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A Stochastic Model with Jumps for the COVID-19 Epidemic in the 
Greater Abidjan Region during Public Health Measures
Mohamed Coulibaly* and Modeste N’zi

Abstract
Our goal in this paper is to adapt to the context of the Greater 
Abidjan Region (Côte d'Ivoire) an existing model reflecting 
the evolution of the COVID-19 epidemic in Wuhan (China). 
This model is a deterministic compartmental model which is 
translated by a system of ordinary differential equations. We 
are reinvesting this model to obtain the parameters of the 
epidemic in the great Abidjan. We study some mathematical 
aspects of this deterministic model.

Using data from the evolution of the COVID-19 epidemic in 
Abidjan, we obtain constants corresponding to the Great-
er Abidjan Region epidemic. We are performing numerical 
simulations using these constants to predict the behavior of 
the epidemic in the Greater Abidjan Region.

The initial model does not take into account certain distur-
bances and sudden shocks which could disturb its behavior. 
In the Greater Abidjan Region, some continuous or sud-
den events disrupt the behavior of the epidemic. To stick to 
the realities of the Greater Abidjan Region, we introduce a 
white noise and jumps that correspond to the different dis-
turbances that can occur. We obtain a stochastic model of 
COIVD-19 with jumps. We prove that our new model with 
jumps has a positive global solution. In certain conditions, 
this solution oscillates in the set of the disease-free equilib-
rium of the deterministic model. We perform numerical sim-
ulations which corroborate our theoretical results.
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Check for
updates

od of public measures application. For this reasons, we 
have worked on data related only to that period. For the 
next step, we plan to make predictions to account the 
evolution of this epidemic.

In [1], Pierre Magal, et al. develop a mathematic 
model for COVID-19 epidemic in Wuhan (China) in which 
the population was composed of four compartments:

• S(t) is the number of susceptible individuals at 
time t i.e., people who are not infected yet but might 
become infectious individuals in the future,

• I(t) is the number of asymptomatic infectious 
individuals at time t i.e., people who have contracted 
the disease but have not yet developed it at time t,

• R(t) is the number of reported symptomatic 
infectious individuals i.e., symptomatic infectious with 
severe symptoms at time t,

• U(t) is the number of unreported symptomatic 
infectious individuals i.e., symptomatic infectious with 
mild symptoms at time.

The instant 0 0t =  corresponds to December 31, 
2020. The epidemic starts at instant 0t .

At this time, they noted 0 0( ) 0S t S= > , 

0 0( ) 0I t I= > , 0( ) 0R t =  and 0 0( ) 0U t U= ≥ . Times 

are expressed in days and for 0t t≥  they obtained:
Introduction

This study aims at analyzing the evolution of the 
COVID-19 epidemic in the great Abidjan over the peri-
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( ) [ ( )[ ( ) ( )]]
( ) [ ( )[ ( ) ( )] ( )]
( ) [ ( ) ( )]
( ) [ ( ) ( ))]

dS t S t I t U t dt
dI t S t I t U t I t dt
dR t I t R t dt
dU t I t U t dt

τ
τ ν
ν η
ν η

= − +
 = + −
 = −
 = −

                             (1.1)

τ , ν , 1ν , 2ν  and η  are real constants on [0;1]. τ  is the transmission rate.

ν  is the rate at which the asymptomatic infectious individuals become symptomatic. They assume 
1
ν

 is the 
average time during which asymptomatic infectious are asymptomatic.

f  is the fraction of symptomatic infectious that become reported symptomatic infectious. So 1 fν ν=  is the 
rate at which asymptomatic infectious become reported symptomatic infectious. 

1 f−  is obviously the fraction of symptomatic infectious that become unreported symptomatic infectious. So 
2 (1 )fν ν= −  is the rate at which asymptomatic infectious become unreported symptomatic infectious.

η  is the rate at which the symptomatic infectious individuals lose their symptoms by death or healing. They get 1
η

 the average time symptomatic infectious have symptoms.

Pierre Magal, et al. calculated the parameters of their model from the Wuhan epidemic data before public con-
finement and isolation measures.

A nonlinear adjustment method allowed them to obtain an expression of the CR function giving the cumulative 
number of reported symptomatic infectious individual at time t. They obtain that 1 2 3( ) ( ) ( ) .CR t CR t exp tχ χ χ= = −

As 0( ) 0CR t = , they deduce 0 3 1
2

1 [ ( ) ( )]t ln lnχ χ
χ

= − .

For experimental reasons, they assume that the average time during which asymptomatic infectious are asymp-

tomatic and the average time symptomatic infectious have symptoms are around 7 days. They get 
1 1 1

7ν η
= = . 

From their data, they assume that f is in the interval [0.8 ; 1]. They use the value 0.8f =  afterwards.

From all these results, they calculated the values of all the parameters corresponding to the epidemic of 
COVID-19 in Wuhan, notably the transmission rate and the basic reproductive number ℜ0 . Theoretically, they 

computed 0 2(1 )Sτ ν
ν η

ℜ = +0 . The data of Wuhan epidemic permit them to obtain 84.44 10 ,τ −= ×  and 4.13ℜ =0  

before the public measures.

With numerical simulations they show the evolution of the epidemic in Wuhan without public confinement 
and isolation measures. By varying the parameters of the model, they use simulations to predict the peak of the 
epidemic.

Since January 23, public confinement and isolation measures have been taken in Wuhan. Pierre Magal, et al. 
considered the effectiveness of its measurements after January 25. They therefore modified their model with the 
following non constant transmission rate:

8
04.44 10 , if [ ;25]

( )
0, if 25

t t
t

t
τ

− × ∈
= 

>
With these public measures, numerical simulations show that the epidemic in Wuhan will be eradicated. We 

quote them: "As a consequence of our study, we note that public health measures, such as isolation, quarantine, 
and public closings, greatly reduce the final size of this epidemic, and make the turning point much earlier than 
without these measures."

In our work, we use the first deterministic model of Pierre Magal, et al. (1.1) because we consider that it could 
reflect the dynamics of the epidemic in the Greater Abidjan Region as we will see later with the data of this region. 
We rephrase some starting notations. We study the system from an instant which we will define later. At this in-
stant 0t =  we note 0 0 0 0( , , , )S I R U  the state of the system. N  is the total population size before the epidemic. In 
this model, there is no birth or recruitment. So, we have 0 0 0 0S I R U N+ + + ≤ .

In section 1, we prove that the solution of the system (1.1) is bounded in 
4

1 2 3 4 1 2 3 4{( , , , ) ; }x x x x x x x x N+∆ = ∈ + + + ≤ .

Obviously { ( ;0;0;0);0 }aM E a a N= = ≤ ≤  is the set of the different disease-free equilibrium for the system 
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(1.2). By using the LaSalle’s global invariance principle [2,3], we show that all the solutions of (1.3), bounded for 
0t ≥  in ∆  , converge in M when t → +∞ . These mathematical results comfort us in the possibility of reaching a 

state without the disease.

In Côte d'Ivoire, the Greater Abidjan Region includes the city of Abidjan and six other districts which are periph-
eral.

In Côte d'Ivoire, the first patient of COVID-19 was detected in Abidjan on March 11, 2020. At the start of the 
epidemic, the rest of the country was unaffected by the disease. So the public authorities took the following mea-
sures [4].

• The suspension of air flights to countries with more than 100 reported cases (decided on March 20, 2020).

• The closure of all land, sea and air borders from midnight on March 22, 2020 until further notice.

• On March 23, 2020 the state of emergency is established. A curfew is in place from 9 p.m. to 5 a.m. for two 
weeks.

• From March 29, 2020, no transport is authorized between the Greater Abidjan region and the rest of the coun-
try.

• On April 9, 2020, it was decided: the wearing of the mandatory mask in the Greater Abidjan; compulsory con-
finement of fragile people; reduction of non-essential travels and the number of people in vehicles.

The Greater Abidjan Region is the epicenter of the epidemic with 98 percent of the confirmed cases. Since 
March 29 the big Abidjan has been isolated from the rest of the country. The rest of the country has no more than 
5 reported cases. Since at least April 21, 2020, the rest of the country has no COVID-19 patients. National data in 
[4] can therefore be assimilated to that of the Big Abidjan (Table 1, Table 2, Table 3, Table 4, Table 5 and Table 6).

The majority of the economic activities of the Ivorian population are activities of the informal sector (small trade, 
rustic restaurant, street vendors, illegal taxi drivers,...). These activities mainly focus on the city of Abidjan. This did 
not allow the establishment of total containment in Côte d'Ivoire. In addition to conventional barrier measures 

Table 1: Data of the COVID-19 epidemic in greater Abidjan Region from March 11 to March 20.

March 11 12 13 14 15 16 17 18 19 20

cumulative confirmed 1 1 1 4 4 6 6 9 9 14

cumulative healed 0 0 0 0 0 1 1 1 1 1

cumulative deaths 0 0 0 0 0 0 0 0 0 0

Table 2: Data of the COVID-19 epidemic in greater Abidjan Region from March 21 to March 31.

March 21 22 23 24 25 26 27 28 29 30 31

cumulative confirmed 17 25 25 73 80 96 101 140 165 168 179

cumulative healed 1 1 1 1 1 3 3 3 4 6 7

cumulative deaths 0 0 0 0 0 0 0 0 1 1 1

Table 3: Data of the COVID-19 epidemic in greater Abidjan Region from April 1 to April 10.

April 01 02 03 04 05 06 07 08 09 10

cumulative confirmed 190 194 218 245 261 323 349 384 444 480

cumulative healed 9 15 19 25 37 41 41 48 52 54
cumulative deaths 1 1 1 1 3 3 3 3 3 4

Table 4: Data of the COVID-19 epidemic in greater Abidjan Region from April 11 to April 20.

April 11 12 13 14 15 16 17 18 19 20

cumulative confirmed 533 574 626 638 654 688 742 801 847 879

cumulative healed 58 85 89 114 146 193 220 239 260 287

cumulative deaths 4 5 6 6 6 6 6 8 9 10

https://doi.org/10.23937/2474-3658/1510196
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(washing hands regularly, coughing in the elbow...), the measures above have been gradually implemented to curb 
the epidemic. As our study is limited to the Greater Abidjan Region, we will analyze the data from the isolation of 
the Greater Abidjan Region (March 30, 2020). We will therefore study our model with the eradication measures 
implemented.

On the other hand, from this isolation date, the epidemic data are more reliable because of the multiplication 
of screening centers.

These measures, which do not correspond to total containment, favor the transmission of the virus. The trans-
mission rate of the Greater Abidjan Region model is therefore not zero.

In section 2, as was done in [1,5,6], we will determine the constants of the system (1.1) corresponding to the 
epidemic in the Great Abidjan Region with the effect of the public measures. We consider the period of the effect 
of the public measures for two reasons: daily statistical data is more significant during this period because of the 
multiplication of screening centers and we want to know the behavior of the epidemic with these measures. We 
use the software CurveExpert Pro to fit our data. That permits us to compute the different parameters of the Great-
er Abidjan Region model and the basic reproductive number ℜ0 . Simulation with MatLab software permits us to 
find the peak of the epidemic in the Greater Abidjan Region in the case of this deterministic model. Simulations 
with other parameter values make it possible to observe a more rapid eradication of the epidemic and to propose 
measures to achieve this.

In Côte d'Ivoire, continuously, certain protective measures such as minimum physical distance of one meter, 
regular hand washing etc. are not respected in markets and public transport vehicles. Abidjan has many large mar-
kets in each of its districts. Our region has many uncontrolled urban transport that does not allow compliance with 
health measures. Also, the practice of economic activities in the informal sector promotes many contacts between 
individuals. All these factors continually disturb the transmission rate of the model and could be assimilated to 
white noise to be introduced into the system (1.1). That's why we add a white noise to the model (1.1) to disrupt 
the transmission rate.

The isolation of the Greater Abidjan Region is not fully respected despite the efforts of the police. Sudden in-
flows or outflows of people take place formally with administrative authorizations or illegally by village roads.

Sudden mid-term measures such as the obligation to wear a mask and a curfew extension caused sudden shocks 
to the model at the first time when they were applied.

The model described by the system (1.1) does not take these factors into account. We need to introduce jumps 
in the system (1.1) to represent these sudden changes which disturb the transmission rate.

As in [7-9] and from the model (1.1) we develop a model with jumps perturbation that disrupt the disease trans-
mission rate. We get the system. (1.2)

1

2

( ) [ ( )[ ( ) ( )]] ( )[ ( ) ( )] ( ) ( ) ( )[ ( ) ( )] (d ,d )

( ) [ ( )[ ( ) ( )] ( )] ( )[ ( ) ( )] ( ) ( ) ( )[ ( ) ( )] (d ,d )

( ) [ ( ) ( )]
( ) [ ( )

Z

Z

dS t S t I t U t dt S t I t U t dB t C z S t I t U t N t z

dI t S t I t U t I t dt S t I t U t dB t C z S t I t U t N t z

dR t I t R t dt
dU t I t

τ σ

τ ν σ

ν η
ν

= − + − + − +

= + − + + + +

= −
=

∫

∫





( ))]U t dtη








 −       

(1.2)

Table 5: Data of the COVID-19 epidemic in greater Abidjan Region from April 21 to April 29.

April 21 22 23 24 25 26 27 28 29

cumulative confirmed 916 952 1007 1077 1111 1150 1164 1183 1238

cumulative healed 303 310 357 419 449 468 499 525 557

cumulative deaths 13 14 14 14 14 14 14 14 14

Table 6: Data of the COVID-19 epidemic in greater Abidjan Region from April 30 to May 05.

April-May 30 01 02 03 04 05
cumulative confirmed 1275 1333 1362 1398 1432 1464

cumulative healed 574 597 622 653 693 701

cumulative deaths 14 15 15 17 17 18

https://doi.org/10.23937/2474-3658/1510196


ISSN: 2474-3658DOI: 10.23937/2474-3658/1510196

Coulibaly and N’zi. J Infect Dis Epidemiol 2021, 7:196 • Page 5 of 18 •

where B  is a Brownian motion defined on a stochastic basis 0( , , ( ), )t P≥Ω    and σ is constant.

(X t -) means the left limit of ( )X t , ( , )N dt dz  is a Poisson counting measure with the stationary compensator 
( )dz dtΠ  and Π  is defined on a measurable subset Z  of [0, )∞  with ( )ZΠ < ∞ .

In Section 3, we prove that the system (1.2) has a unique global and positive solution. We show how the jumps 
influence the behavior of the solution around the set of the equilibrium states. Inspired by [10,11] and using MaLab 
R2019b software, we perform numerical simulations which corroborate our theoretical results.

Some Mathematical Properties of the Deterministic Model
Here we justify simple mathematical properties that confer biological significance to our model.

N  is the size of the population before the epidemic. We have 0 0 0 0S I R U N+ + + ≤ . We prove that for any 
initial state in 4

1 2 3 4 1 2 3 4{( , , , ) ; }x x x x x x x x N+∆ = ∈ + + + ≤ , the solution of the system (1.1) are bounded in 
4

1 2 3 4 1 2 3 4{( , , , ) ; }x x x x x x x x N+∆ = ∈ + + + ≤ .

Lemma
For any given initial value in 4

1 2 3 4 1 2 3 4{( , , , ) ; }x x x x x x x x N+∆ = ∈ + + + ≤ , the set ∆  is positively invariant 
for the system (1.1).

Proof
With the system (1.1), we obtain by summing the equation of the system:

[ ( ) ( ) ( ) ( )] [ ( ) ( )]d S t I t R t U t R t U t
dt

η+ + +
= − + .

If we prove that for 0t t≥ , ( ) ( ) 0R t U t+ ≥  then ( ) ( ) ( ) ( )t S t I t R t U t+ + +  will be decreasing and there-
fore less than or equal to that N .

On the other hand, initiating the solution of system (1.1) in positive orthant 4
+ , we have : 

0
( ) | 0S

dS t
dt = = , 0

( ) | ( ) ( ) 0I
dI t S t U t

dt
τ= = ≥ , 0 1

( ) | ( ) 0R
dR t I t

dt
ν= = ≥  and 0 1

( ) | ( ) 0U
dU t I t

dt
ν= = ≥ .

So the solutions of system (1.1) remain in  4
+  at any time t, i.e. S, I, R and U are positive. We thus obtain the 

desired result.

Starting from any initial condition, the following result guarantees us, under certain conditions, the convergence 
of any solution in { ( ;0;0;0);0 }aM E a a N= = ≤ ≤  the set of the disease-free equilibrium for the system (1.1).

Theorem
If 1ℜ ≤0 , all the solutions of (1.1) bounded for 0t ≥  in ∆  , converge in M the set of all the disease-free equilib-

rium for the system (1.1) when t → +∞ .

Proof

We define :V ∆ →   by 0
0( , , , ) SV S I R U S I S R Uττ

η
= + + + .

0
0 1 0 2 0( , , , ) ( ) ( ) SV S I R U S I U S I U I S I S R I S Uττ τ ν τ ν ητ ν τ

η
= − + + + − + − + −

  0
0 1 0 2 0

SSI SU SI SU I S I S R I S Uττ τ τ τ ν τ ν τ η ν τ
η

= − − + + − + − + −

  0 2
0 0 1 0( ) ( )SSU S S U S I S Rτ ντ τ τ ν ν ητ

η
= − + − + + − −

  0 21
0 0 0( 1)SS U S I S Rτ νντ τ ν ητ

ν ην
= − + + − −
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0 2
0 1 0[ ( ) 1] .SS U I S Rτ ντ ν ν ητ

ν η
= − + + − −

Since all the model parameters are non-negative, 0S S≤  and 1 1ν ≤ , we get :

0 2
1( )Sτ νν

ν η
+  0 2(1 )Sτ ν

ν η
≤ + = ℜ0  1.≤

So we have 0 2
1( ) 1 0.Sτ νν

ν η
+ − ≤  Since all the model parameters are non-negative and 0S S≤ , we deduce that 

( , , , ) 0V S I R U ≤ .

Moreover, 

( , , , ) 0  V S I R U =

0 2
0 1 0[ ( ) 1] 0SS U I S Rτ ντ ν ν ητ

ν η
⇔ − + + − − =

( , , ) (0,0,0)I R U⇔ =

( , , , ) ( ,0,0,0);0S I R U a a N⇔ = ≤ ≤

( , , , )S I R U M⇔ ∈ .

The only compact invariant subset of { ; 0}x V∈ ∆ =  is M . So, by Lasalle's global invariance principle, all the 
solutions (1.1), bounded for 0t ≥  in ∆  , converge in M when t → +∞ . 

Remark
In practical terms, when 1ℜ ≤0 , any solution of the system (1.1) converges towards a disease-free state.

Predictions of the Evolution of the COVID-19 Epidemic in the Great Abidjan with the Deterministic 
Model

Determination of the constants in the model of the COVID-19 epidemic in the Greater Abidjan Region 
with the effect of public measures

In this section, we will try to determine the parameters of the deterministic model corresponding to the dynam-
ics of the epidemic in the Greater Abidjan Region after the implementation of all the public measures that led to 
its isolation.

As in [1] :
1
ν

, the average time during which asymptomatic infectious are asymptomatic is equal to 7 days and 
1
7

ν = .

1
η

, the average time during which symptomatic infectious have symptoms is equal to 7 days and 
1
7

η = .

All this brings us to consider our data 14 days after the isolation of the Greater Abidjan Region to tend towards 
the dynamics of the epidemic after all the public measures have been taken.

The initial instant 0t =  of our study of the epidemic in the big Abidjan with the effect of public measures there-
fore corresponds to April 12, 2020. In our case we will name 0 0 0 0( , , , )S I R U  the state of the system at this time. 
This is the initial state of the model that we are going to study.

We will not use the value of f  indicated in [1] by Pierre Magal, et al. We will consider that 0.05f = . It is as-
sumed in [12] and [13] that the young age of an individual favors the absence of symptoms or the development of 
very weak symptoms after COVID-19 contraction. The last population census of Côte d'Ivoire [14] shows that chil-
dren (0-14 years-old) represent 41.8 percent of the total population and young people (15-34 years-old completed) 
constitute 35.5 percent of the total population. 77.3 percent of the total population is under 35 years of age. This 
extreme youth of the population could explain the low number of symptomatic infectious because the symptoms 
of the disease rarely appear. On the other hand, the low attendance of health facilities (around 47 percent, [15]) 
may not favor the detection of COVID-19. Screening is only systematic in the event of serious symptoms and symp-
tomatic infectious are hardly detected. There are not enough screening centers, although their number has been 
increased. For all these reasons, we will assume that around 5 percent of infectious individuals become confirmed 

https://doi.org/10.23937/2474-3658/1510196
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cases. 0.05f =  and 1 0.95f− = .

The parameters 
1
7

ν = , 
1
7

η = , 0.05f =  and therefore 1
0.05

7
fν ν= =  and 2

0.95(1 )
7

fν ν= − =  are thus 
known.

5816060N =  is the size of the population of the big Abidjan before the epidemic.

We know the number of reported cases at t=0 (April 12, 2020) : 0 (0) 574 533 41R R= = − = .

As in [1], we define the CR function of the cumulative number of reported symptomatic infectious cases at time 
t for 0t ≥  with the function 

0
1( ) ( )d .

t

t
CR t I s sν= ∫
where 0t  is the solution of ( ) 0CR t = .

The statistical data of the COVID-19 epidemic show that the variations in the number of susceptible people due to 
the epidemic in the beginning of the epidemic are so small so we can consider 0( )S t N=  and 0 (0) 5816060S S= =  
because as we will see later the distance between 0  and 0t  is small. That will permit us to evaluate the other pa-
rameters of the model. We can later adjust the value of 0S .

As we look at the epidemic from the effect of the measures at date t = 0 then, for 0 0t t≤ < , ( )CR t  exists but 
has no interesting biological significance and is used just for calculations (Figure 1).

To exploit this adjustment function, we consider that For 0, ( ) ( )t CR t a exp bt c≥ = × −  where the values of a, 
b and c are defined above.

When we use the methods to estimate the parameters presented and justified in [1] in section 4 we obtain that :

0
1 ( ( ) ( )),t ln c ln a
b

= −

0(0) exp ( ),cbI b t
fν

= × −

0 1

,b b
S b

ν ητ
ν η

+ +
= ×

+ +

0
(1 )(0) exp ( ),f cbU b t

b f
ν

η ν
−

= × −
+

and
0 2(1 ).Sτ ν

ν η
ℜ = +0

From the previous expressions and the determination of the previous parameters, we calculate the others con-
stants of the model of the COVID-19 epidemic in the great Abidjan with the effect of public measures. We get 

0 15.146t = − , 0 (0) 5373.7I I= = , 0 (0) 4992.8U U= = , 81.3019 10τ −= ×  and 1.0335ℜ =0 . 

         

Figure 1: We display daily data for the cumulative number of cases reported from April 12, 2020 (t = 0). The fit curve equation 
is y = 11959.70832011228 × exp (0.003209387788757992 × t) - 11392.25601164384.
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Simulation of the current deterministic model and predictions
With MatLab software, from the date of (April 12, 2020, 0t = ), the effect of all the public measures, we propose 

a simulation of the current situation in the Greater Abidjan Region with the constants previously determined. Let's 
recap.

The transmission rate is 81.3019 10τ −= × . The rate at which the asymptomatic infectious individuals become 

symptomatic is 
1
7

ν = . 0.05f =  is the fraction of asymptomatic infectious that become reported symptomatic 

infectious. So 1
0.05

7
fν ν= = .

The rate at which asymptomatic infectious become unreported symptomatic infectious is 2
0.95(1 )

7
fν ν= − = .

1
7

η =  is the rate at which the symptomatic infectious individuals lose their symptoms by death or healing. The 
basic reproductive number for our deterministic model is 1.0335ℜ =0 .

At 0t = , 0 5816060S = , 0 5373.7I = , 0 4992.8U = , 81.3019 10τ −= ×  and 0 41R = . We get the following 
numerical simulations with MatLab sofware where we will not present the trajectory of the susceptible people 
because of a question of scale (Figure 2).

Now we present the evolution of susceptible individuals (Figure 3).

Under the conditions we have adopted, the epidemic in the Greater Abidjan lives around 1400 days after April 
12, 2020, with a peak reaching 230 days after this date.

We can see that at the end of the epidemic, the number of susceptible people in the population of the big Abi-
djan is around 5,300,000. This drop should not be seen as deaths but rather as cures because the death rate from 
the disease is very weak (it is less than 1 percent as the statistics indicate. Refer also to the linear graphs). At the 
end of the epidemic, we have approximately 300,000 cured which does not influence the dynamics of the model.

Tracks for rapid eradication of the epidemic in the great Abidjan
In support of the public measures taken, we agree with the two new directions taken by the government of Côte 

d’Ivoire:
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Figure 2: Trajectory of the solution without the suseptibles compartment of the deterministic system which describe the 
dynamic of the COVID-19 epidemic in the Greater Abidjan Region with the effect of the public measures. 0 5816060,S =

0 5373.7,I = 0 4992.8,U = 0 41,R =  and 1.0335ℜ =0 . Peak of epidemic appears approximately 230 days after 
April 12, 2020.
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• Increase in screening tests,

• Repression and punishment of people who do not respect public measures and protective gestures.

An increase in screening tests results in an increase in the parameter f  and therefore in the rate 1ν .

We suggest a large increase from f  to 0.8. We hope that 80 percent of the infected will be reported cases in 
order to get them out of the dynamics of the epidemic.

The degree of repression and sanction can result in a coefficient k between 0 and 1 by which the current trans-
mission rate is multiplied. If the repression and the sanctions are high then k is small and the rate of transmission 
decreases. For our simulation, we opt for k = 0.5, i.e. a reduction by half of the current transmission rate. With the 
previous values of the other parameters, using the same methods of parameter approximations the following sim-
ulation gives 0.5131ℜ =0  (Figure 4). 

The following simulations shows in the same conditions the evolution of the number of individuals susceptible 
which knows a small decrease to stabilize at 5,815,600 at the end of the epidemic (Figure 5).

The Stochastic Model with Jumps
In this section, we study the model (1.2) for 0t ≥  where 0t =  represents the date of April 12, 2020, the date 

from which we assume that the public measures are effective.

Lyapunov analysis [7,8,16], permits us to prove that the solution of model (1.2) is positive and global.

We assume that the jump coefficient satisfies the following conditions:

\begin{itemize}

( )H1 2 2| ( , ) ( , ) | (d ) | |m
Z

H x z H y z z L x y− Π ≤ −∫ where ( , ) ( ) ( )[ ( ) ( )],H x z C z S x I x U x− − −= +  with 

| | | |x y m∨ ≤

( )H2  C  is a bounded function and there exists a strictly positive constant 1K  such that 1( )C z K< .

We will first prove that the system (1.2) has a unique solution which is global and positive. In a second point we 
will study the asymptotic behavior of this solution in the case 1ℜ ≤0  . Simulations carried out with Matlab software 
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Figure 3: Trajectory of suseptibles compartment of the deteministic system which describe the dynamic of the of the 

COVID-19 epidemic in the Greater Abidjan Region with the effect of the public measures. 0 5816060,S = 0 5373.7,I =

0 4992.8,U = 0 41,R =  and 1.0335ℜ =0 . Peak of epidemic appears approximately 230 days after April 12, 2020.
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Basic Reproductive Number =0.51311, τ=1.0503e−008

I : asymptomatic infectious
R : reported symptomatic infectious
U : unreported symptomatic infectious

Figure 4: Trajectory of the solution without the suseptibles compartment of the deteministic system which describe the 
dynamic of the of the COVID-19 epidemic in the Greater Abidjan Region with the effect of the public measures. A vast 
screening campaign, sanctions and repression. For that we take 0.8.f =  A new transmission rate equal to κτ  where 
τ is the old transmission without repression. κ  is coefficient that measures the intensity of sanction and repression. We 
takes 0.5.κ =  0 5816060S =  and we obtain 0 5373.7,I = 0 4992.8,U = 0 41R =  and 1.0335ℜ =0 . From the 
first moment the number of asymptomatic infections individuals is decreasing, the number of reported knows a peak after 15 
days and the epidemic disappears 100 days after April 12, 2020.
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Figure 5: Trajectory of the suseptibles compartment of the deteministic system which describe the dynamic of the of the 
COVID-19 epidemic in the Great Abidjan with the effect of the public measures from April 12, 2020, a vast screening 
campaign, sanctions and repression. For that we take 0.8.f =  A new transmission rate equal to κτ  where τ is the old 
transmission without repression. κ  is coefficient that measures the intensity of sanction and repression. We takes 0.5.κ =  

0 5816060S =  and we obtain 0 5373.7,I = 0 4992.8,U = 0 41R =  and 1.0335ℜ =0 . From the first moment the 
number of asymptomatic infections individuals is decreasing, the number of reported knows a peak after 15 days and the 
epidemic disappears 100 days after April 12, 2020. 
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confirm our results.

Global positive solution
As in [16], we show that jump processes can suppress the explosion. 

Theorem 6.1: With the assumptions ( )H1  and ( )H2 , for any given initial value 
4

1 2 3 4 1 2 3 4( (0), (0), (0), (0) {( , , , ) ; }S I R U x x x x x x x x N+∈ ∆ = ∈ + + + ≤ , the equation (1.2) has a unique global 
solution ( ( ), ( ), ( ), ( ))S t I t R t U t ∈ ∆  for all 0 .t almost surely≥

Proof: For any given initial value ( (0), (0), (0), (0))S I R U ∈ ∆  there is a unique local solution ( , , , )S I R U  on 
a random interval [0, [eτ  where eτ  is the explosion time because of ( )H1  and the fact the drift and diffusion are 
locally Lipchitz.

To prove this local solution is global, we need to show that eτ = ∞  a.s. We will also prove that for any given 
initial value (( (0), (0), (0), (0))S I R U ∈ ∆ , the equation (1.2) has its solution

(( ( ), ( ), ( ), ( ))S t I t R t U t ∈ ∆  for all 0 .t almost surely≥

At first we prove that the solution is positive. In second part, we prove that the solution checks 
( ) ( ) ( ) ( ))S t I t R t U t N+ + + ≤  for all 0 .t almost surely≥

The set {( ( ), ( ), ( ), ( )) : [0, [eS t I t R t U t t τ∈  with ( ) 0S t ≤  or ( ) 0I t ≤  or ( ) 0R t ≤  or ( ) 0}U t ≤  is not empty 

cause at 0t = , ( (0), (0), (0), (0))S I R U  is in this set. So we define the following stopping time

inf{ [0, [: ( ) 0et S tτ τ= ∈ ≤  or ( ) 0I t ≤  or ( ) 0R t ≤  or ( ) 0}U t ≤ .

Let 0 0m >  be so large that 0{| (0) |,| (0) |,| (0) |,| (0) |} .max S I R U m≤

For 0m m≥ , we define the stopping time

inf{ [0, [:| ( ) | | ( ) | | ( ) | | ( ) | }m t S t m or I t m or R t m or U t mτ τ= ∈ > > > > .

Clearly, mτ  is increasing as m ↑ ∞  a.s. Set lim mm
τ τ∞ →∞

= , whence, eτ τ τ∞ ≤ ≤  a.s. 

If we can show that τ∞ = ∞  a.s is true, then eτ τ= ∞ =  a.s then the solution ( ( ), ( ), ( ), ( ))S t I t R t U t  is global 
and positive a.s.

For 4
1 2 3 4( ; ; ; )x x x x x += ∈ , we define F a 2C -function by 2 2 2 2

1 2 3 4 1 2 3 4: ( ; ; ; )F x x x x x x x x+ + + .

Let 0m m≥  and 0T >  be arbitrary. For [0; [mt Tτ∈ ∧ ,
2 2 2 2( ( ), ( ), ( ), ( )) ( ) ( ) ( ) ( )F S t I t R t U t S t I t R t U t= + + +  is well defined.

Applying Itô’s formula, we obtain

( ( ), ( ), ( ), ( )) ( ( ), ( ), ( ), ( ))dF S t I t R t U t LF S t I t R t U t dt=
2 2( )( ( ) ( ))( ( ) 2 ( ) 2 ( ) ( )) ( )S t I t U t S t S t I t I t dB tσ+ + − + −  

( ) ( )( ( ) ( ))[2 ( ) ( )( ( ) ( )) 2 ( ) 2 ( )] (d ,d )
Z

C z S t I t U t C z S t I t U t I t S t N t z− − − − − − − −+ + + + −∫ 

where 
2

1 2( ( ), ( ), ( ), ( )) 2[ ( ) ( )( ( ) ( )) ( ) ( ) ( ) ( ) 4LF S t I t R t U t S t I t I t U t I t R t I t U tτ ν ν σ= + + + +
2 2 2 2( )( ( ) ( )) ( ) ( ) ( )]S t I t U t I t R t U tτ ν η η− + − − −  

2 2( ) ( )( ( ) ( ))[2 ( ) ( )( ( ) ( )) ( ) ( ) 4 ( ) 4 ( )]d ( ).
Z

C z S t I t U t C z S t I t U t S t I t I t S t z+ + + + − + − Π∫ .

For [0; [t T∈ ∧ , ( ), ( ), ( )S t I t R t , live in $ [0;m]$ and σ  is constant. As 1 2, , ,τ ν ν ν  and η  live in [0;1], we get

2
1 2( ( ), ( ), ( ), ( )) 2[ ( ) ( )( ( ) ( )) ( ) ( ) ( ) ( ) 4LF S t I t R t U t S t I t I t U t I t R t I t U tτ ν ν σ≤ + + + +

( ) ( )( ( ) ( ))[2 ( ) ( )( ( ) ( ))
Z

C z S t I t U t C z S t I t U t− − − − − −+ + +∫
2 2( ) ( ) 4 ( ) 4 ( )]d ( ).S t I t I t S t z− − − −+ − + − Π

We are in conditions where ( ), ( ), ( )S t I t R t , 1 2, , ,τ ν ν ν  and η  are dominated by positive constants. So, there is 
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a strictly positive real constant 2K  such that
2

1 2 2[ ( ) ( )( ( ) ( )) ( ) ( ) ( ) ( ) 4 .S t I t I t U t I t R t I t U t Kτ ν ν σ+ + + + + ≤

In other words by using the assumption H2 , the fact ( ), ( ), ( )S t I t R t , live in [0;m] for [ ]0; mt Tτ∈ ∧  and the 
fact 

Π  is defined on a measurable subset Z  with ( )ZΠ < ∞ , we find a strictly positive real constant 3K  such that
2 2

3( ) ( )( ( ) ( ))[2 ( ) ( )( ( ) ( )) ( ) ( ) 4 ( ) 4 ( )]d ( ) .
Z

C z S t I t U t C z S t I t U t S t I t I t S t z K+ + + − + − Π <∫
Finally

2 3( ( ), ( ), ( ), ( ))LF S t I t R t U t K K K≤ + =

Therefore,

0 0

d ( ( ), ( ), ( ), ( )) d 
m mT T

F S t I t R t U t K t
τ τ∧ ∧

≤∫ ∫

2 2

0

( )( ( ) ( ))( ( ) 2 ( ) 2 ( ) ( )) ( )
m T

S t I t U t S t S t I t I t dB t
τ

σ
∧

+ + − + −∫  

0

( ) ( )( ( ) ( ))[2 ( ) ( )( ( )
m T

Z

C z S t I t U t C z S t I t
τ ∧

− − − − −+ +∫ ∫

( )) 2 ( ) 2 ( )] (d ,d ).U t I t S t N t z− − −+ + − 

Taking expectation, yields

( ( ( ), ( ), ( ), ( )))m m m mF S T I T R T U Tτ τ τ τ∧ ∧ ∧ ∧ ( (0), (0), (0), (0))F S I R U KT K ′≤ + =  (3.1)

We define for each u ≥  0,

{ }4
1 2 3 4 1 2 3 4( ) ( ) : ( , , , ) [0; [ | | | | | | | |u inf F x x x x x x with x u or x u or x u or x uµ = = ∈ +∞ > > > > .

Due to the property of the function $ F $ defined by 2 2 2 2
1 2 3 4 1 2 3 4( , , , ) :F x x x x x x x x= + + + , we see that 

lim ( )
u

uµ
→+∞

= +∞ .

We know that if X is a Levy process then, for each 0t ≥  we have ( ) 0X t∆ =  almost surely where 
( ) ( ) ( )X t X t X t−∆ = − .

S , R , I  and $ R $ are Levy processes. So we obtain almost surely from (3.1) :

{ }( ) ( ) ( ( ( ), ( ), ( ), ( )) ) 
mm m m m m Tm T F S T I T R T U T τµ τ τ τ τ τ ≤≤ ≤ ∧ ∧ ∧ ∧  

( ( ( ), ( ), ( ), ( ))m m m mF S T I T R T U Tτ τ τ τ≤ ∧ ∧ ∧ ∧
.K ′≤

We deduce

( ) .
( )m
KT
m

τ
µ

′
≤ ≤

Letting m → +∞  yields 

( ) 0Tτ∞ ≤ = .

Since T  is arbitrary, we must have 

( ) 1τ∞ = +∞ =  a.s.

So eτ τ= = +∞  a.s. and the equation (1.2) has a unique global positive solution ( )X t  for 0t ≥ . 

Now we prove that the solution is dominated.

Let ω  be fixed in Ω . ( )( ) ( )( ) ( )( ) ( )( )t S t I t R t U tω ω ω ω→ + + +  is a deterministic function such that 

( )( ) ( )( ) ( )( ) ( )( ) [ ( )( ) ( )( )]S t I t R t U t R t U t
dt

ω ω ω ω η ω ω+ + +
= − +  
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η  is a positive constant. As we have shown above, ( )U t  and (R t ) are positive for 0t ≥  we can deduce that for 

0t ≥ , the deterministic function ( )( ) ( )( ) ( )( ) ( )( )t S t I t R t U tω ω ω ω→ + + +  is a decreasing function.

Therefore for 0t ≥ , ( )( ) ( )( ) ( )( ) ( )( ) (0) (0) (0) (0)S t I t R t U t S I R Uω ω ω ω+ + + ≤ + + + .

The initial state ( (0), (0), (0), (0)S I R U  being taken in
4

1 2 3 4 1 2 3 4{( , , , ) ; }x x x x x x x x N+∆ = ∈ + + + ≤ , therefore we have for

0t ≥ , ( )( ) ( )( ) ( )( ) ( )( ) .S t I t R t U t Nω ω ω ω+ + + ≤

By varying ω  in the universe of probability , we thus show that:

for 0t ≥ , ( ) ( ) ( ) ( ) .S t I t R t U t N almost surely+ + + ≤

This completes our proof and for any given initial value
4

1 2 3 4 1 2 3 4( (0), (0), (0), (0) {( , , , ) ; }S I R U x x x x x x x x N+∈ ∆ = ∈ + + + ≤ , the equation (1.2) has a unique 

global solution ( ( ), ( ), ( ), ( ))S t I t R t U t ∈ ∆  for all 0 .t almost surely≥

Asymptotic behavior around the set of the disease-free equilibrium for the system (1.1)
Considering that 1ℜ ≤0 , we prove that the solution of the stochastic system (1.2) oscillates in the set of the 

disease-free equilibrium for the deterministic system (1.1).

Theorem 6.2: Let ( ( ), ( ), ( ), ( ))S t I t R t U t , be the solution of the system (1.2) with initial value. If 1ℜ ≤0  , then 

there exists 0ξ <  such that 

ul msi p
t→∞

1
t 0

t

∫ 2[ ( ) ( ( ) ( )) ( ) ( ) ( ]dS x I x U x U x I x R x x+ + + +  

2
21 ( ) (d )

2 2Z

C z z
N N

σ

ξ

+ Π
≤

∫

where 0 05{ ; ; (1 ) ; }min S S
N
τξ τ ν ητ= − ℜ0 .

Proof: We know that 0 0 0 0( (0), (0), (0), (0)) ( , , , )S I R U S I R U=

Define a 2C -function by

2 0
05

1( , , , )
2

SG S I R U S S I S R U
N

ττ
η

= + + + +

The function G is positive definite on ∆ , and

( ( ), ( ), ( ), ( ))dG S t I t R t U t LGdt= 2
5 ( ) ( )S I U dB t

N
σ

+ + 5
1{ ( ) ( )( ( ) ( ))

2Z

C z S t I t U t
N

− − −+ +∫
5[ ( ) ( )( ( ) ( )) 2 ( ) 2 ]} (d ,d )C z S t I t U t S t N N t z− − − −× + − −  (3.2)

where

2
5 ( ) ( ( ) ( )) ( )( ( ) ( ))LG S t I t U t S t I t U t

N
τ τ−

= + − +  

0
0 1 0 2 0( )( ( ) ( )) ( ) ( ) ( ) ( ) ( )SS t I t U t I t S I t S R t I t S U tττ ν τ ν ητ ν τ

η
+ + − + − + −

2
2 2

5 ( )( ( ) ( ))
2

S t I t U t
N

σ
+ + 2 2 2

5
1[ ( ) ( )( ( ) ( ))

2Z

C z S t I t U t
N

+ +∫ ( ) ( )( ( ) ( ))] (d ).C z S t I t U t z− + Π

We obtain

2
5 ( ) ( ( ) ( )))LG S t I t U t

N
τ−

= + ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )S t I t S t U t S t I t S t U tτ τ τ τ− − + +

0 1 0( ) ( ) ( )I t S I t S R tν τ ν τ η− + − 0
2 0( ) ( )( )S I t S U t tτ ν τ

η
+ −

2
2 2

5 ( )( ( ) ( ))
2

S t I t U t
N

σ
+ +  
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2 2 2
5

1[ ( ) ( )( ( ) ( )) ( ) ( )( ( ) ( ))] (d ).
2Z

C z S t I t U t C z S t I t U t z
N

+ + − + Π∫
Thereafter,

2
5 ( ) ( ( ) ( ))LG S t I t U t

N
τ−

= +

0 2
0 0 1 0( ) ( ) ( ( ) ) ( ) ( ) ( ) ( )SS t U t S t S U t S I t S R tτ ντ τ τ ν ν ητ

η
− + − + + − −

2
2 2 2 2 2

5 5
1( )( ( ) ( )) [ ( ) ( )( ( ) ( )) ( ) ( )( ( ) ( ))] (d ),

2 2Z

S t I t U t C z S t I t U t C z S t I t U t z
N N

σ
+ + + + − + Π∫

2
5 ( ) ( ( ) ( ))) LG S t I t U t

N
τ−

= +

0 21
0 0 0( ) ( 1) ( ) ( )SS U t S I t S R tτ νντ τ ν ητ

ν ην
− + + − −

2
2 2 2 2 2

5 5
1( )( ( ) ( )) [ ( ) ( )( ( ) ( )) ( ) ( )( ( ) ( ))] (d ),

2 2Z

S t I t U t C z S t I t U t C z S t I t U t z
N N

σ
+ + + + − + Π∫
and

2
5 ( ) ( ( ) ( )) LG S t I t U t

N
τ−

= +

0 2
0 1 0( ) [ ( ) 1] ( ) ( )SS U t I t S R tτ ντ ν ν ητ

ν η
− + + − −

2
2 2 2 2 2

5 5
1( )( ( ) ( )) [ ( ) ( )( ( ) ( )) ( ) ( )( ( ) ( ))] (d ).

2 2Z

S t I t U t C z S t I t U t C z S t I t U t z
N N

σ
+ + + + − + Π∫
Since all the model parameters are non-negative, 0S S≤  and 1 1ν ≤ , we get :

0 2
1( )Sτ νν

ν η
+ 0 2(1 )Sτ ν

ν η
≤ + = ℜ0  1.≤

Since all the model parameters are non-negative and 0( )S t S≤ , we deduce that

2
5 ( ) ( ( ) ( ))LG S t I t U t

N
τ−

≤ +

0 0( ) ( 1) ( ) ( )S U t I t S R tτ ν ητ− + ℜ − −0

2
2 2 2 2 2

5 5
1( )( ( ) ( )) [ ( ) ( )( ( ) ( )) ( ) ( )( ( ) ( ))] (d ).

2 2Z

S t I t U t C z S t I t U t C z S t I t U t z
N N

σ
+ + + + − + Π∫
Using that for 0t ≥ , 4

1 2 3 4 1 2 3 4( ( ), ( ), ( ), ( )) {( , , , ) ; }S t I t R t U t x x x x x x x x N+∈ ∆ = ∈ + + + ≤  and the fact 

that the function C is dominated by a positive real 1K  , there is a real T such that 

( ) ( )( ( ) ( )) (d ) .
Z

C z S t I t U t z T− + Π <∫
Hence,

2
5 ( ) ( ( ) ( ))LG S t I t U t

N
τ−

≤ + 0 0( ) ( 1) ( ) ( )S U t I t S R tτ ν ητ− + ℜ − −0

2
21 ( ) (d ).

2 2Z

T C z z
N N

σ
+ + + Π∫              (3.3)

Integrating both sides of (3.2) from 0 to t, then taking expectation, yields

0

0 ( ( ), ( ), ( ), ( )) ( (0), (0), (0), (0)) ( ( ), ( ), ( ), ( )]d
t

G S t I t R t U t G S I R U LG S x I x R x U x x≤ = + ∫ 
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By (3.3) we have

2
0 05

0

[ { ( ) ( ( ) ( )) ( ) (1 ) ( ) ( )}d ]
t

S x I x U x S U x I x S R x x
N
τ τ ν ητ+ + + − ℜ +∫ 0  

2
2 2 2 2 2

5 5
1( (0), (0), (0), (0)) ( )( ( ) ( )) ( ) ( )( ( ) ( )) (d ).

2 2Z

G S I R U T S t I t U t C z S t I t U t z
N N

σ
≤ + + + + + Π∫
Therefore

2
2

2

0

l

1 ( ) (d )
2 21sup [ ( ) ( ( ) ( )) dim ( ) ( ) ( ]

t
Z

t

C z z
N N

S x I x U x U x I x R x x
t

σ

ξ→∞

+ Π
+ + + + ≤

∫
∫

Where 0 05{ ; ; (1 ) ; }min S S
N
τξ τ ν ητ= − ℜ0

Remark 6.2: When 1ℜ ≤0  the solution of (1.2) oscillates more closely in the set M of the disease-free equilib-
rium for the system (1.1) as the intensity of the noise and the jumps decrease. The case fatality rate is less than 1 
percent (see linear graphs). Convergence towards a disease-free state is an encouraging sign. It is a disease-free 
situation with few deaths.

Numerical Simulation of the Stocastic Model
As in [7,10] using MatLab R2019b software, we add white noise and Poisson jumps to the first example seen 

in the deterministic case which reflects the reality in the big Abidjan. To be close to the difficulties of lowering the 
transmission rate in greater Abidjan, we lowered this rate by 10 percent in the first two figures and by 25 percent 
in the last two. We get basic reproductive numbers less than 1.

We obtain the following figures which corroborate the results of our last theorem (Figure 6).

Now we present the evolution of susceptible individuals (Figure 7 and Figure 8).

Now we present the evolution of susceptible individuals (Figure 9).
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Figure 6: Trajectory of the solution without the suseptibles compartment of the stochastic system which describe the 
dynamic of the of the COVID-19 epidemic in the great Abidjan with the effect of the public measures from April 12, 2020. 

0 5816060,S =  0 5373.7,I = 0 4992.8,U = 0 41R =  and 0.93018.ℜ =0  Peak of epidemic appears to be around 

600 days after April 12, 2020.
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Figure 7: Trajectory of suseptibles compartment of the stochastic system which describe the dynamic of the of the COVID-19 

epidemic in the great Abidjan with the effect of the public measures from April 12, 2020. 0 5816060,S =  0 5373.7,I =

0 4992.8,U = 0 41R =  and 0.93018.ℜ =0  Peak of epidemic appears to be around 600 days after April 12, 2020.
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Figure 8: Trajectory of the solution without the suseptibles compartment of the stochastic system describe the dynamic 
of the of the COVID-19 epidemic in the Greater Abidjan Region with the effect of the public measures. 0 5816060,S =  

0 5373.7,I = 0 4992.8,U = 0 41R =  and 0.77515.ℜ =0  Peak of epidemic appears approximately 250 days after 
April 12, 2020.
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gether flow in the set of the disease-free states. Con-
sequently, we tend to get out of the epidemic with few 
deaths.
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