

Research Article: Open Access

Alternative Methods for Treating MRSA-Colonized and Infected Patients: Bacteriophages, Inhibitors of Wall Teichoic Acid Biosynthesis and Cultures of Not Drug-Resistant Staphylococcus Epidermidis

Felix-Martin Werner^{1,2*} and Rafael Coveñas²

¹Higher Vocational School of Elderly Care and Occupational Therapy, Euro Academy Pößneck, Germany ²Institute of Neurosciences of Castilla y León (INCYL), Laboratory of Neuroanatomy of the Peptidergic Systems (Lab. 14), University of Salamanca, Spain

*Corresponding author: Dr. Felix-Martin Werner, Medical Doctor, Dr. med. Research field: neural networks in neurological and psychiatric diseases, Euro Akademie Pößneck Higher Vocational School of Elderly Care and Occupational Therapy Carl-Gustav-Vogel-Str. 13, 07381 Pößneck, Germany, Tel: +49-3647-505520, Fax: +49-3647-5055211, E-mail: felixm-werner@versanet.de

Abstract

The colonization and infection with methicillin-resistant Staphylococcus aureus (MRSA) is a health problem of major importance in hospitals and long-term care facilities. Active decolonization measures are performed in MRSA-colonized patients; infections caused by MRSA are treated with vancomycin and other reserve antibiotics. The administration of bacteriophages could prevent the formation of MRSA biofilms. Inhibitors of wall teichoic acid biosynthesis could restore the efficacy of ß-lactam antibiotics against MRSA. A possibility to reduce MRSA colonization could be the administration of cultures of not drug-resistant Staphylococcus epidermidis or other physiological skin bacteria. Bacterial cultures should be taken regularly in order to control the descreased colonization with MRSA.

Keywords

Bacteriaemia, Colonization, Daptomycin, Decolonization, Linelozid, Methicillin-resistant Staphylococcus aureus, Multi-resistance, Staphylococcus epidermidis, Tigocycline, Vancomycin

Introduction

The bacterium methicillin-resistant Staphylococcus aureus (MRSA) which is resistant to several antibiotics, above all to ß-lactam antibiotics, is a problem of great importance in hospitals and longterm facilities [1]. In long-term care facilities, a great number of patients are colonized with MRSA. These patients are isolated in a single-room, and nurses perform the cure and disinfection wearing gloves, special clothing and masks. Above all elder patients, suffering a chronic heart disease, diabetes mellitus or showing a weak immune system or after a cancer therapy, are risk patients to acquire an infection with MRSA. These infections can occur through a selfinfection or a cross infection and can concern the respiratory and/ or urinary tracts or lead to wound infections or bacteriaemias, which still have a mortality of 20-30% [2]. A decolonization of MRSA patients can be performed through an exact disinfection. The antibiotic for the treatment of infections with MRSA is vancomycin,

which shows resistances and causes nephrotoxicity [3]. In patients, who do not respond to an antibiotic treatment with vancomycin, an alternative treatment is the administration of daptomycin combined with fosfomycin [4].

MRSA

Methicillin resistance is conferred to the bacterium Staphylococcus aureus, once this bacterium has acquired a non-native gene encoding a penicillin-binding protein (PBP2a) [5]. This gene can be transferred to the physiological bacteria of the skin, Staphylococcus epidermidis. Then, the multi-resistant bacterium methicillin-resistant Staphylococcus epidermidis (MRSE) is formed [6].

Colonization with MRSA

Colonization with MRSA and other multi-resistant bacteria is a health problem often found in hospitals and long-term care facilities. In long-term care facilities in Gran Canaria (Spain), 235 residents were examined whether they were carriers of multi-resistant bacteria or of MRSA [7]. The study reported that 36.2% of the residents were colonized with multi-resistant bacteria, and among them, 10.2% were colonized with MRSA [7]. Patients' screening, in order to know whether they are carriers of MRSA, is generally not recommended on hospital admission [7,8]. Inpatients colonized with MRSA are isolated in a single room according to the guidelines of the Rober-Koch-Institute, whereas there are no guidelines, only recommendations, for residents in long-term care facilities [9]. Outpatients are advised to perform measures of decolonization [9]. Patients should be cared with an antiseptic soap, which contains chlorhexidine [10]. In a randomized study, carried out in three groups of adults and children with recurrent MRSA skin and soft tissue infection, a total household decolonization with intransal musiprocin and chlorhexidine gluconate body wash was examined. The first group was educated on routine hygiene, in the second decolonization without reminders was carried out, and in the third group decolonization with reminders was conducted. It has been reported that patients who showed a good compliance in the decolonization measures had a more rapid

Citation: Felix-Martin W, Coveñas R (2016) Alternative Methods for Treating MRSA-Colonized and -Infected Patients: Bacteriophages, Inhibitors of Wall Teichoic Acid Biosynthesis and Cultures of Not Drug-Resistant Staphylococcus Epidermidis. J Infect Dis Epidemiol 2:022 Received: May 16, 2016: Accepted: November 14, 2016: Published: November 16, 2016 Copyright: © 2016 Felix-Martin W, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

clearance of MRSA [11]. Bacterial cultures should be taken regularly from the nose, the armpit and the groin of the colonized patient and be examined, if they were positive for MRSA. When a nose culture is positive for MRSA, a locally disinfecting treatment with mupirocin should be performed twice daily for seven days [12]. Hand disinfection should be carried out very carefully; alcohol exerts a good bactericide effect. By this way, transmissions from nurses to patients or from patients to nurses are prevented.

Infection with MRSA

When an infection with MRSA (e.g., wound infection, pneumonia, infection of the urinary tract or a bacteriaemia) occurs and MRSA is diagnosed in the bacterial culture, disinfection with polyhexanide is the appropriate measure to disinfect the wound [12]. Vancomycin is the antibiotic of choice for the treatment of infections with MRSA. If the appropriate dose is used and the treatment interval is considered, the anti-infective action cures the infection. Common adverse effects are ototoxicity, nephrotoxicity, allergic reactions and neutropenia [4]. After a vancomycin-intermediate Staphylococcus aureus is diagnosed, a combination of daptomycin with fosfomycin is suggested [3]. In a clinical phase III study, it was found that this combination of antibiotics cured 60% of the bacteriaemias. Although vancomycin and reserve antibiotics are available, bacteriaemia remains a highly acute infection with disturbances of consciousness and shock symptoms with a high mortality [3]. In an Iranian referral hospital for children in Teheran, 172 sputum cultures were collected from patients suffering cystic fibrosis. 40% of them had colonization with MRSA. Among the cultures with MRSA, no resistance was found against vancomycin, linezolid or quinupristin/dalfopristin [13]. From 2004 to 2014, during the Tigecycline Evaluation and Surveillance Test, pathogens from 27 medical centers in Spain were collected. Among the cultures with Staphylococcus aureus, 34.1% of them were methicillinresistant. All MRSA were susceptibile to vancomycin or tigocycline [14]. Fifth-generation cephalosporins, for example ceftobiprole and ceftaroline, can be used to treat infections due to MRSA. In the case of MRSA resistance against fifth-generation cephalosporins, non-mecA mechanisms are important for the development of resistance of these antibiotics against MRSA. The mecA resistance determinant encodes the penicillin-binding protein (PBP2a), to which some beta-lactam antibiotics bind, and also mediates resistance to these antibiotics [15].

Treatment of MRSA-colonized and infected patients with bacteriophages

Patients infected with MRSA might be treated with a cocktail of bacteriophages. In an animal model of osteomyelitis, it was examined the therapeutic effect when a cocktail of bacteriophages was administered to treat an osteomyelitis caused by MRSA [16]. Osteomyelitis is commonly caused by methicillin-resistant Staphylococcus aureus. Twenty-two rabbits were used in this experiment. The authors divided the animals into three groups: the first group was used to asses osteomyelitis, the second group started therapy after six weeks, and the third group started therapy after three weeks. The second and third groups were treated with a cocktail of seven virulent bacteriophages. These groups recovered from osteomyelitis and showed no sign of infections after the therapy with bacteriophages [16]. Enzymes derived from bacteriophages might inactivate MRSA biofilms. In this sense, the enzyme cysteine, histidine-dependent amido hydrolase/peptidase (CHAPK) has been isolated and, in an animal experimental model, this enzyme disrupted and prevented the formation of staphylococcal biofilms [17].

Tarocins and other other inhibitors of wall teichoic acid biosynthesis which restore efficacy of ß-lactam antibiotics against MRSA

The dramatically increasing emergence of MRSA-colonized and -infected patients in hospitals and long-term care facilities requests the need for new therapeutic strategies. By genetic and biochemical means, it was found that inhibitors of the teichoic acid biosynthesis, namely tarocin A and B which do not have an intrinsic activity, restore the anti-infective efficacy of β -lactam antibiotics in combination with these inhibitors [18]. In clinical trials, it should be examined whether tarocin A and B might successfully treat infections caused by MRSA in combination with β -lactam antibiotics [18].

Treatment of MRSA-colonized patients with cultures of not drug-resistant *Staphylococcus epidermidis*

In long-term care facilities, a high percentage of patients are colonized with MRSA having the risk to acquire an MRSA infection through a self-infection or by means a cross infection. Generally, these patients are treated with appropriate measures of disinfection [1]. It might be possible to administer cultures of Staphylococcus epidermidis, which have no antibiotic resistance, above all no methicillin resistance. Since genes can be transferred through a horizontal inter-bacterial gene transfer between MRSA bacteria and physiological bacteria, it is possible that physiological genes are transferred to MRSA bacteria or that MRSA genes are transferred to Staphylococcus epidermidis [19]. In a meta-analysis, it was found that among nursing students, the detection of MRSA was stable after measures of disinfection and that the colonization with other forms of Staphylococcus was increased [19]. If a decolonization of MRSA with cultures of not drug-resistant Staphylococcus epidermidis is performed, bacterial cultures should be taken from the skin and mucous membrane in order to control if the colonization with MRSA is decreased or increased [1]. In a finecelled foam model with three growth regimes, namely simulated sweat, simulated serum and simulated sweat with simulated serum, it was investigated whether sessile cultures of the physiological skin bacteria Staphylococcus saprophyticus and Corynebacterium xerosis might inhibit the growth of MRSA and Pseudomonas aeruginosa. It was found that in both simulated sweat and serum, the physiological bacteria inhibited the integration of MRSA and P. aeruginosa. However, in the simulated sweat with simulated serum, both pathogens integrated into pre-established biofilms [20]. In preclinical studies, the ecological displacement of MRSA by physiological skin bacteria has been examined and it has been shown that its effect is not secure [20].

Conclusion

A colonization with MRSA and an infection with this multiresistant bacterium is a health problem of major importance in hospitals and long-term care facilities. The decolonization of MRSA is generally performed by appropriate measures of disinfection. Bacteriaemias with MRSA are a highly acute infection with unconsciousness and shock symptoms showing a mortality of 20-30%. Vancomycin, daptomycin combined with fosfomycin, linelozid, tigocycline or fifth-generation cephalosporins is the reserve antibiotics to cure these infections. Alternative methods to cure an infection with MRSA might be the administration of bacteriophages or the treatment with inhibitors (tarocin A, B) of the wall teichoic acid biosynthesis, which restore the efficacy of ß-lactam antibiotics against MRSA. In clinical trials, the administration of these inhibitors, as an add-on therapy, to the treatment with ß-lactam antibiotics should be examined, i.e. tarocin A and B could successfully treat infections caused by MRSA. A possibility to decolonize MRSA-colonized patients might be the administration of cultures of not drug-resistant Staphylococcus epidermidis or other physiological skin bacteria, for example corinebacterium spp. In this case, genes could be transferred between physiological bacteria and MRSA bacteria. MRSA cultures should be taken from the skin and mucous membrane in order to control if the colonization with MRSA is decreased.

Conflicts of interest

None.

References

- Werner FM, Coveñas R (2015) Methicillin-resistant Staphylococcus aureus: treatment with cultures of not drug-resistant Staphylococcus epidermidis. Recent Pat Antiinfect Drug Discov 10: 124-127.
- Cosgrove SE, Sakoulas G, Perencevich EN (2003) Comparison of mortality associated with methicillin-susceptibile and resistant Staphylococcus aureus bacteremia. Clin Infect Dis 36: 53-59.

- Shaw E, Miró JM, Puig-Asensio M, C Pigrau, F Barcenilla, et al. (2015) Daptomycin plus fosfomycin versus daptomycin monotherapy in treating MRSA: protocol of a multicentre, randomised, phase III trial. BMJ Open 5: e006723.
- Bruniera FR, Ferreira FM, Saviolli LR, Bacci MR, Feder D, et al. (2015) The use of vancomycin with its therapeutic and adverse effects: a review. Eur Rev Med Pharmacol Sci 19: 694-700.
- Peacock SJ, Paterson GK (2015) Mechanism of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem 84: 577-601.
- König DP, Randerarth O, Hackenbroch MH (1999) Nosocomial infections with methicillin-resistant Staphylococcus aureus (MRSA) and epidermidis (MRSE) strains. Their importance, prophylaxis and therapy in orthopedic surgery. Unfallchirurg 102: 324-328.
- del Rosario-Quintana C, Tosco-Núñez T, Lorenzo L, Martín-Sánchez AM, Molina-Cabrillana J (2015) Prevalance and risk factors of multi-drug resistant organism colonization among long-term care facilities in Gran Canaria (Spain). Rev Esp Geriatr Gerontol 50: 232-236.
- Kasper T, Schweiger A, Droz S, Marschall J (2015) Colonization with resistant microorganisms in patients transferred from abroad: who needs to be screened? Antimicrob Resist Infect Control 4: 31.
- Adler AC, Spegel H, Wilke J, Höller C, Herr C (2012) Strategies to prevent the transmission of multidrug resistant pathogens and their practical implementation in outpatient care. Gesundheitswesen 74: 653-660.
- 10. (2013) Optimal Bleach Concentration Required to Kill MRSA in Bath Water. American Academy of Pediatrics.
- Cluzet VC, Gerber JS, Metlay JP, Nachamkin I, Zaoutis TE, et al. (2016) The effect of total household decolonization on clearance of colonization with methicillin-resistant Staphylococcus Aureus. Infect Control Hosp Epidemiol 37: 1226-1233.

- 12. Landelle C, von Dach E, Haustein T, A. Agostinho, G. Renzi, et al. (2015) Randomized, placebo-controlled, double blind clinical trial to evaluate the efficacy of polyhexanide for topital decolonization of MRSA carriers. J Antimicrob Chemother 71: 531-538.
- 13. Nobandegani NM, Mahmoudi S, Pourakbari B, Rahime Sadeghi, Mehri Najafi Sani, et al. (2016) Antimicrobial susceptibility from microorganisms isolated from sputum culture of patients with cystic fibrosis: methicillin-resistant Staphlylococcus aureus as a serious concern. Microb Pathog 100: 201-204.
- Marco F, Dowzicky MJ (2016) Antimicrobial susceptibility among important pathogens collected as part of the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) in Spain, 2004-2014. J Glob Antimicrob Resist 6: 50-56.
- Greninger AL, Chatterjee SS, Chan LC, Hamilton SM, Chambers HF, et al. (2016) Whole genon-sequencing of methicillin-resistant Staphylococcus aureus resistant to fifth-generation cephalosporins reveals potential nonmecA mechanisms of resistance. PLos One 11: e0149541.
- Kishor C, Misrha RR, Saraf SK, Kumar M, Srivastav AK, et al. (2016) Phage therapy of staphylococcal chronic osteomyelitis in experimental animal model. Indian J Res Med 143: 87-94.
- Keary R, Sanz-Gaitero M, van Raaij MJ, O'Mahony J, Fenton M, et al. (2016) Characterization of a bacteriophage-derived murein peptidase for elimination of antibiotic-resistant Staphylococcus aureus. Curr Protein Pept Sci 17: 183-190.
- Lee SH, Wang H, Labroli M, Sandra Koseoglu, Paul Zuck, et al. (2016) Tarospecific inhibitors of wall techoic acid biosynthesis restore
 ß-lactam efficacy against methicillin-resistant staphylococci. Sci Translat Med 8: 329ra32.
- Rohde RE, Patterson T, Covington B, Vásquez BE, Redwine G, et al. (2014) Staphylococcus, not MRSA? A final report of carriage and conversion rates in nursing students. Clin Lab Sci 27: 21-31.
- Oates A, McBain AJ (2016) Growth of MRSA and Pseudomonas aeruginosa in a fine-celled foam model containing sessile commensal skin bacteria. Biofouling 32: 25-33.