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Abstract
Background: The transmission dynamics of infectious 
diseases is susceptible to changes governed by several 
factors, whose recognition is critical for the rational devel-
opment of strategies for prevention and control, as well as 
for developing health policies. In this context, mathematical 
modeling can provide useful insights concerning transmis-
sion patterns and detection of parameters to mitigate dis-
ease in the population.

Objectives: To didactically present the mathematical mod-
eling of infectious diseases for health students and profes-
sionals as a tool in epidemiology.

Methods: A comprehensive literature review was conduct-
ed with articles obtained from PubMed, Web of Science, 
and Google Scholar databases with the term infectious dis-
eases mathematical modeling.

Results: There are two main types of models built with a 
basis on fixed or probabilistic rates that describe individu-
als' movement in compartments that designate stages in 
the natural history of the disease. In this sense, determinis-
tic models are non-probabilistic and stochastic models are 
probabilistic, the first one helps in developing a prospection 
of possible scenarios in epidemiology, while the second is 
more applicable in the study of the influence of variables in 
the transmission dynamics.

Conclusion: The infectious agents are in a constant pro-
cess of biological evolution, as well as the environment 
and human conceptions, culture, and behavior, implying a 
constant transformation in the epidemiological profile of in-
fectious diseases, in which the mathematical modeling can 
provide support to the decision-making processes concern-
ing epidemiology and public health.
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Introduction
Infectious diseases are the result of a disharmonious 

ecological interaction between a microbial infectious 
agent (bacteria, fungi, parasites, or viruses, except for 
prions that are infectious proteins) and a host, where 
the dynamics in this interaction is subjected to the mod-
ulatory influence of several factors, such as the environ-
ment, the biological properties of the pathogens and 
the host susceptibilities to disease, as well as the influ-
ence of behavioral, cultural, and social patterns that can 
enhance or mitigate the host's exposure to the disease 
sources and consequently its transmission in the popu-
lation [1].

In this sense, the connection between the above 
mentioned factors is critical for a better understand-
ing of the transmission patterns to support the devel-
opment of effective strategies of control, health assis-
tance, and policies [2]. Highlighting that some infectious 
diseases have the potential for treatment and eradica-
tion in most cases by antimicrobial drugs and vaccines, 
as well as prevention by proper hygienic-sanitary and 
prophylactic measures, however, they also present 
great unpredictability regarding their epidemiologi-
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cal magnitudes in the population due to the biological 
evolution of infectious agents against therapeutic drugs 
along with constant social and environmental changes 
intrinsic to the continuous and unstoppable process of 
globalization and urbanization [3-5].

In this context, the unpredictability of these dis-
eases represents a factor that can compromise the ca-
pacity of the health systems and services to meet the 
needs of the population, especially considering finite 
and limited human and economic resources, where the 
mathematical modeling of the infectious diseases can 
contribute to the health services by allowing extrapola-
tions of the epidemiological behavior of the infectious 
diseases, as well as interventions, whose effectiveness 
can be analyzed considering numerous factors that can 
influence the dynamics of disease transmission and 
guide the public health decision-making [6], such as the 
study by Hoertel, et al. [7], Which, through mathemati-
cal modeling, analyzed the effects of measures such as 
lockdown, physical distance, and the use of masks on 
the COVID-19 cumulative incidence and mortality, bed 
occupancy, concluding that the preventive measures 
mentioned would be effective in reducing the speed of 
the epidemic in France, but not enough to prevent the 
maximum occupancy of the ICU beds, still emphasizing 
that without such measures, the magnitude of the pan-
demic would be much greater in the French population, 
suggesting the continuity the use of masks and social 
detachment after periods of lockdown.

Therefore, this work didactically presents mathemat-
ical modeling as a tool useful in epidemiology, having as 
target students and professionals from health sciences.

Methods
This work adopted the methodology described by 

[8], presenting a text with an educational approach de-
rived from the analysis of the conceptual and experi-
mental articles raised in the PubMed, Web of Science 
and Google Scholar databases with the boolean opera-
tors infectious diseases ‘AND’ mathematical modeling. 
The selection criteria were pertinence to the theme and 
consistency of the information provided, and full avail-
ability of the material online, while the exclusion crite-
ria were works published in events and works not fully 
available online.

This review brings a conceptual understanding of 
what is a model, which data are used in the mathemat-
ical models applied to the infectious disease dynamics, 
the types of models, and how they are built through a 
didactic text with a comprehensive approach.

Results and Discussion
In this topic, the data and the main methods used in 

the infectious diseases mathematical modeling are pre-
sented considering the graphic shape an epidemic can 
present regarding the number of infected individuals 

during a time interval, followed by explanations about 
the basic measure used to assess epidemic risks and 
the effectiveness of interventions according to mathe-
matical modeling, as well as few strategies that can be 
adopted to increase the realism of a mathematical rep-
resentation of an epidemic.

Mathematical modeling of infectious diseases
A mathematical model is an abstract representation 

of a phenomenon constructed with the use of equations 
that generate perspectives of the general behavior of 
an epidemic event, also representing a way to investi-
gate the influence of determinate factors over disease 
spread, providing a crude general behavior of an epi-
demic as addressed by epidemic curves, thus allowing 
predictions about the endurance of an epidemic, its ma-
gnitude in the population, and the evaluation of factors 
that influence the transmission dynamics, and conse-
quently the number of cases. Highlighting it is possib-
le to apply mathematical refinements to the models to 
enhance their proximity to real data [9,10].

In the epidemiology of infectious diseases, ma-
thematical modeling is a tool of great versatility, that 
allows the identification of patterns in epidemics, ext-
rapolations of epidemic behaviors along with the effect 
of interventions such as pharmacological treatment, 
immunization, quarantine, social distance, and hygie-
ne measures in a dynamic context, presenting low cost 
and enabling simulations of experiments condemnable 
ethically in human beings, as well as simulations of ex-
periments that present low economic viability in animal 
models [11].

In general terms, the mathematical models applied 
to the epidemiology of infectious diseases can be classi-
fied into two types: 1) The deterministic models consi-
dering nonrandom rate flows in a population stratified 
in compartments; and 2) The stochastic models that 
consider probabilities in the movements between the 
compartments of the model, such as the probability of a 
susceptible individual being infected and the probability 
of transmitting the disease in the population addressed 
by a mathematical system [12].

Deterministic mathematical modeling
The deterministic models of the infectious diseases 

represent the most practical way for the approximate 
analysis of how an epidemic will behave in a closed sys-
tem, in which the population is divided into compart-
ments that describe disease states, where differential 
equations appearing as derivatives describe the mo-
vements between these states by determining varia-
tions over time [13].

In this context, considering a total population N 
(equation 1) that is initially found in a compartment 
called susceptible (S equation 2), which after the intro-
duction of a pathogen, gradually moves to the compart-
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Equation 5 ,dS SI
dt N

β
= −

Equation 6 ,dI SI I
dt N

β γ= −

Equation 7 .dR I
dt

γ=

As a result of adding this new compartment to the 
model, the graphic representation becomes capable of 
describing the essence of the epidemiological behavior 
of most infectious diseases, as shown in Figure 1 (on the 
right side), in which the number of susceptible individu-
als decreases in the same proportion as the number of 
infected increases, and the number of recovered peo-
ple increases as the number of infected people declines 
[14,15].

Highlighting that the deterministic models are not li-
mited to the SI, and the SIR structures, being possible to 
implement different structures and dynamics in the de-
terministic systems, which, after refinement, attribute 
to the model a greater degree of realism in their epide-
mic representations of the infectious diseases, conside-
ring factors such as the incubation period by adding the 
exposed compartment (E), age stratification, and spatial 
structures [16-19].

In this sense, Figure 2 shows a hypothetical case con-
sidering the compartments Susceptible, Exposed, Infec-
ted, and Recovered with two dynamics in the populati-
ons of three countries, assuming the flow of individuals 
between different geographic spaces.

However, although the deterministic models captu-
re the epidemiological behavior essence of the infecti-
ous diseases, it does not consider numerous events of 
random nature that can influence the transmission dy-

ment infected (I equation 3), according to the differen-
tial equations below:

Equation 1 ,N S I= +  where

Equation 2 1,dS
st

β= − +

Equation 3 .dI SI
dt

β=

In which the negative sign preceding the infection 
rate β indicates that the product of S x I decreases among 
the individuals in compartment S, while the number of 
infected people grows in the same proportion [14], as 
seen in the SI model in Figure 1 (on the left side).

In this model, the onset of infection and the expo-
nential growth in the number of cases are approximate 
to the observed in the epidemic curves, however, the 
model cannot represent the natural decline in the num-
ber of cases after the system reaches saturation due to 
the absence of susceptible individuals to support new 
cases [15]. In this sense, the SI model is more suitable 
for infectious diseases that become chronic with no re-
covery, such as infection by HIV [16].

In this sense, the addition of a new compartment 
capable of capture the decline in the epidemic curves 
due to acquired immunity or death brings to the sys-
tem more realism, as well as applicability to self-limit-
ing, or treatable infections. Highlighting that the new 
compartment, the recovered or removed (R equation 7) 
should increase exponentially regardless of the number 
of susceptible individuals, depending exclusively on the 
number of infected multiplied by a recovery constant ɣ 
[17].

In this case, the system of equations becomes:

Equation 4 ,N S I R= + +

         

  
 

 

 Susceptible Infected Susceptible Infected Recovered
 

Figure 1: Graphical representation on the SI model (Susceptible and Infected) on de left and SIR model (Susceptible, 
Infected and Recovered) on the right, and bellow their structure and dynamics in flow charts.
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the susceptible (S), exposed (E), and infected (I) struc-
ture and dynamics were assumed, considering natural 
death, and interaction/contact between humans, fleas, 
rodents, and the environment, according to the differ-
ential equations below:

Human population (SEIR)

Equation 8			 

1 1 1 ( 1 ) 1 ,
2

dSH IFRH fh A SH SH
dt N

π ψ ϖ α ω µ= + = Γ + −

Equation 9			 

2 1 ( 1 ) 2 1 ,
2

dE IFfr A SH EH EH
dt N

π ψ α ω α µ= + Γ + − −

Equation 10				  

2 3  ( 1 1) ,dIH EH IH IH
dt

α α µ δ= − − +

Equation 11				  

3 1 3 1 ;dRH IH RH RH
dt

π ψ α ϖ µ= + − −

Rodent population (SEI)

Equation 12			 

1 3 1 ( 2 ) 3 ,
2

dSR IFfr A SR SR
dt N

κ ψ γ ω µ= − Γ + −

Equation 13

namics, such as environmental factors, and protective 
behaviors in the susceptible host population through 
prophylactic measures, rapid and effective responses 
of the health systems, and the participation of asymp-
tomatic individuals in the transmission dynamics, being 
the deterministic models the most suitable to simplify 
the epidemiological behavior of a given infectious dis-
ease in a worst-case scenario, but not the most suitable 
for making decisions in real-time [20].

Exemplifying the employability of deterministic 
mathematical models, Ngeleja, et al. [21] developed a 
model to assess the role and magnitude of the involve-
ment of human populations, rodents, fleas, and the 
survival of pathogens in the environment on the spread 
of bubonic plague, an infectious disease caused by the 
bacterium Yersinia pestis, which represents a serious 
public health problem for some African countries, such 
as Tanzania.

The model by Ngeleja, et al. [21] adopted the sus-
ceptible (S), exposed (E), infected (I), and recovered 
(R) structure and dynamics in the human population, 
assuming a return to the susceptibility and reinfection 
stage; in the flea population a susceptible (S) and Infect-
ed (I) structure and dynamics were used since once in-
fected by the pathogen Yersinia pestis, the fleas do not 
recover from the infection; for the rodent population, 

         

Figure 2: A hypothetical transmission dynamics considering spatial structures in two models with similar structure, including 
the compartments susceptible, exposed, infected, and recovered in Angola, Brazil, and United States, assuming the flow 
of people from these countries in different compartments with two distinct dynamic, where the SIER model assumes total 
recovery or removal of the system due to immunological memory or death, and the SEIRS assumes that the recovered 
individuals are capable of being infected again.
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human and vector populations, also observing the rel-
evance of strategies with a focus on vector control to 
mitigate malaria transmission, however differently, the 
environment was a parameter with some degree of sig-
nificance in the malaria transmission to humans.

Stochastic mathematical modeling
The stochastic mathematical models of infectious 

diseases represent a more realistic approach to epide-
mics, because they allow the recognition of the initial 
patterns in an epidemic the analysis of the spatial dis-
tribution of case numbers in a given location, and allow 
estimations about the duration of an epidemic, consi-
dering differences among individuals in the population, 
such as age, sex, as well as social and geographic aspects 
that impose non-uniformity in the contact between in-
dividuals, in addition to environmental factors such as 
seasonality and transmission pathways [23-25].

These models tend to have complex and sophistica-
ted mathematical formulations, and can be classified 
into three types: 1) Stochastic differential equations; 
2) Markov chains with continuous-time or 3) Markov 
chains with discrete-time. All the stochastic models as-
sume probabilities in the transition between the com-
partments of the system, also assuming the presence of 
a state free of disease, which is different from the deter-
ministic models that assume an equilibrium state, which 
does not represent the end of an epidemic. In addition, 
they have great employability in asymptotic analysis, 
where the main objective is to describe the behavior li-
mits considering the number of infected individuals in a 
large population [23].

The models of the type Markov chain assume that 
each infection will occur independently of the past one 
in a probabilistic fashion, being possible to obtain from 
these models predictions about the stochastic risk of a 
major or a minor outbreak to occur when the number 
of infectious individuals is too small in a population of 
susceptible hosts [26], and the stochastic differential 
equations consider special probability and diffusion co-
efficients in the structures defined by the deterministic 
models considering random processes in the movement 
of compartments that compose the model [27].

The stochastic models represent a more realistic ap-
proach to model infectious diseases because they con-
template the high degree of uncertainty in the dynamics 
of transmission, providing a range of possible outcomes 
of an outbreak considering a large number of variables 
that influence the epidemic behavior of an infectious di-
sease, however, they tend to be limited regarding the 
degree of complexity in the formulation of the mathe-
matical system and data interpretation through diffe-
rent methods, such as the use of master equations [28], 
itô calculations [29], as well as other mathematical and 
statistical approaches based on brownian motion [30], 
or markov processes that add stochasticity to differen-

2 3 1 ( 2 ) 2 3 ,
2

dER IFfr A SR ER SR
dt N

κ ψ γ ω γ µ= + Γ + − −

Equation 14				  

3 3 2  ( 3 3) ,dIR ER IR
dt

κ ψ γ µ δ= + − +

Flea (SI)

Equation 15			 

2  (  (1 ) ) 2 ,
1 3

dSF IH IRs hf rf SF SF
dt N N

ψ β ρ ρ µ= − Γ + − Γ −

Equation 16		

2  (  (1 ) )  ( 2 2) ,
1 3

dIF IH IRi hf rf SF IF
dt N N

ψ β ρ ρ µ δ= + Γ + − Γ − +

Where ψ2s < ψ2i 

Pathogens in the environment

Equation 17				  

4 1 2 4 .dA ASH ASR A
dt

λ ω ω µ= − − − 	

Where the following parameters are added to the 
differential equations: Γfr, Γfh, Γrf, Γhf are parameters 
related to the adequate contact rate between flea to ro-
dent, flea to human, rodent to flea, and human to flea; 
ω1 is the adequate contact rate between pathogens to 
human, and ω2 is the adequate contact rate between 
pathogen to rodent ; α1, α2 and α3 represent progres-
sions rates, respectively, susceptible human to exposed, 
exposed human to infected, and infected to recovery, 
and 𝜛 is the progression rate from recovered human 
to susceptible ; ɣ1 represent the progression rates of 
susceptible rodents to exposed, and ɣ2 the progression 
rate of exposed rodent to infected; µ1, µ2, µ3 and µ4 
are in order, the natural death for human, flea, rodent 
and pathogen, δ1, δ2 and δ3 are the disease induced 
rates for human, flea and rodent; ψ1, ψ2s, ψ2i, and ψ3 
are respectively the imigrations rate of human, suscep-
tible flea, infected flea, and rodent; π1, π2, π3 are the 
proportional migrantion that are susceptible, exposed, 
and recovered; κ1, κ2 and κ3 are the proportional ro-
dent migrants that are susceptible, exposed and infect-
ed; and β is the rate that fleas become infected. High-
lighting these parameters were from the literature.

In the numerical solution presented by Ngeleja, et 
al. [21], In the absence of interventions, the parameter 
that has the greatest effect on the dynamics of trans-
mission to humans and rodents is the β infectivity rate 
in the flea population, suggesting that the most effec-
tive strategies should focus on vector control, with the 
infected populations of humans and rodents being neg-
ligible parameters, as well as the environment in the 
transmission dynamics. This result is similar to those 
from Mbogo, et al. [22], that developed a comparative 
analysis of deterministic and stochastic models with the 
structural dynamics susceptible and infected (SI) for 

https://doi.org/10.23937/2474-3658/1510209
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In this model, Legrand, et al. [34] found out the com-
munity transmission was a significant source of infec-
tion in Uganda, while the traditional burial ceremonies 
played a more important role in the transmission dy-
namics in the Democratic Republic of Congo, emphasiz-
ing that appropriate hospital precautions to avoid trans-
mission between patients and health care workers, as 
well as precautions with the corpses, are important to 
decrease the size and duration of epidemics. The au-
thors [34] also proposed tracing contact interventions 
as a strategy to identify sources of infection, thus de-
creasing the transmissibility due to proper isolation and 
health care of infected and suspicious cases.

Deterministic versus stochastic
In general, both approaches exhibit the same behav-

ior, where the deterministic models can capture the es-
sential patterns of an epidemic; however, it cannot an-
swer the question: what are the margins of error of the 
estimates for disease peaks? Therefore, to address this 
question, the stochastic model can be used, considering 
the minimum and maximum probabilistic range an epi-
demic can assume.

That is, the deterministic approach provides an over-
all insight about the disease spreading in a fast way, 
whereas the stochastic framework provides statistical 
insights into the transmission events providing a range 
of possible epidemic scenarios [22].

Deterministic models tend to present results that do 
not undergo major changes due to fluctuations in the 
population, but undergo significant changes if the pa-
rameters inserted in the differential equations are mod-
ified; in this context, the stochastic models are more 
responsive to quantitative changes both in the popula-
tions and subpopulations, as well as in the modeling pa-
rameters, making it important to emphasize that there 
are several ways of working probabilities in stochastic 
processes as addressed above, which makes these mod-
els too complex and difficult to interpret [22,30,35].

Moreover, both deterministic and stochastic models 
share the challenge in representing the natural history 
of infectious diseases, considering sources of infection, 
transmission routes, incubation period, infection and 
transmissibility periods, treatment, and development 
of natural immunity, which are parameters that can be 
implemented in mathematical systems through three 
ways: i) Using data already described in the literature 
[36], ii) Empirically through estimations with basis on 
epidemiological data [37,38], or iii) Estimated by com-
puter programs using statistical methods such as root 
mean square error on epidemiological data [17].

In this sense, when the parameters come from the 
literature, they can generate results slightly different 
from a real epidemic because of variability concerning 
environmental, socio-cultural aspects, the virulence 
of the pathogens, and resistance-susceptibility profile 

tial equations [31], monte carlo method [32], the [33] 
gillespie’s first reaction method, among other methods.

In this sense, as an example of stochastic model de-
velopment and implications, Legrand, et al. [34] evalu-
ated the transmission of ebola hemorrhagic fever in the 
community, hospitals, and due to traditional burial cer-
emonies using real epidemiological data from epidemics 
in the Democratic Republic of Conga, and Uganda, re-
spectively in 1995 and 2000. Their model was composed 
of the compartments susceptible (S), exposed and not 
infectious individuals in the community (E), Infected and 
infectious (I), hospitalized individuals (H), dead individu-
als that remain infectious during traditional funerals (F), 
and removed individuals by cure or death, as seen in 
equations 18-23, assuming that all cases were due to 
human to human transmission, except the first case

Equation 18 
1  ( ),I H F

dS SI SH SF
dt N

β β β= − + +

Equation 19			 
1  ( ) -  ,I H F

dE SI SH SF E
dt N

β β β α= + +

Equation 20		

1 1 1 1 1 ( (1 ) (1 )   (1 ) ) ,h i d
dI E I
dt

α γ θ γ θ δ γ θ δ= − + − − + −

Equation 21			 

1 2 2 (  (1 )) ,d dh ih
dH H
dt

γ θ γ δ γ δ= − + −

Equation 22			 

1 1 2 (1 ) ,d dh f
dF I H F
dt

γ θ δ γ δ γ= − + −

Equation 23		

1 1 2 (1 )(1 )  (1 ) .i ih f
dR I H F
dt

γ θ δ γ δ γ= − − + − +

The model presents the following parameters: βI, BH, 
and BF are coefficients of transmission, respectively, in 
the community, at the hospital, and during funerals; θ1 
is the percentage of infected cases that are hospitalized; 
δ1 and δ2 are the case-fatality ratios; α is the inverse of 
the mean duration of the incubation period; ɣh

-1 is the 
symptom onset to hospitalization; ɣdh

-1 is the mean du-
ration from hospitalization to death; ɣih

-1 is the mean du-
ration from hospitalization to the end of infectiousness 
for survivors; and ɣf

-1 is the mean duration from death 
to burial. Highlighting the model’s parameter were eval-
uated using the maximum-likelihood adopting 95% of 
confidence interval, then sets of parameters generated 
by latin hypercube sampling were computed assuming 
twice the difference of log-likelihood values that was X2 
distributed with degrees of freedom with values equal 
to the number of estimated parameters, then 700 simu-
lations were run by the gillespie’s first reaction method, 
and in each simulation, the partial rank correlation co-
efficient was computed to analyze the influence of each 
parameter in the epidemic size.

https://doi.org/10.23937/2474-3658/1510209
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[21,22,29,45], by the exponential growth rate method 
and maximum likelihood method [17], or by bayesian 
statistics [46].

Moreover, the R0 is a parameter used to evaluate the 
efficacy of interventions such as quarantine, mask-wea-
ring, vaccination, washing hands in hospital sets, among 
others; where if the intervention decreases the R0 to 
values smaller than 1, it is considered effective, and un-
effective if it does not change the R0 [7,47-49].

However, it is important to point out that the value 
of R0 is a dynamic parameter restricted to the time and 
space in which a given infection is occurring or occurred 
[50] due to social and cultural factors that modulate the 
social contact rate between individuals, virulence fac-
tors from the pathogen, environmental conditions that 
enable the pathogen survival, treatment availability, as 
well as susceptibility of the pathogen to the antimicro-
bial drugs employed in the treatment along with other 
random factors present in the population [51-53].

Conclusion
Several factors can modulate the interaction of a 

pathogen with its host population, imposing a constant 
transformation for both organisms, and in this context, 
the mathematical modeling of the infectious diseases 
represents a precious tool for understanding transmissi-
on dynamics patterns and how factors, such as the env-

among the host populations, as well as behaviors with 
a protective effect to the disease, which can manifest 
differently in time and space. While the parameters es-
tablished by analysis of contact rates, incubation time, 
the prevalence of pathogens in the population and the 
environment, among other parameters, demand time 
and statistical treatment, making the mathematical rep-
resentation more accurate for what is intended to be 
analyzed, however, also presenting challenges for the 
development of generalizations valid for other models 
[39,40]. Therefore, any mathematical modeling study 
should present calibration and validation considering 
statistical analyzes of real epidemiological data to as-
sess the accuracy of the models [41].

The basic reproductive number
In the epidemiology of infectious diseases, the basic 

reproductive number or R0 (Figure 3) represents a pa-
rameter that expresses the typical number of secondary 
cases produced from a single infected individual, infor-
ming the epidemic risks, in which values of R0 greater 
than 1 indicate a high predictive risk of an epidemic 
event to occur, while values of R0 smaller than 1 indi-
cate a low risk of the occurrence of an epidemic event 

[42]. In this context, the R0 can be obtained from or-
dinary differential equations considering the relation of 
the rate of infection (β) by and the rate of recovery (ɣ) 
[43,44], usually calculated by next-generation matrixes 

         

Figure 3: A schematic representation of the basic reproductive number in a dynamic social context with its interpretation 
over interventions; initially, an infected individual introduces an infectious agent into a heterogeneous population with 
individuals with different profiles of susceptibility to the infectious agent, who are likely to produce secondary cases from 
the primary one, in this context, if the intervention is effective, it will be able to reduce the cases secondary infections by 
reducing the basic reproductive number of the disease in the population.
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ironment, human behavior, and the microbial evolution 
to the antimicrobial drugs and vaccines can change the 
epidemiological behavior of infectious disease conside-
ring local peculiarities.

Highlighting that addressing local peculiarities is an 
important aspect for the success of public health po-
licies, programs of disease prevention, and health assis-
tance because in most cases the universal approaches 
do not consider the social-cultural differences, econo-
mic power, human resources, and facilities to deal with 
infectious diseases epidemic events. Therefore, efforts 
to translate biological, clinical, environmental, epide-
miological, and social data into mathematics, and vice 
versa represent a low-cost strategy to approach health 
issues of high complexity in order to search for effective 
solutions.
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