Study?

Abolfazl Bahrami*

Department of Animal Science, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

*Corresponding author: A Bahrami, Department of Animal Science, Tehran University, Karaj, I.R. Iran, Tel/Fax: +98-9199300065

Abstract

Aligners are the most important software used in the field of Transcriptomics studies and related fields. In the recent study, almost all the aligners could be configured to give good results, but still, researchers and scientists who use such software face challenges in choosing accurate, sensitive, requiring fewer hardware facilities and ultimately appropriate with their research goals. We try to clarify the various challenges and misunderstandings, below.

Introduction

Alignment is the first step in most RNA-seq analysis pipelines, and the accuracy of downstream analyses depends heavily on it. Many algorithms have been developed for this alignment step. Due to the increasing growth in the use of aligning and mapping software, this software has become particularly important. This seemingly worthless issue but it is confusing and difficult to compare results from different approaches. We performed a comprehensive benchmarking of 4 popular and common aligners and compared default with optimized parameters. Another thing that should be considered is how robust the results are to different parameters. In the previous studies, almost all the aligners could be configured to give good results, but they differed in the performance of the default options [1], with HISAT2 (hierarchical indexing for spliced alignment of transcripts 2) looking pretty good in those terms [2]. We have to say though, we use HISAT2 a lot just because of how easy it is and how few resources it requires. Therefore, in this research, we have done a statistical analysis using SPSS software on simulated (The simulation engine BEERS [3] was used to generate simulated data. Data were generated for human. Each data set consists of 15 million 100-base paired-end strand-specific reads. The genomes used were Homo sapiens hg19. For human data, 30,000 transcript models were chosen at random) and real data in the GEO (Gene Expression Omnibus) database [4] (Supplementary Table 1 shows the accession number, number of samples and related study title of data used in this study that obtained from different experiments (~116 billion reads)). Some studies have shown related software in comparison with other software in terms of sensitivity, precision, run time and memory usage and shown HISAT2 is more acceptable (Supplementary Table 2) but it's not about the number of mapped reads and the power of other software. In this way, the most important of these software include HISAT2, TopHat2 [5] and STAR [6], and the other hand because HISAT2 uses the Bowtie2 [7] implementation, so we compared these four software in terms of mapping percentage averages (Supplementary Table 3).

The simplified results of the comparisons are presented in Table 1. Table 2 shows the percentages of mapping on the human reference genome using Trim-

Table 1: Sensitivity, precision	on, run times and me	mory usage of
leading spliced aligners.		

Program	Sensitivity (%)	Precision (%)	Run time (min)	Memory usage (GB)
HISAT2	97.3	94.8	26.7	4.3
TopHat2	90.6	82.6	1,170	4.3
STAR	96.3	88.3	25	28
Bowtie2	91.1	79.2	13	14

Sensitivity, precision, run times and memory usage of leading spliced aligners for 87,944 true splice sites contained in 30 million simulated reads from the human genome, with a mismatch rate of 0.5%. We used three CPU cores to run the programs on a Mac Pro with a 3.7 GHz Quad-Core Intel Xeon E5 processor and 64 GB of RAM.

Citation: Bahrami A (2020) Which Aligner Software is the Best for Our Study?. J Genet Genome Res 7:048. doi.org/10.23937/2378-3648/1410048

Accepted: May 11, 2020: Published: May 13, 2020

Copyright: © 2020 Bahrami A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Software	Number of	Total Mapped	1 Place Mapped	More Than 1 Place Mapped
	Sample	(%)	(%)	(%)
Hisat2	2045	92.536 (1.348) ^b	89.222 (1.456) ^a	3.314 (0.762) ^a
Tophat	2045	94.108 (1.315) ^a	87.832 (1.440) ^b	6.276 (0.494) ^b
STAR	2045	86.332 (1.314) ^c	74.477 (1.055)°	11.855 (0.667)°
Bowtie2	2045	69.698 (1.318) ^d	53.891 (1.035) ^d	15.807 (1.356) ^d
SEM		0.320	0.325	0.230

Table 2: Results of the comparisons of leading spliced aligners.

Percentage of total mapped, 1 place mapped and more than 1 place mapped of leading spliced aligners for 2045 samples from the GEO data bases. ^{a,b,c,d}Values with different superscripts within the same column differ significantly.

Figure 1: Alignment accuracy of spliced alignment software for 30 million simulated 100-bp reads. Reads are categorized as indicated by the colors. For multimapped reads, an aligner was credited with a correct alignment if it mapped a read to multiple locations. Note that the set of multimapped reads reported by the various aligners may be different, depending on each program's alignment policy and default behavior. The upper numbers are the percentages corresponding to correctly mapped reads. The numbers inside parentheses show percentages for cases correctly mapped and correctly multimapped.

momatic software [8] output files and then using HI-SAT2, TopHat2, STAR and Bowtie2 aligner (existed aligner in the galaxy server). Reads declared 'aligned' can be summarized in three main groups: Correctly mapped, correctly multimapped, and incorrectly mapped reads. Hopefully, an effective tool will report the majority of reads aligned correctly, with a few reads aligned ambiguously and very few reads aligned incorrectly (Figure 1).

Results of analysis as follows:

 TopHat2 maps a greater percentage of reads on the reference genome. As well as, correctly multimapped percentage is higher than other software; this can be useful in capturing non-coding regions such as miRNAs and other non-coding RNAs (Supplementary Figure 1).

- The precision of the HISAT2 is higher when considering the mapped percentage parameter on a particular location.
- On the other hand, TopHat2 has the power to detect introns from exons and map more reads to more than one specific location.
- STAR maps a greater percentage of reads as incorrectly mapped.
- Finally, Bowtie2, which is more specific to DNA-Seq data, is not practical for using in RNA-Seq mapping studies.

For data science, the software must be provided

via an easy to use, unified interface, such that they can be easily deployed and sustainably managed. With an understanding of its ability to analyze data set, the researchers will have a better interpretation of their results. Eventually, the results of the statistical analysis of this research can be a good guide for researchers using this software.

Competing Interests

The authors have no financial conflicts of interest.

Additional Information

The authors declare that data supporting the findings of this study are available within the article and its Additional files.

Acknowledgements

We would like to thank Prof. Reza Miraie-Ashtiani and Prof. Mostafa Sadeghi for providing critical feedback and reagents, Ghorban Elyasi Zarringhabaie for technical assistance and the University of Tehran, Department of Animal Science. We also thank the anonymous reviewers for their constructive feedback which significantly improved the quality of our analysis.

References

- Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HI-SAT2 and HISAT-genotype. Nat Biotechnol 37: 907-915.
- Kim D, Langmead B, Salzberg SL (2015) HISAT: A fast spliced aligner with low memory requirements. Nat Methods 12: 357-360.
- 3. Grant GR, Farkas MH, Pizarro AD, Lahens NF, Schug J, et al. (2011) Comparative analysis of RNA-Seq alignment algorithms and the RNA-Seq unified mapper (RUM). Bioinformatics 27: 2518-2528.
- Barrett T, Wilhite SE, Ledoux P, Evangelista C, Kim IF, et al. (2013) NCBI GEO: Archive for functional genomics data sets--update. Nucleic Acids Res 41: 991-995.
- Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, et al. (2013) TopHat2: Accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions. Genome Biol 14: 36.
- Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, et al. (2013) STAR: Ultrafast universal RNA-seq aligner. Bioinformatics 29: 15-21.
- 7. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9: 357-359.
- Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30: 2114-2120.

Supplementary Table 1: The accession number, number of samples and related study title of data used in this study that obtained from different experiments (~116 billion reads).

Accession number	Samples	Title
GSE130401	21	The hippo pathway effector protein YAP modulated resistance to trametinib neuroblastomas with hyperactivated RAS pathway signalling
GSE137290	21	Distinct mechanisms of acquired resistance to oncogenic kinase inhibition in cancer cells revealed using a single-step, high-dose selection scheme
GSE135902	40	The Transcriptome Of Cmml Monocytes Is Highly Inflammatory And Reflects Leukemia-Specific And Age-Related Alterations
GSE124326	480	Whole blood transcriptome analysis in bipolar disorder reveals strong lithium effect
GSE120597	50	Genetic Abnormalities in Large to Giant Congenital Nevi: Beyond NRAS mutations
GSE139250	51	Exploring the impact of chonic hypoxia on the expression of DNA repair gene in Glioblastoma and Medulloblastoma cells.
GSE129705	128	RNA-sequencing of whole blood samples from biologic naïve rheumatoid arthritis patients initiating anti-TNF treatment
GSE115046	110	Massively parallel characterization of regulatory dynamics during neural induction
GSE139181	33	Transcriptomics analysis of trimester-specific full-term placentas from three Zika virus-infected women
GSE130289	139	Dynamics of Trophoblast Differentiation in Peri-implantation Stage Human Embryos
GSE118912	32	Activity-by-Contact model of enhancer specificity from thousands of CRISPR perturbations
GSE105160	197	RNASeq of mouse, human, and non-human primate primary dermal fibroblasts to poly(I:C) transfection
GSE138988	24	Transcriptome-wide comparison of stress granules and P-bodies reveals that translation plays a major role in RNA partitioning
GSE138853	30	Impact of transcriptional mutagenesis on p53 transactivation
GSE137392	60	MITF regulates SCD and fatty acid saturation to control melanoma phenotypic state.
GSE137391	24	Transcriptomics profiling of some commonly used cell lines at the base-line culture condition
GSE137390	36	Lineage-restricted regulation of SCD and fatty acid saturation by MITF controls melanoma phenotypic plasticity
GSE116698	76	Co-Stimulation–Induced AP-1 Activity is Required for Chromatin Opening During T Cell Activation.
GSE112855	45	Next generation sequencing profiling experimental circulating tumor cells-derived metastatic variants [RNA-seq]
GSE138730	32	Altered m6A Modification of Specific Cellular Transcripts Affects Flaviviridae Infection
GSE124685	84	mRNA Sequencing to identify transcriptional changes in early and late stages of lung in human Idiopathic Pulmonary Fibrosis
GSE94690	40	elF4A2 drives repression of translation at initiation by Ccr4-Not through purine-rich motifs in the 5'UTR
GSE138485	46	Retrospective gene expression analysis of human RNA samples from Hepatocellular Carcinoma in relation with survival
GSE130751	63	Non-oncogene addiction to SIRT3 plays a critical role in lymphomagenesis
GSE127696	78	Transcriptomic profile of cystic fibrosis airway epithelial cells undergoing repair
GSE133151	74	Clonal selection confers distinct evolutionary trajectories in BRAF-driven cancers
GSE125873	31	RNA-Seq of blood in preterm infants with Bronchopulmonary dysplasia.

Supplementary Table 2: Comparison of studies.

Un Mapped (AVERAGE)	Total Mapped (AVERAGE)	1 Paired (AVERAGE)	> 1 Paired (AVERAGE)	Un Mapped (AVERAGE) (%)	Total Mapped (AVERAGE) (%)	1 Paired (AVERAGE) (%)	> 1 Paired (AVERAGE) (%)
1417277.889	17455782.67	16826840.5	628942.1667	7.558871667	92.52623056	89.20201278	3.324218333
1084243.778	17772150.39	16565979.83	1206170.778	5.803278333	94.19672167	87.81203444	6.384687222
5175759.481	13693971.39	10933493.13	2760478.275	27.45770389	72.54702401	57.91073651	14.63628698

Software	Sample	Total Sequence (AVERAGE)	Un Mapped (AVERAGE)	Total Mapped (AVERAGE)	1 Paired (AVERAGE)	> 1 Paired(AVERAGE)	Un Mapped (AVERAGE) (%)	Total Mapped (AVERAGE) (%)	1 Paired (AVERAGE) (%)	>1 Paired (AVERAGE) (%)
HISAT2	2045	18856393.89	1417277.889	17455782.67	16826840.5	628942.1667	7.558871667	92.52623056	89.20201278	3.324218333
Tophat2	2045	18856393.89	1084243.778	17772150.39	16565979.83	1206170.778	5.803278333	94.19672167	87.81203444	6.384687222
Bowtie2	2045	18868804.93	5175759.481	13693971.39	10933493.13	2760478.275	27.45770389	72.54702401	57.91073651	14.63628698

Supplementary Table 3: Comparison of four software in terms of mapping percentage averages.

