
Ferguson et al. J Infect Dis Epidemiol 2021, 7:239

Volume 7 | Issue 11
DOI: 10.23937/2474-3658/1510239

ISSN: 2474-3658

Journal of

Infectious Diseases and Epidemiology
Open Access

4 Ferguson et al. J Infect Dis Epidemiol 2021, 7:239

Citation: Ferguson J, Jungels C, Gailey M (2021) An Accuracy-Based Approach to the Microbiologic 
Diagnosis of Pulmonary Infection: Part II. J Infect Dis Epidemiol 7:239. doi.org/10.23937/2474-
3658/1510239
Accepted: December 14, 2021: Published: December 16, 2021
Copyright: © 2021 Ferguson J, et al. This is an open-access article distributed under the terms of the 
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are credited.

• Page 1 of 11 •

An Accuracy-Based Approach to the Microbiologic Diagnosis 
of Pulmonary Infection: Part II
John Ferguson, MD, MPH1*, Cyprien Jungels, DO2 and Michael Gailey, DO3

Abstract
Introduction: Similar to that of bacterial infection, the 
performance of diagnostic tests for endemic fungal 
pneumonia and opportunistic fungal pneumonia are 
uncertain.

Methods: We undertook a literature search to assess 
the accuracy of diagnostic tests for pneumonia, identified 
through a search of MEDLINE-indexed journals. Sensitivity 
and specificity of diagnostic tests for pneumonia were 
calculated with respect to various reference standards.

Results: A combination of diagnostic testing is adequate to 
rule out most endemic fungal pneumonia, Cryptococcus, and 
Candida. Testing is inadequate to exclude Pneumocystis, 
Aspergillus, and Mucorales, and empiric treatment should 
be considered when there is clinical suspicion.

Conclusion: The accuracy of any single diagnostic test 
for either endemic fungal pneumonia or invasive fungal 
pneumonia is generally inadequate to rule out a pathogen. 
Multiple diagnostic methods are often needed to confidently 
establish a microbiologic diagnosis for most cases of 
invasive fungal infection.
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clinicians must be familiar with the laboratory tests 
needed to diagnose disease caused by opportunistic 
invasive fungal infection (IFI).

In Part 2 of this review, we will assess the literature 
and provide the accuracy of diagnostic tests for 
infectious pneumonia caused by fungal pathogens.

Endemic Fungal Pneumonia

Coccidioides immitis
Coccidioides immitis is a large dimorphic fungus, 

endemic to the southwestern United States and parts of 
South America, transmitted through inhalation of fungal 
spores.

The sensitivity of respiratory secretions culture 
for Coccidioides has been reported at 80% [1] of PCR-
positive cases, with a specificity of 100% [1]. The 
sensitivity of culture for cases that are diagnosed 
clinically or serologically is uncertain, as most diagnoses 
are made by culture itself.

BALF cytology sensitivity has been reported at 
35% [2] of culture-positive cases, and is not known 
to provide additional yield to culture. Transbronchial 
biopsy sensitivity for this population has been reported 
at 100% [2], but similarly may not provide additional 
information while increasing the procedural risk.

Various antigens have been used to diagnose 
Coccidioides, including the cell wall polysaccharide 

Introduction
Clinicians often face uncertainty with respect 

to the accuracy of diagnostic laboratory tests for 
common endemic fungi present in various regions 
of the world. Additionally, with the growing use of 
immunosuppressive medications and chemotherapy, 
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galactomannan (GM). The Coccidioides GM EIA UAT 
sensitivity has been reported at 83% [3] of culture-
positive cases, but reduces to 50% [4] and 68% [3] of 
cases diagnosed by either culture or ID serology, with a 
specificity of 98% [3]. The UAT cross-reacts with other 
endemic fungi such as Histoplasma and Blastomyces, 
limiting its value [3]. The UAT may detect Coccidioides 
in serologically-negative cases by ELISA, although it 
is not certain if this provides additional sensitivity to 
the serologic combination of ELISA, CF, and ID [3]. 
Antigenemia sensitivity among culture-positive or 
serologically detected cases has been reported at 73% 
[4], adding up to an additional 17% [4] sensitivity to that 
of the urine antigen alone. Conversely, the UAT adds 
little sensitivity to the serum antigen detection, and is 
thus not recommended.

Serology may complement IS or BALF culture. Among 
culture-positive or histopathology-proven cases, ELISA 
IgG and IgM serology sensitivity has been reported at 
67% [5], but paradoxically in cases detected by either 
culture, histopathology, CF, or ID has been reported 
at 83% [6] and 84% [7]. The specificity has been 
reported at 90% [6] and 95% [7], but titers may remain 
elevated for months. CF sensitivity has been reported 
at 58% [8], 63% [3], and 67% [5] of cases diagnosed 
by either culture, serology, or histopathology, and is 
not certain to add cases to those detected by ELISA 
[9]. ID sensitivity has been reported at 53% [5] and 
54% [3] of cases diagnosed by either culture, serology, 
or histopathology. The combination of ELISA, CF, and 
ID can increase sensitivity to as high as 84% [5] in 
immunocompromised patients, and as high as 95% [5] 
in those without an immunocompromising condition. 
ELISA, CF, and ID are all commercially available, and 
as the combination of serologic methods can increase 
sensitivity, at a minimum the ELISA and ID methods 
should be used concurrently.

Among culture-positive cases, the sensitivity of PCR 
in respiratory secretions has been reported at 100% [1], 
with a specificity of 98% to 100% [1]. PCR of fresh tissue 
sensitivity has been reported at 93% [1] and 94% [10] of 
culture-positive cases, with a specificity of 98% [10] and 
100% [1]. The sensitivity reduces in paraffin-embedded 
tissue, however, to 73% [1]. The role of PCR is uncertain, 
but should be considered if culture and serology are 
negative with a high clinical suspicion.

Blastomyces dermatitidis
Blastomyces dermatitidis is an endemic dimorphic 

fungus of the midwestern and eastern United States, 
Africa, and India, transmitted through inhalation of 
spores.

BALF culture sensitivity has been reported at 67% 
[11] of cases with a positive culture by any means. 
This value is likely overestimated due to clinical under 
diagnoses by alternative methods such as serology or 

antigen detection. For example, among pathologically 
confirmed cases, culture sensitivity has been reported 
at only 57% [12], 66% [13], and 67% [13]. IS culture is 
less invasive than obtaining BALF, and may even have a 
higher sensitivity than BALF culture [11]. Colonization is 
not known to occur and thus any positive culture should 
be considered infectious with a specificity approaching 
100% [11].

Transbronchial biopsy is diagnostic of Blastomyces 
in only 22% [11] of culture-positive cases, but can 
add up to 20% additional yield [14] to culture alone, 
although the procedure carries an increased risk over 
bronchoalveolar lavage.

The Blastomyces UAT has been detected in 90% 
[15] and 93% [16] of culture-positive or histologically-
proven cases, with a specificity of 79% [16], since cross-
reaction may occur with other endemic fungi such as 
Histoplasma, Cryptococcus, and Paracoccidioidomycosis. 
The specificity has been reported as high as 99% [15] in 
healthy individuals without alternative fungal infection. 
Antigen detection in either culture-positive or histology-
proven pulmonary disease can be found in urine, 
serum, and BALF with reported sensitivities of 83% [17] 
and 100% [16] for urine, 64% [17] for serum, and 63% 
[17] for BALF. Skin testing is infrequently performed, 
although among clinically diagnosed cases sensitivity 
has been reported at 73% [18]. Similarly, lymphocyte 
transformation assays are infrequently used because 
the sensitivity has been reported at only 68% [19] of 
cases positive by either serology, culture, or skin testing. 
Theses assays do not appear to detect cases which are 
not already found by more traditional methods.

Serologic methods have been utilized to detect the 
A-antigen and surface protein Blastomyces adhesion 
(BAD-1). Among culture-positive cases of blastomycosis, 
EIA sensitivity has been reported at 77% [18], 80% [19], 
83% [20], 88% [21,22]. The sensitivity has been reported 
higher in clinically suspected disease at 97% [18], but 
this likely overestimates the true sensitivity, which is 
presumably closer to the sensitivity estimated from 
culture-positive cases. Its specificity has been reported 
at 92% [18] and 94% [21], being reduced due to cross 
reaction with other endemic fungi [23]. ID appears to be 
less sensitive than EIA, and among clinically diagnosed 
cases has been reported at only 50% [18]. Similarly, 
among culture-positive cases, the sensitivity of ID has 
been reported at only 15% [21], 28% [18], 40% [11], 
and 65% [19], with a specificity approaching 100% [18]. 
CF sensitivity has been reported at only 15% [18] of 
clinically diagnosed cases, while among culture-positive 
cases the sensitivity has been reported as low as 9% 
[18], 16% [24], 40% [19], and 43% [22], although with 
specificity approaching 100% [18]. Serology by EIA, CF, 
and ID are all commercially available and should be used 
together to maximize diagnostic yield.
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cross-reactivity with Blastomyces.

Serology can be used to detect the Histoplasma H 
and M antigens. ID serology has been reported positive 
in 17% [35] of cases diagnosed either clinically or 
by culture, and 25% [31], 55% [35], and 94% [36] of 
those with a confirmatory positive antigen, serology, 
or culture. ID sensitivity has been reported at 87% 
[27] of CF-positive cases, and appears to add minimal 
additional yield to CF alone [27], with a specificity of 96% 
[27] and 100% [31]. Among clinically diagnosed cases of 
histoplasmosis, CF sensitivity has been reported at 64% 
[35] and 91% [37], and among those diagnosed by either 
by culture or a positive antigen has been reported at 73% 
[38] and 87% [36]. Specificity is also poor due to cross-
reaction with other endemic fungi [27], and titers may 
persist for months to years. CF and ID methods may be 
complementary. For example, the combination of CF and 
ID increases sensitivity to a reported 82% [28] of cases 
detected by either culture, cytology, or histopathology, 
and to 96% [27] of cases detected by any method of 
culture, cytology, histopathology, CF, or ID. Both CF and 
ID serology are widely commercially available. Although 
ID is not certain to provide additional sensitivity to CF, 
it may yield a result more rapidly than CF. Negative 
serology does not rule out infection, however, and 
PCR or tissue diagnosis should be considered if there is 
persistent clinical suspicion.

The sensitivity of PCR in respiratory secretions has 
been reported at 73% [26] of culture-positive cases, 
with a specificity of 100% [26]. The addition of culture 
to PCR can increase the sensitivity by up to an additional 
30% [31], so multiple diagnostic modalities should be 
considered. Serum PCR sensitivity has been reported at 
60% [31] and 77% [39] of culture-positive cases, with 
a specificity of 90% [31], while the sensitivity of bone 
marrow PCR in disseminated disease has been reported 
at 92% [40]. Histoplasma PCR is commercially available 
although uncommonly utilized. Although the diagnostic 
accuracy in BALF is uncertain, it should be considered 
whenever serology is negative.

LAMP is an alternative to PCR and among culture-
positive cases the sensitivity has been reported in bone 
marrow and urine at 54% [40] and 67% [41], respectively. 
LAMP however, is neither widely commercially available 
nor well-studied in BALF specimens (Figure 1).

Opportunistic Fungal Pneumonia
The European Organization of the Research and 

Treatment of Cancer/Mycoses Study Group (EORTC) 
criteria are often used to support the diagnosis of 
invasive fungal infection (IFI). Proven invasive disease 
is defined by evidence of tissue damage with a positive 
culture. Probable disease is defined by the presence of 
underlying host factors, clinical criteria, and mycological 
criteria.

Among culture-positive cases, the sensitivity of 
Blastomyces PCR in tissue and respiratory secretions has 
been reported at 83% [25] and 86% [26], respectively, 
with a specificity reported at 93% [26] and 100% [25]. 
PCR is commercially available, although it is unclear if 
it provides additional benefit over the combination 
of culture and serology. Although promising as a 
complementary diagnostic test to serology, the role of 
PCR as a diagnostic tool is uncertain.

Histoplasma capsulatum
Histoplasma capsulatum is a small dimorphic fungus, 

most commonly found in midwestern United States, 
Central America, South America, southern Africa, and 
Southeast Asia, transmitted by inhalation of spores.

The sensitivity of respiratory culture varies by the 
duration of symptoms, and increases from acute to 
chronic stage of disease. The sensitivity is also higher 
in cavitary disease than in non-cavitary disease [27]. 
Culture sensitivity in the subacute phase of infection 
has been reported at 54% [28], 61% [29] and 78% [30] 
of UAT-positive cases, 83% [31] of clinically diagnosed 
cases, and 89% [29] of cases positive by histopathology, 
culture, or serology. It may also be positive in instances 
of a negative urine antigen, and is thus complementary. 
Fungal growth may require up to four weeks, however, 
limiting its usefulness in the acute or subacute phases of 
infection. Nevertheless, while BALF culture is frequently 
negative in the acute phase [27,28], its sensitivity has 
been reported to increase to 67% [28] in the chronic 
phase of cases diagnosed by either culture or serology. 
Sputum culture sensitivity may be slightly better than 
BALF in the acute phase and has been reported at 
18% [27] of cases positive by either culture, cytology, 
histopathology, CF, or ID.

BALF cytology sensitivity has been reported at 55% 
[31] and 70% [32] of clinically diagnosed cases. The 
sensitivity reduces, however, to 19% [27] of cases 
detected by either culture, cytology, histopathology, 
CF, or ID. Tissue pathology is diagnostic in 67% [28] of 
culture-positive or serologically-diagnosed cases, but 
like culture is frequently negative in the acute phase 
[28].

The pooled sensitivity of antigenuria and 
antigenemia detection by ELISA and radioimmunoassay 
(RIA) methods among cases detected by either culture, 
serology, or PCR have been reported at 79% [33] and 82% 
[33], respectively, with serum and urine specificity of 
97% [33] and 99% [33]. The Histoplasma UAT sensitivity 
varies by the stage of disease and can be reduced to 
as low as 39% [28] in the subacute phase before rising 
to over 80% [28] in cases of chronic infection found to 
be positive by either culture, cytology, histopathology, 
CF, or ID. BALF Histoplasma antigen sensitivity among 
culture-positive cases has been reported at 50% [30], 
70% [32], and 84% [34], but has poor specificity due to 
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or culture. Serum CryAg sensitivity is similar to that of 
BALF and has been reported at 56% [55], 74% [51], 75% 
[48], 93% [52], and 96% [45] of cases positive by either 
histopathology or culture, with a specificity of 99% [51]. 
Serum CryAg should be considered concurrently with 
IS or BALF culture. The pooled urine CryAg sensitivity is 
similar to serum at 85% [56], but infrequently utilized 
and not generally recommended as it is uncertain 
whether it adds additional cases to serum alone.

Serology is neither commercially available nor well-
studied. IF sensitivity has been reported at 20% [57] 
of culture-positive cases, but with such low sensitivity 
lacks a role in diagnosis.

BALF PCR sensitivity has been reported at 80% [58] 
and 100% [59,60] of culture-positive cases. It is also 
uncertain whether PCR provides additional sensitivity 
to that of BALF culture and CryAg alone. All the same, 
the addition of PCR may be considered if there is high 
clinical suspicion.

Aspergillus (fumigatus, flavus, terreus, niger, and 
others)

Aspergillus species are narrow septate hyphae 
molds that lead to pneumonia in patients with 
immunocompromising conditions. Invasive aspergillosis 
(IA) is a form of severe opportunistic pneumonia distinct 
from chronic necrotizing pulmonary aspergillosis (CPA), 
aspergilloma, or allergic bronchopulmonary aspergillosis 
(ABPA). Risk factors for invasive aspergillosis include 
neutropenia, hematologic malignancy, allogeneic stem 
cell transplant, solid organ transplantation, prolonged 
glucocorticoid use, immunosuppressive medication use, 
and inherited immunodeficiency syndromes [61].

Although Aspergillus grows rapidly, the sensitivity of 
BALF culture for IA is poor, and has been reported in 
10% [62], 25% [63], 30% [64], 33% [65], 36% [66], 50% 
[67], and 56% [68] of cases meeting proven or probable 
EORTC criteria. Among patients with histopathologically-
proven IA, the sensitivity remains low at 35% [69], 37% 

Cryptococcus (neoformans, gattii)
Cryptococcus species are encapsulated yeast that 

can lead to pneumonia following inhalation of fungal 
spores. Risk factors for infection include HIV infection, 
solid organ or bone marrow transplantation, diabetes 
mellitus, chronic glucocorticoid use, malignancy, and 
other immunosuppressive medication use [42].

The pooled sensitivity of BALF culture has been 
reported at 60% [43] of histologically-proven or 
cytology-proven cases. Of these histologically proven 
cases, tissue culture has been reported positive in a wide 
range at 0% [44] and 71% [45]. BALF culture sensitivity 
has been reported at 93% [46] of cases in which the 
serum Cryptococcus antigen (CryAg) is detected, but is 
reduced to 63% [44] when compared to cases found to 
be positive by either the CryAg or biopsy. Colonization 
with Cryptococcus is common in the absence of 
pneumonia, and thus specificity for infection is low.

The sensitivity of cytology has been reported at 
only 47% [47] of culture-positive cases, but cytologic 
examination of BALF may be positive in up to 20% 
[44] of culture-negative clinically diagnosed cases. 
Transbronchial biopsies have been reported positive in 
75% [44] of culture-positive cases, but can also detect 
up to 20% [44] of culture-negative infections. Therefore, 
tissue sampling may be considered concurrently with 
BALF culture. Any added benefit of transbronchial 
biopsies over the combination of culture, CryAg, and 
PCR, however, is uncertain.

BALF CryAg can be detected using latex agglutination 
(LAT), EIA, or lateral flow assay (LFA) methods. The 
sensitivity of BALF CryAg in clinically diagnosed cases 
has been reported at 93% [48]. Among culture-positive 
cases, BALF CryAg sensitivity has been reported at 71% 
[49], 80% [50], 83% [51], and 100% [52,53], with a 
specificity of 97% [54] and 99% [49,50], illustrating its 
ability to detect cases missed by culture alone. The CryAg 
can also be detected in tissue with a reported sensitivity 
of 100% [54] of cases positive by either histopathology 

         

Figure 1: Endemic fungal pneumonia (“*” Indicates that the test is not widely commercially available).
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made. The sensitivity, however, is reduced to 49% [90] 
and 55% [89]. Thus, BDG and serum GM are excellent 
initial studies, and they may be diagnostic of IA if both 
are positive when used in conjunction with clinical 
findings.

BALF Aspergillus PCR pooled sensitivity has been 
reported at 90% [91] of cases meeting proven or 
possible EORTC criteria, with a specificity of 96% [91]. 
The addition of BALF GM to PCR has been reported to 
improve the sensitivity to 84% [85] and 97% [91], with 
a specificity of 98% [91]. Serum PCR pooled sensitivity 
has been reported at 79% [92], 84% [93], and 88% [94] 
of cases meeting proven or possible EORTC criteria, 
with a specificity of 75% [93] and 80% [92]. As is the 
case with BALF, the addition of GM to serum PCR has 
been reported to improve the sensitivity up to 99% [93]. 
PCR may also improve the detection of Aspergillus, but 
should be used in conjunction with culture and fungal 
cell wall component testing.

Pneumocystis jirovecii 
Pneumocystis jirovecii is an ascomycetous fungus that 

can lead to pneumonia in immunocompromised patients. 
Risk factors for pneumonia (PJP) include lymphopenia, 
the use of immunosuppressive medications excluding 
mycophenolate, chronic glucocorticoid use, HIV 
infection, and solid organ transplantation [61].

Culture is not performed as the fungus fails to 
routinely grow on standard medium, although culture 
can be performed successfully under special conditions 
[95]. The sensitivity is therefore uncertain. Instead, 
cytology, DFA, and PCR are the means most commonly 
used to diagnose PJP. Grocott’s methanamine silver 
stain (GMS) is the preferred cytologic method with a 
sensitivity having been reported at 77% [96] of cases 
with two confirmatory stains, with a specificity of 99% 
[96].

BALF direct fluorescent antibody (DFA) is an 
alternative to conventional staining methods, with 
a sensitivity having been reported at 90% [97] and 
99% [98] of cases positive by conventional stains, 
with a specificity of 86% [97] and 94% [99]. Although 
DFA is commonly used as an initial diagnostic test, its 
sensitivity is poor when compared against PCR. Among 
PCR-positive specimens, the sensitivity has been 
reported at only 33% [100], 47% [101] and 93% [102], 
while IF sensitivity has been reported at 71% [103]. IS 
and expectorated sputum DFA can be obtained in place 
of BALF as an initial diagnostic test, with sensitivity in 
clinically diagnosed cases having been reported at 48% 
[99] and 55% [104], respectively.

BDG is commonly elevated in Pneumocystis infection. 
Specificity is poor, however, due to cross reactions with 
other opportunistic fungi as previously discussed. The 
pooled sensitivity of serum BDG has been reported at 
95% [105] and 96% [88] of patients positive by either 

[69], 40% [70] and 64% [71]. The yield of sputum may 
be up to twice that of BALF owing to the presence of 
Aspergillus in tracheal secretions [62,64], and procuring 
culture by IS is less invasive than by bronchoscopy. 
Specificity of culture is poor due to frequent colonization 
in non-infected individuals, and a diagnosis of IA should 
only be made with support of clinical, radiologic, and 
serologic findings [69,71].

Aspergillus ELISA IgA sensitivity has been reported at 
17% [72] and 29% [73] of cases meeting EORTC criteria 
for IA. ELISA IgG sensitivity has been reported at 50% 
[74], 80% [75], 83% [72], and 74% to 88% [76] of cases 
meeting EORTC criteria for CPA, although specificity 
appears to be low, consistent with that of invasive 
disease [77]. ID sensitivity has been reported at 38% [78], 
70% [79], and 88% [79] of histopathologic-proven cases, 
and 56% [80] of clinically diagnosed cases. Serology 
can provide additional cases to GM alone, but due to 
the long processing time and an inability to distinguish 
between invasive aspergillosis, aspergilloma, or allergic 
bronchopulmonary aspergillosis (ABPA), serology is 
generally not recommended.

Serum galactomannan (GM), a cell wall component 
of Aspergillus, has a pooled sensitivity reported at 71% 
[81] of cases with proven EORTC criteria and 61% [81] 
of cases with either proven or probable EORTC criteria, 
with a specificity of 89% [81] for proven IA and 93% [81] 
for proven or probable IA. The sensitivity is reduced 
in solid-organ transplant recipients [81], but high in 
immunocompromised patients with a pooled sensitivity 
reported at 78% [82] of those cases meeting EORTC 
criteria, and a specificity of 85% [82]. The sensitivity is 
slightly lower and specificity slightly higher when using 
an ODI threshold of 1 instead of 0.5 [82], but nevertheless 
is only a modestly sensitive test, so a negative culture or 
GM should not preclude further diagnostic testing.

The pooled sensitivity of BALF GM exceeds that of 
serum, having been reported at 82% [83], 87% [83], 
and 90% [84] of cases meeting proven or probable 
EORTC criteria, with a specificity of 89% [83] and 92% 
[85]. The diagnostic accuracy is similar when using ODI 
cutoff values of either 0.5 or 1.0. The specificity might 
be reduced for those on beta-lactam antibiotics, but 
this controversy has not been fully resolved [85]. The 
pooled sensitivity for cases with proven EORTC criteria 
is even better, having been reported positive in 94% 
[85] and 100% [48] of cases, with a specificity of 72% 
[84]. Although the sensitivity of BALF appears to exceed 
that of serum by a reported 10% [86] and 40% [87], 
either source may be independently positive and thus 
in cases with negative serum GM, BALF GM should be 
obtained [46].

Serum β-D-glucan (BDG) pooled sensitivity has been 
reported at 77% [88] with a specificity of 83% [88]. When 
both BDG and GM are positive, the specificity improves 
to 98% [89,90] and a diagnosis may confidently be 
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BALF PCR sensitivity for Candida pneumonia has been 
reported at 89% [115] of culture-positive cases. The 
sensitivity of PCR of cases confirmed by histopathology, 
however, is unknown. Likewise, the specificity of PCR 
is also unknown but should be consistent with the 
low specificity of culture in general. Among clinically 
diagnosed invasive candidiasis (IC) the pooled 
sensitivity of serum PCR has been reported at 95% [116] 
with a specificity of 92% [116]. While PCR positivity 
may supplement clinical suspicion, it has insufficient 
specificity to permit a trustworthy diagnosis of invasive 
pneumonia without pathologic confirmation.

Mucorales (Mucor, Rhizopus, Absidia, Rhizomucor, 
and others)

Mucorales are an opportunistic group of fungi that 
can lead to pneumonia through the release of inhaled 
spores. Risk factors for pneumonia include chronic 
glucocorticoid use, diabetes mellitus, neutropenia, 
hematologic malignancy, hematopoietic cell 
transplantation, solid organ transplantation, and AIDS 
[61].

BALF culture sensitivity has been reported at 
45% [117] and 66% [113] of those with diagnostic 
histopathology, and pooled at 43% [118] of those with 
proven or possible EORTC criteria, with a specificity 
that approaches 100% [113]. Although the sensitivity 
of culture has been reported at only 20% [118] and 
42% [116] of PCR-positive cases, it can provide an 
additional sensitivity of up to 5% [118] to that of PCR 
alone. Colonization may occur, but a positive culture in 
combination with clinical suspicion should be considered 
pathogenic.

Serology has not been adequately evaluated in 
Mucorales infection. ID sensitivity has been reported at 
73% [119] of culture-positive cases, with a specificity that 
approaches 100% [119]. Serology is not commercially 
available, however, and its role is uncertain as it is not 
known to provide additional sensitivity to culture alone. 

The pooled sensitivity of PCR of either tissue, serum, 
or BALF specimens has been reported at 88% [118] of 
cases meeting either proven or probable EORTC criteria, 
and when PCR is combined with culture, the sensitivity 
can increase to 93% [118]. BALF PCR has been reported 
positive in 40% [20] and 100% [120] of culture-positive 
cases, but has also been reported to provide up to an 
additional 80% [120] sensitivity to culture. Serum PCR, 
however, does not add additional cases [120,121], 
and is not generally recommended. As Mucorales 
culture grows poorly, the addition of PCR may improve 
detection, thus both PCR and culture should be used 
concurrently to optimize the yield of diagnosis (Figure 
2).

Conclusion
Changes in delivery of medical education as well 

DFA, PCR, or histopathology, with a specificity of 84% 
[88] and 86% [105]. BDG can be detected in BALF, but 
is less sensitive than serum BDG and is not certain to 
provide additional sensitivity [106].

BALF Pneumocystis PCR sensitivity has been reported 
at 83% [107] cytology-proven cases, and pooled 98% 
[108] of fluorescent-positive cases, with a specificity of 
91% [108]. The sensitivity in clinically suspected cases, 
interestingly, reduces to approximately 44% [108]. 
This may underestimate the true sensitivity as a result 
of misdiagnosis of alternative processes such as CMV, 
while the pooled 98% figure may be attributed to an 
overestimation of cases undiagnosed by either PCR or 
DFA. The positive correlation between BDG and PCR 
positivity, however, indicates that the sensitivity of PCR 
is likely very high. IS sensitivity may even exceed that of 
BALF [103]. A combination of DFA, BDG, and PCR should 
be considered in diagnosis of PJP, however none of 
these has adequate sensitivity to rule out infection, so 
empiric treatment should be considered when there is 
high clinical suspicion.

Candida (albicans, tropicalis, parapsilosis, 
glabrata, auris, and others)

Candida species are ubiquitous environmental yeasts 
that often colonize airways, but can lead to pneumonia in 
a patient with an immunocompromising condition. Risk 
factors for infection include neutropenia, hematologic 
malignancy, allogeneic stem cell transplant, solid 
organ transplant recipient, prolonged corticosteroids, 
T-cell suppressing medication use, inherited severe 
immunodeficiency, and acute graft-versus-host disease 
[61].

BALF culture sensitivity among histopathologically-
confirmed cases of invasive Candida pneumonia has 
been reported at 70% [109], 83% [110], 90% [111], and 
100% [112]. Despite its excellent sensitivity, specificity 
of culture for invasive disease is poor, reported at 
0% [24], 20% [112], and 57% [113], owing to a high 
frequency of non-pathologic colonization. The accuracy 
of culture by IS appears to be similar to that of BALF 
[113], but IS sample collection is less invasive. IS or BALF 
culture is recommended with the understanding that 
a positive culture should not be considered diagnostic 
of invasive pneumonia without pathologic evidence of 
tissue invasion.

Serum or BALF BDG detection supports a diagnosis 
of invasive fungal disease. The pooled sensitivity of 
serum BDG for invasive candidiasis, including infection 
outside of the respiratory tract, has been reported at 
81% [88] with a specificity of 81% [88]. BALF and IS BDG 
sensitivity among clinically suspected cases of Candida 
pneumonia have been reported at 89% [114] and 67% 
[114], respectively, with a specificity of 86% [114] and 
82% [114]. As previously noted, BDG can be elevated in 
other invasive fungal diseases such as IA and PJP.
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antigenemia following dissociation of immune complexes. 
Clin Vaccine Immunol 16: 1453-1456.

5. Blair JE, Coakley B, Santelli AC, Hentz JG, Wengenack NL 
(2006) Serologic testing for symptomatic coccidioidomycosis 
in immunocompetent and immunosuppressed hosts. 
Mycopathologia 162: 317-324.

6. Malo J, Holbrook E, Zangeneh T, Strawter C, Oren E, et 
al. (2017) Enhanced antibody detection and diagnosis 
of coccidioidomycosis with the MiraVista IgG and IgM 
detection enzyme immunoassay. J Clin Microbiol 55: 893-
901.

7. Grys TE, Brighton A, Chang YH, Liesman R, LaSalle CB, 
et al. (2019) Comparison of two FDA-cleared EIA assays 
for the detection of Coccidioides antibodies against a 
composite clinical standard. Med Mycol 57: 595-600.

8. Wallace JM, Catanzaro A, Moser KM, Harrell JH (1981) 
Flexible fiberoptic bronchoscopy for diagnosing pulmonary 
coccidioidomycosis. Am Rev Respir Dis 123: 286-290.

9. Kaufman L, Sekhon AS, Moledina N, Jalbert M, Pappagianis 
D (1995) Comparative evaluation of commercial premier 
EIA and microimmunodiffusion and complement fixation 
tests for Coccidioides immitis antibodies. J Clin Microbiol 
33: 618-619.

10. Hayden RT, Qian X, Roberts GD, Lloyd RV (2001) In situ 
hybridization for the identification of yeast like organisms in 
tissue section. Diagn Mol Pathol 10: 15-23.

11. Marynowicz MA, Prakash UB (2002) Pulmonary 
blastomycosis: An appraisal of diagnostic techniques. 
Chest 121: 768-773.

12. Taxy JB (2007) Blastomycosis: Contributions of morphology 
to diagnosis: A surgical pathology, cytopathology, and 
autopsy pathology study. Am J Surg Pathol 31: 615-623.

13. Lemos LB, Guo M, Baliga M (2000) Blastomycosis: Organ 
involvement and etiologic diagnosis. A review of 123 
patients from Mississippi. Ann Diagn Pathol 4: 391-406.

14. Patel AJ, Gattuso P, Reddy VB (2010) Diagnosis of 
blastomycosis in surgical pathology and cytopathology: 
Correlation with microbiologic culture. Am J Surg Pathol 
34: 256-261.

15. Connolly P, Hage CA, Bariola JR, Bensadoun E, Rodgers 
M, et al. (2012) Blastomyces dermatitidis antigen detection 
by quantitative enzyme immunoassay. Clin Vaccine 
Immunol 19: 53-56.

as altered societal expectations have led to increased 
emphasis on laboratory testing over that of clinical 
expertise. Clinicians themselves increasingly rely on 
a laboratory or radiological finding more than they 
do their own clinical diagnosis. This approach may be 
acceptable so long as there is well-defined guidance 
and when there is acceptance and knowledge of the 
frequency of false-negative testing. Most endemic fungi 
such as Histoplasma, Blastomyces, and Coccidioides, as 
well as opportunistic Cryptococcus and Candida can be 
correctly identified with current laboratory techniques, 
however infection caused by Pneumocystis, Aspergillus, 
and Mucorales cannot be ruled out with current testing. 
Laboratory investigations should complement, rather 
than supersede, either clinical judgment or classic 
radiological findings.
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