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Abstract
Background: In Argentina, Aedes aegypti represents 
an important public health threat, since it is the vector 
responsible for the transmission of dengue, chikungunya, 
zika and yellow fever. Mundo Sano Foundation has been 
carrying out periodic surveys of immature vector stages in 
several cities of northern Argentina. The main tool to mitigate 
their spread is through vector control. The identification of 
vector “hot spots” is an important key to design preventive 
program tools. Geostatistical techniques such as spatial 
autocorrelation (SAC) and kriging interpolation can be used 
to predict vector abundance in unsampled areas using data 
obtained from monitored sites. The knowledge of the spatial 
autocorrelation of vector abundance is fundamental and it 
can also be used to design disease surveillance strategies: 
To determine the characteristics of chemical control; to 
select ovitrap placement (distance between samples); and 
to determine the optimum sample size, among others. It is 
important to analyze the effect of the variation of the scale in 
the observed phenomenon.

Methods: This paper analyzes a two years series of weekly 
oviposition data from 25 ovitraps distributed in the urban 
area of a small city (104 measurements were collected for 
each ovitrap). We aim to understand how the relationship 
between sites measurements varies considering its relative 
location in the city, for different temporal sampling frequency 
or temporal resolution (TR). Different similarity measures 
between curves and graphic representations of these 
relationships, are explored. Among these, an innovative use 
of polar graphs -a tool commonly used to detect changes in 
satellite images- is examined. We evaluate variograms and 
SAC for multitemporal data (oviposition curves) at each TR.

Results: Similarity between curves does not show spatial 
continuity in relation to the spatial arrangement of ovitraps, 
may be due to the effect of processes that are only observ-
able at the microhabitat scale or due to sociodemograph-
ic factors. As the temporal resolution is greater in a given 
area, a greater number of ovitraps are needed to capture 
the spatial heterogeneity of the abundance of the vector. At 
the maximum TR analyzed, the minimum distance of spatial 
correlations was set at 1000 m. This has implications on the 
quantity of ovitraps per area unit required in the field in order 
to obtain a good description of the population dynamics of 
Ae. aegypti at the peridomestic level.

Conclusion: The results would indicate that when varying 
the time scale of analysis, the spatial scale should be modi-
fied accordingly to adapt to the new data structure. The abili-
ty to predict ecological phenomena depends on the relation-
ships between spatial and temporal scales. The approach 
and innovative statistical tools described in this study, based 
on empirical data from a field study, may be used by differ-
ent Ae. aegypti monitoring and control programs in order 
to design and implement tailor-made interventions. It would 
allows to support not only the selection of field samples, and 
to obtain data interpolation parameters, but also to contrib-
ute to the development of vector abundance models.
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Introduction
Aedes aegypti is of great sanitary importance in Lat-

in America, since it is the main vector for dengue, chi-
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kungunya, zika and yellow fever viruses. Dengue is one 
of the most widespread vector-borne diseases in the 
world [1] and continues increasing in annual incidence 
as well as in geographical expansion [2]. Particularly, in 
Argentina, Ae. aegypti is the most relevant mosquito 
from an epidemiological point of view. Its main charac-
teristics are its domiciliary habitat in urban areas [3], its 
breeding preference for artificial water containers rath-
er than natural water bodies, and the resistance of its 
eggs to desiccation [4].

There is a lack of effective vaccines for most of the 
viruses, the main tool to mitigate their spread is through 
vector control. Traditional control measures include: a) The 
elimination of larval habitats, using chemical treatment, 
to prevent adult production and b) The application of 
spatial aerosol insecticides to reduce adult population 
density [5]. Despite of the resistance vector and envi-
ronmental concerns, chemical control still remains the 
main strategy of vector control programs; however the 
World Health Organization (WHO) and the Pan-Amer-
ican Health Organization (PAHO) jointly promote its 
combination with other non-chemical vector control 
strategies [6]. For this reason, the identification of vec-
tor “hot spots” is an important key to design preventive 
program tools [7].

An increase in vector density would lead to an in-
crease in human-vector contacts, which would result in 
a higher rate of viral transmission among the population 
[8]. Thus, the detection of changes in vector abundance 
is an important factor in the epidemiology of the dis-
ease [9]. There are several widely used entomological 
indexes to determine vector abundance, among them: 
1) Indexes related to the presence or absence of the 
vector (larval indexes such as Housing and Breteau in-
dex); 2) Estimation of absolute abundance (method of 
tagging, release and recapture, aspiration of mosqui-
toes inside and outside houses, sampling of pupae), and 
3) Estimation of relative abundance (ovitraps, females 
attracted by human bait, traps for adult mosquitoes). 
Ovitraps are a standard tool for monitoring the pres-
ence of Ae. Aegypti and its spatial activity [10]. This tool 
consists in offering a breeding site for Ae. aegypti to lay 
its eggs and it is basically a container with water. Some 
of the advantages of ovitraps as a method to evaluate 
the relative abundance of Ae. aegypti (number of eggs 
per ovitrap) are their low cost; the possibility to place 
them outside the houses, avoiding having to enter the 
household; and their easy maintenance. An important 
application of the data obtained are double; on the one 
side, it allows for the evaluation of control activities 
through the reduction in the mosquito population and 
on the other, it allows for the calculation of the mos-
quito density threshold required for arbovirus transmis-
sion. The number of eggs found in the ovitraps, together 
with the Housing and Breteau indexes (number of pos-

itive recipients found in the households related to the 
amount of the total inspected ones), provide a profile 
of vector abundance. Through continuous recording of 
mosquito oviposition, it is possible to study the spatial 
dynamics of vector populations [11], to calculate the an-
nual infestation rate and to establish periods with high 
levels of gonadotrophic activity.

Through spatial analysis of entomological and epi-
demiological variables it is possible to address the chal-
lenges of dengue surveillance, and define more effec-
tive intervention strategies [12]. In particular, geosta-
tistical techniques such as spatial autocorrelation (SAC) 
and kriging interpolation can be used to predict vector 
abundance in unsampled areas using data obtained 
from monitored sites [13]. The knowledge of the spa-
tial autocorrelation of vector abundance is fundamental 
and it can also be used to design disease surveillance 
strategies: To determine the characteristics of chemical 
control [14]; to select ovitrap placement (distance be-
tween samples); and to determine the optimum sample 
size, among others. For example, the distance between 
the sampling sites might be adequate for a given mos-
quito species, but not for another one due to differences 
in dispersion and/or distribution of the two species [15]. 
Some studies have evaluated the spatial autocorrelation 
of abundance data from an ovitraps site [15,16], deriv-
ing recommendations regarding the design of dengue 
surveillance programs. However, there is a lack of pub-
lished studies that analyze the spatial autocorrelation of 
multitemporal data of ovitraps (oviposition curves).

On the other hand, scale plays a central role in de-
termining the outcome of observations [17]. As working 
scales change, statistical relationships may change, in-
cluding the magnitude or sign of correlations, important 
variables, and variance relationships. Then, it is import-
ant to analyze the effect of the variation of the scale in 
the observed phenomenon.

Within this context, Mundo Sano Foundation (MSF), 
a non-profit organization, has been carrying out a Mon-
itoring and Control Program of Ae. aegypti in several 
cities of northern Argentina which includes the period-
ic survey of immature stages of the vector by seasonal 
outbreaks of dengue. This program includes Ae. aegypti 
monitoring with ovitraps as a routine activity. MSF is lo-
cated in strategic areas of Argentina, where neglected 
diseases such as chagas, soil-transmitted helminths, 
dengue, leishmaniasis and echinococcosis are present. 
Their work is conducted by local teams in collaboration 
with the local authorities and the communities affected. 
Their aim is to create models that can serve as proof-
of-concept so that they may be are replicatedble and 
escalatedble, so by others they are implemented in 
different scenarios and taking into consideration the 
singularities of the communities involved.
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Materials and Methods

Study area
In this study, data resulting from the field work 

performed by MSF in localities in the North of Argentina 
are analyzed. In particular, a two year series of weekly 
data from 25 ovitraps distributed in the urban area of 
Clorinda, a small city in northern Argentina, is used.

The city of Clorinda (25° 17JS, 57° 43JW ), which is the 
second city in importance of the province of Formosa, 
Argentina, is the head of the Pilcomayo department, 
and is located on the right bank of the Pilcomayo River 
approximately 10 km from the mouth in the Paraguay 
River (Figure 1). According to the last national census in 
Argentina, from 2010, the city has 16,600 homes and its 
population is 23,290 [18]. It belongs to the humid Chaco 
region and represents a subtropical climate with no dry 
season. The average annual temperature is around 23 
°C and the average annual precipitation is about 1300 
mm, due to a rainy season extending from October to 
May [19].

Data collection
In Clorinda, MSF carries out surveillance and control 

actions in a total of 63 homes. From these, a subset of 
25 houses was selected based on the simultaneous and 
continuous number of measurements obtained over 
the entire study period of the current study (Figure 1). 
Ovitraps were used to measure weekly oviposition in 
the selected houses. Ovitraps consisted of black cylin-
drical plastic containers that were 12 cm high with a 10 
cm diameter. The traps were filled around half way with 

Through this study, we attempt to understand how 
the relationship between ovitrap measurements at 
each site varies as a function of their relative position 
in an urban locality and the time series of the analysis. 
Therefore, the specific objectives proposed are:

•	 To define a measure of distance, or similarity be-
tween oviposition data temporal series, in order to 
be able to capture the most important components 
of the variability between these curves;

•	 To analyze the distance between Ae. aegypti egg 
abundance curves (i.e. time series of ovitraps sam-
plings) with respect to their spatial location and to 
the sampling temporal resolution;

•	 To evaluate the behavior of the respective vario-
grams and the spatial dependence (or autocorrela-
tion) for each sampling frequency.

In order to achieve this, different measurements of 
distance between oviposition time series and graphic 
representations of these relationships were explored. 
Among these, the innovative use of polar graphics 
stands out, a tool commonly used to detect changes in 
satellite images. The tools used in this study prove to be 
useful for the design and implementation of monitoring 
and control programs of Ae. aegypti.

This work contributes in both, the methodological 
and the epidemiological point of view since the under-
standing of interactions between spatial and temporal 
scales of the problem will help decision makers to plan-
ning control actions. The results would be useful in con-
trol programs to identify priority areas and to allocate 
resources more effectively.

 

Figure 1: Study area located in the city of Clorinda, head of the Pilcomayo department. The positions of the 25 outdoor 
ovitraps are indicated.
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sites, B components or dimensions (b = 1,...,B), it is 
possible to define two types of distances:

•	 Magnitude, defined as the Euclidean distance:
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Where tb and rb are the bth components of vectors 
t and r. It measures the degree of change, the ampli-
tude of the temporal curve of oviposition values. The 
variable magnitude carries information about the pres-
ence/absence of changes.

•	 Direction, defined as the cosine of the angular 
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Where tb and rb are the bth components of vectors 
t and r. Therefore, as a way to evaluate the distance 
between curves, the concept of Spectral Angle Mapper 
(SAM), i.e. an algorithm widely used in Change Detection 
Analysis in remote sensing, was followed. According to 
this, the spectral similarity between two samples can 
be obtained by considering each spectrum as a vector 
of q dimensions, where q is the number of bands, in 
our case it is the number of dates. SAM determines 
the spectral similarity by calculating the angle between 
two spectra by treating them as vectors in a space with 
dimensionality equal to the number of bands [21]. It is 
related to the type of change reflected in the periodicity, 

water and wood tongue depressors (15 × 2 cm) were 
placed inside each one. The tongue depressor acts as 
a substrate for the eggs so that they can be posteriorly 
counted. Tongue depressors were replaced in a weekly 
manner. For each household, two ovitraps were used, 
one in the inside and the other one in the peridomicile, 
preferably in a shaded area out of the reach of children 
and pets. The oviposition database includes the number 
of positive households, number of positive ovitraps, and 
the number of eggs for each epidemiological week. The 
traps are checked every 6 days (giving to vector enough 
time to lay its eggs). This paper analyzes the external 
ovitrap data corresponding to a two-year time period 
from August 2014 (epidemiological week 31 of 2014) to 
July 2016 (epidemiological week 30 of 2016). Therefore, 
104 measurements were collected for each ovitrap over 
the two years.

All calculations required by the methodology de-
scribed bellow were carried out using the R statistical 
software [20]. The pseudocode of the routines is pre-
sented in Appendix 1A.

Distance between ovitraps
Various statistical measures of distance (dissimilarity 

or difference) were used in order to determine the 
variation between the egg abundance curves obtained 
from each individual ovitrap. Herein, we describe two of 
the evaluated distance measures explored:

Given two vectors, t and r, that store the time series 
of egg abundance obtained by ovitraps at two given 

 

Figure 2: Average time evolution of oviposition of the households taken as a reference curve. The horizontal axis represents 
the time axis, a/b where a  indicates the epidemiological week and b indicates the year. The vertical axis is the average 
number of eggs found in the 25 ovitraps.

https://doi.org/10.23937/2474-3658/1510087
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represents the percent of the variance of Y intact after 
subtracting the error of the model:

2

2

  ((  -  ( )) ,
  (mod $ ),
 (  -  ) /  .

SSyy sum y mean y
SSE sum el residuals
then SSyy SSE SSyy

=

= 		          (3)

The bigger the error, the worse the remaining 
variance will appear.

•	 Adjusted R2 normalizes Multiple R2 by taking 
into account how many samples you have and how 
many variables we are using:
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Graphic representation of distances
Polar charts: Polar charts are a useful tool to display 

information in polar coordinates. The polar coordinate 
system is a two-dimensional coordinate system in which 
each point of the plane is determined by a radius ρt,r and 
an angle αt,r. The values of magnitude are represented 
by the distance from the points to the center of the cir-
cle, the farther the point is from the center; the greater 
is its magnitude.

The direction or cosine angular distance, is related 
to how temporarily close the curves are (seasonal 
dynamics), while the magnitude (Euclidean distance) is 
related to the difference in egg quantity.

Weighted network visualization and analysis
In addition to polar charts, we explored the 

potential use of a graphing method that uses a matrix 
of correlation between variables as input. In particular, 
the qgraph package for R [23] provides an interface to 
visualize data through network modeling techniques. 
For instance, a correlation matrix can be represented 
as a network in which each variable is a node and each 
correlation an edge; by varying the width of the edges 
according to the magnitude of the correlation, the 
structure of the correlation matrix can be visualized. 
In our case, this matrix is not a correlation but a table 
in which the columns and rows correspond to the 
different ovitraps and the value of the cell for each row 
and column is the value of the distance (magnitude or 
direction) between these curves.

Results

Distance between oviposition curves
Figure 3 and Figure 4 display the curves that have 

greater distance between them with respect to magni-
tude and to direction, respectively. This example shows 

seasonality, or the frequency of the curve of temporal 
distribution of oviposition values.

These distance measurements can be represented 
in polar coordinates (magnitude and direction variables 
respectively) in a polar graph as presented in section 
4.7.1.

Reference curve
In our case study, each oviposition curve (corre-

sponding to a single ovitrap site) was compared to the 
average time evolution of oviposition of all households 
taken as a reference. The reference curve is displayed 
in Figure 2.

Distance analysis at different temporal resolu-
tions

Different temporal resolutions (TR) of sampling were 
defined by resampling the data. The original series of 
data from the 104 oviposition measures obtained from 
the outdoor ovitraps from each household were resam-
pled through down sampling or decreasing the frequen-
cy of samples, using a statistical average operator. Then 
the TR coding is Xw meaning that for the resampling 1 
data was taken every X weeks. For instance, 2w means 
that 1 data was taken every 2 weeks.

Variogram and temporal resolution
The variogram is a statistic that is used to quantify 

the spatial correlation between sampled values. It is 
calculated as the average squared difference between 
two points separated by given a distance |h|. The 
variogram indicates how different or dissimilar the 
values between two sites are. Because the values of a 
regionalized variable are not independent, an observed 
value in a given site provides information about the 
values of neighboring sites. The range in a variogram 
is the maximum distance at which one point influences 
another one. Measurements separated by a distance 
less than the range are spatially correlated. This concept 
of range may imply consequences on the selection of 
samples. Whereas the sill is the value at which the 
model first flattens out.

For each considered TR, the fitness of variograms 
for the variable ρt,r, i.e. distance ρ between curves t and 
r, where r is the reference curve; was performed using 
the gstat package of R statistical [22]. Then, the trend of 
the resulting ranges with respect to the decrease in the 
sampling frequency (decrease in TR) was analyzed and 
a Linear regression model was adjusted for TR and the 
range variables.

We report Multiple R2 (Coefficient of Determination) 
and Adjusted R2 in order to provide a measure of the 
proportion of total variation of outcomes explained by 
the model.

•	 Multiple R2 (Coefficient of Determination) 

https://doi.org/10.23937/2474-3658/1510087
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Temporal resolution
Figure 5 shows the results of the synthesis process-

ing performed on the reference curve at four different 
temporal sampling resolutions: 3, 6, 9 and 12 weeks.

the oviposition curves at maximum TR. The reference 
curve is shown to facilitate the visualization of the rela-
tionships. The magnitude reflects the abundance differ-
ence between curves while the direction highlights the 
temporal phase shift between them.

 

Figure 3: Curves with maximum difference in magnitude (curves of ovitraps e16 and e36). The reference curve (Rc) is also 
shown.

 

Figure 4: Curves with maximum difference in direction (curves of ovitraps e15 and e4). The reference curve (Rc) is also 
shown.

https://doi.org/10.23937/2474-3658/1510087
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1w, field sample sites should be separated from each 
other by at least 1000 m in order to ensure that two 
samples taken in the field are not statistically correlated.

It is observed that, as the TR decreases (the sampling 
frequency decreases), the distance between curves does 
not present spatial correlation as the spatial distance 
increases. Therefore, in order to obtain uncorrelated 
information, sites should be placed at greater spatial 
distances, from 1000 m for high temporal to almost 
2000 m for low temporal resolution. These results have 
implications with respect to the number of ovitraps 
required per area unit in the field in order to obtain a 
good description of what is happening with Ae. aegypti 
in the peridomiciles.

At a minimum TR (only one week of the two years 
is sampled) the spatial regionalized structure is elimi-
nated as shown in the variogram of Figure 6. The infor-
mation structure for the spherical model is vanished. 
Therefore, complete spatial randomness is presented 
and, consequently, it is not possible to generate an in-
terpolated map at a TR of less than 2 weeks.

When varying the time scale of analysis, the spatial 
scale should be modified accordingly to adapt it to the 
new data structure. A spatial pattern that was analyzed 
every 1000 m at a certain resolution or time scale may 
not be relevant at another time scale. At lower TR, the 

Variograms
Table 1 list the parameters of the variograms ad-

justed to the variable ρt,r, for each TR. A spherical 
model was adjusted using the gstat package of R [22]. 
In Figure 6 and Figure 7 the variogram of the mini-
mum and maximum TR, respectively, are shown.

At the maximum TR analyzed (Table 1 and Figure 7), 

 

Figure 5: Reference curve according to the different temporary resolutions: 3w, 6w, 9w, 12w. Horizontal axis shows week of 
year/year marks. Vertical axis shows egg number.

Table 1: Variogram parameters adjusted via a spherical model.

TR Sill Range [m]
1w 0.15 1000

2w 0.18 1551

3w 0.19 1732

4w 0.04 1876

5w 0.21 1799

6w 0.27 1890

7w 0.29 1962

8w 0.23 1988

9w 0.31 1804

10w 0.28 1634

11w 0.31 1925

12w 0.30 2088

Sill = the value at which the model first flattens out; TR: 
Temporal Resolution.

https://doi.org/10.23937/2474-3658/1510087
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variables TR and range was fitted giving an adjusted R2 
of 0.82. The TR variable was determinant for the cor-
relation distance range, through a negative coefficient. 
That is, as the sampling frequency increases (TR increas-
es), the range or decorrelation distance decreases, as 
shown in Figure 8 (Table 2).

Polar graph
Figure 9 is the graphical representation of the 

distance between the curves t and r (ρt,r and αt,r). Each 
ovitrap, t, is analyzed with respect to the reference 
curve, r, located at the polar graph origin. It is possible 
to observe that the curves more different in terms of 

required distance of no correlation between ovitraps 
increases.

Linear regression model
From Table 1, a linear regression model between the 

 

Figure 6: Variogram ρt,r (distance ρ between curves t and r, with r being the reference curve). B = 1, only the week 32/14 is 
considered.

 

Figure 7: Variogram ρt,r (distance ρ between curves t and r, with r being the reference curve). B = 104, 104 weeks are 
considered, that is, the maximum TR.

Table 2: Linear regression model parameters for range vs. 
sampling frequency (1/TR).

Estimate t value Pr (>  |t|) 
Intercept 2027.5 40.44 2.05e-12

SampFreq -992.4 -7.15 3.11e-05

Multiple R2 = 0.84; Adjusted R2 = 0.82.

https://doi.org/10.23937/2474-3658/1510087
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Figure 8: Parameter range of variograms adjusted following a spherical model with respect to temporal resolution (TR) or 
sampling frequency.

 

Figure 9: Polar graph corresponding to the polar coordinates (ρRc,r and αRc,r ) of distance between curves. e stands for 
external because it corresponds to the curves of the outdoor ovitraps and the number refers to the site number (r).

https://doi.org/10.23937/2474-3658/1510087
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ber-December (spring), in Córdoba in December-Janu-
ary (summer) and in Buenos Aires in February-March 
(summer). These differences are probably the conse-
quence of rainfall and temperature dynamics across 
the latitudinal gradient. In the current study from the 
province of Formosa, and according to the average ref-
erence curve, the peak of abundance of eggs would be 
recorded in October or November (spring) coinciding 
with Chaco (neighboring province). Recent studies like 
Heinisch, et al. [25] confirm that seasonal variation of 
the oviposition rate of Ae. aegypti would be mediated 
by the maximum and minimum temperatures.

The measures of similarity or distance defined here 
allow us to analyze not only the magnitude of change 
between time series but also the type of change with 
respect to the frequency of the curve. Polar graphs, as 
presented in this paper, represent an innovative tool to 
visualize differences between series of temporal data 
(Figure 2). In this study, the effect of varying the ref-
erence curve in the distance analysis was not evaluat-
ed. This could be a limitation since the use of different 
reference curves (or an average reference curve) could 
result in different distance patterns. In relation to the 
analysis at different temporal resolutions of sampling, 
as expected, the characteristics of oviposition become 
more similar (grouped in terms of both, magnitude and 
angle) as we lose temporal detail.

magnitude, i.e, egg number, are 16 and 36 (Figure 3). 
For angular distance, the curves most distant from each 
other in terms of direction are ovitraps 4 and 15 (Figure 
4).

Again, it is possible to confirm that the spatial dis-
tance does not determine the distance between egg 
abundance curves.

Weighted network visualization
In Figure 10, the network of relationships between 

curves is visualized considering the real spatial location 
between ovitraps and the Euclidean similarity is shown 
through the width of the link between nodes. Note that 
it is a plane representation in which each node is on the 
real location of the corresponding ovitrap.

Discussion
Studies conducted at different regions of Argentina 

showed different seasonal patterns. In general, ovipo-
sition activity is associated with variations in tempera-
ture and/or precipitation, but peak oviposition was 
recorded in different months in different Argentini-
an provinces [4]. A study conducted in Salta Province 
showed that oviposition activity of Ae. aegypti occurs 
throughout the year, with a peak in March (summer), 
which was related to an increase in precipitation [24]. 
In the case of Chaco Province, the maximum number of 
eggs and immature abundances were found in Novem-

 

Figure 10: Weighted network visualization of the relationship between curve distances.
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fore, this would indicate that when varying the time 
scale of analysis, the spatial scale should be modified 
accordingly to adapt to the new data structure. This re-
inforces the concept that our ability to predict ecologi-
cal phenomena depends on the relationships between 
spatial and temporal scales.

According to Albrieu-Llinas, et al. [18], the distance 
of spatial correlation could be determined by migration 
patterns of the vector, by environmental factors, or 
socioeconomic variables, since they are anthropophilic 
vectors. According to the literature, flight dispersion 
of Ae. aegypti is generally from 50 to 200 m [33] but 
other studies have reported distances of up to 400 m 
and 3.5 km [15,34-36]. Therefore, for the current study, 
the minimum distance of spatial correlations was set at 
1000 m.

Distance measures between oviposition curves, their 
graphic representation, and the spatial correlation anal-
ysis of the aforementioned similarity measures, at dif-
ferent time scales, define an approach that can be ap-
plied to different urban and rural settings.

The approach and innovative statistical tools de-
scribed in this study, based on empirical data from 
a field study, may be used by different Ae. aegypti 
monitoring and control programs in order to design 
and implement tailor-made interventions. In this 
way, it would allows to support not only the selection 
of field samples, and to obtain data interpolation pa-
rameters, but also to contribute to the development 
of vector abundance models such as those presented 
in Scavuzzo, et al. [37], Lana, et al. [38]. For instance, 
interpolation technique has been employed to esti-
mate the occurrence of eggs of Ae. aegypti [25], to 
associate the vector distribution with the transmis-
sion of the pathogens [39], to identify the clustering 
of the malaria vectors [40] and to relate entomologi-
cal indicators to the incidence of dengue [41]. In the 
same way, an example of how the operational gener-
ation of vector distribution and abundance maps can 
be used to define the strategy of insecticide applica-
tion during an epidemiological outbreak can be found 
in Rotela, et al. [42] and Janet, et al. [43].
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Appendix 1A: R code and packages used

Curve distances

library(TSdist)

## 1 week RT example , in this case read curves defined by 104 data .

curvas <− read.csv(“...”)

t_curvas<-t(curvas)

# direction distance, Cosine dissimilarity matrix

cdiss<−as.matrix (dist (t_curvas,method = “cosine”))

	 rad2deg <− function(rad){(rad*180)/
(pi)} 

cdiss.rad<−rad2deg(cdiss)

# magnitude distance

	 magnitude<−as.matrix(dist(t_curvas))

# Keep in the distance o f each curve to the average curve (Rc )

 dif_resp_ref  <−t(t(data.frame(magnitude[“R c”,] , cdiss.rad[“R c”,])))

Regression model
# Read the table of Variogram parameters adjusted via a spherical model at each 
TR.

variog_range_resTemp <− 

read.csv(“...” ) SampFreq<− 1/TR

# scatterplot

scatter.smooth ( x= SampFreq 
, y= Range , main=” Sampling 
frequency~Range” ,

xlab = “Sampling frequency” ,

	 ylab= “ Range of spatial autocorrelation” )

# Linear model

linearMod <− lm( Range ~ SampFreq )

 summary( linearMod )

Polar plot
library(”plotrix”)
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radial.labels<−function(lengths,radial.pos , units=”radians” , start =0 , 
clockwise=FALSE,

labels , adj=NULL, pos=NULL,...){

i f (units == “clock24” ) radial.pos<−p i *(450 − radial.pos* 15 ) /180

i f (units == “polar” ) radial.pos<−pi*radial.pos/180

	 if(clockwise)radial.pos<− radial.pos 

         if(start)radial.pos<−radial.pos+start

#get the vector of x positions

xpos<−cos(radial.pos)*lengths

# get the vector of y positions

	 ypos<−sin(radial.pos) * lengths

text( xpos , ypos , labels , adj=adj , pos=pos,...)

}

polar.plot(dif_resp_ref[ , 1 ] , dif_resp_ref[ , 2 ] ,

	 rp . type = ” dots  ” , show . grid . labels=FALSE,

point  . symbols=”” ,  point  . col  =  ” red ” ,  

start=  0 , clockwise = FALSE, main=”1w” )

r a d i a l . labels (dif_resp_ref[ , 1 ] , dif_resp_ref[ , 2 ] ,

u n i t s ="polar ” , labels = c (rownames(dif_resp_ref) ) ,

	 col ="red”)

Weighted network
library( qgraph )

# Lat Lon coordinates

xy<−read . csv (“coordinateslat.csv”) 

xymat<−as.matrix ( xy [ , 2 : 3 ] )

## Euclidean Distance

eucli<−TS Database  Distances  ( t curvas ,  
distance="euclidean”)
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eucli.ma<−as.matrix(eucli)

	 disteu<− 1/eucli.ma

# one over , as qgraph takes similarity matrices as input

#Weighted network

qgraph (disteu , layout=xymat )
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