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An Accuracy-Based Approach to the Microbiologic Diagnosis 
of Pulmonary Infection: Part III
John Ferguson, MD, MPH1, Cyprien Jungels, DO2 and Michael Gailey, DO3

Abstract
Introduction: Similar to that of bacterial infection as 
described in Part 1 and fungal infection described in Part 2, 
the performance of diagnostic tests for viral pneumonia and 
parasitic pneumonia are not well described.

Methods: We undertook a literature search to assess 
the accuracy of diagnostic tests for pneumonia, identified 
through a search of MEDLINE-indexed journals. Sensitivity 
and specificity of diagnostic tests for pneumonia were 
calculated with respect to various reference standards.

Results: A battery of diagnostic testing is adequate to rule 
out most pathogens leading to viral pneumonia, lymphatic 
filariasis, and Toxoplasma. Testing is inadequate to 
exclude, and empiric treatment should be considered, for 
clinical suspicion of Hantavirus, Herpes Simplex Virus, 
Strongyloides, Roundworm, Hookworm, Paragonimus, and 
Toxocara.

Conclusion: Most viral pathogens may be excluded using 
a combination of viral PCR and serology. In contrast, the 
presence of parasitic pathogens is difficult to exclude by 
current diagnostic testing. Clinical judgment is necessary in 
ruling out these causes of pneumonia.
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use of multiplex PCR has increased viral detection, but 
gaps in the diagnosis of viral infection remain. In regions 
that are not endemic to parasitic infection, the yield of 
diagnostic testing is likewise uncertain.

In Part 3 of this review, we will assess the literature 
and discuss the accuracy of diagnostic tests for 
infectious pneumonia caused by both viral and parasitic 
pathogens.

Viral Pneumonia

Influenza
Influenza virus is a single-stranded negative-sense 

RNA virus in the family Orthomyxoviridae consisting of 
two common subtypes, A and B.

The sensitivity of cell culture for Influenza A (Flu A) 
and Influenza B (Flu B) among PCR-positive cases has 
been reported at 69% [1] and 89% [2], and 81% [1], 
respectively, and reduced to 73% [3] in cases diagnosed 
by either serology or PCR. Culture is not ordinarily 
recommended, however, as it provides only 1% [3] 
additional sensitivity to the combination of PCR and 
serology, and requires over 72 hours, limiting its utility.

Rapid antigen diagnostic tests (RIDTs) give results 
in minutes and are generally less expensive than PCR, 
although they are significantly less sensitive. The pooled 
sensitivity of traditional RIDTs has been reported at 62% 
[4] of cases positive by either PCR or culture, with a 
specificity of 98% [4]. The pooled sensitivities of the more 

Introduction
Increased use of immunosuppressive medications, 

along with improved longevity of patients with 
oncologic diseases have led to increased complexity 
in diagnosing opportunistic infection of the lung. The 
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low when separated into subtypes PIV1, PIV2, and 
PIV3 reported at 11% [20], 36% [20], and 69% [20], 
respectively. Although commercially available, antigen 
tests are not recommended due to inferior sensitivity.

A serologic diagnosis by EIA has been reported at 
13% [19] and 49% [21] of PCR-positive cases, with a 
specificity of 98% [21], but has been reported to add 
an additional 33% [21] and 53% [22] to the sensitivity 
of PCR alone, and should be considered in PCR-negative 
instances where there is a high clinical suspicion. EIA 
serology is not commercially available, however. The 
sensitivity of CF has been reported at only 64% [23] that 
of ELISA serology. Although CF is commercially available, 
it is not recommended due to the poor accuracy.

Nasopharyngeal PCR sensitivity has been reported 
at 100% [13] of DFA-positive cases and 98% [24] and 
100% [16] of cases found positive by either PCR or IF, 
with a specificity of 98% [16]. Viral mPCR PPA with PIV 
PCR has been reported at 92% [9], 95% [16], 98% [12], 
and 100% [11,13],with a NPA approaching 100% [9,11-
13,25]. PCR is the diagnostic test of choice for PIV due to 
its excellent accuracy, but a negative should still prompt 
consideration of serology or culture.

Respiratory syncytial virus
Respiratory Syncytial Virus (RSV) is a single-stranded, 

negative-sense RNA virus in the family Paramyxoviridae, 
consisting of subtypes A and B.

Unlike Flu and PIV, cell culture is excellent for RSV 
having been reported positive in 88% [26], 92% [27], 
and 100% [5] of cases positive by antigen detection 
or PCR, with a specificity of 100% [26,28]. Like other 
viruses, however, the time and skill required to culture 
RSV and the excellent sensitivity of PCR limits its utility 
of cell culture for this purpose.

RSV DFA sensitivity has been reported pooled at 83% 
[29] and 87% [22] of culture-positive cases, 92% [28] of 
cases positive by either culture or antigen detection, and 
70% [17], 90% [30], and 94% [20] of PCR-positive cases, 
with a specificity of 96% [28] and 98% [30]. Although 
DFA may be positive in culture-negative RSV infection, 
it adds less than an additional 1% sensitivity to PCR 
[17,20]. The pooled sensitivity of ELISA antigen detection 
has been reported at 83% [22] of culture-positive cases. 
The pooled sensitivity of the rapid RSV immunoassay 
antigen test for PCR-positive cases has been reported 
at 74% [29] and 75% [27], with a specificity of 99% [27]. 
Immunoassay and DFA antigen tests are commercially 
available, but add little value over PCR and are generally 
only recommended only when PCR is unavailable.

Serologic methods can be used to supplement 
culture and PCR. A fourfold EIA IgG titer rise has been 
reported in 12% [19] and 70% [21] of PCR-positive cases 
and 85% [31] of cases positive by either PCR or culture, 
with a specificity of 97% [31]. EIA has been reported to 

recently developed digital immunoassay (DIA) rapid 
testing for FluA and FluB have been reported slightly 
higher at 80% [5] and 77% [5], respectively. Although 
rapid antigen tests are commercially available, with only 
moderate sensitivity they are not recommended when 
PCR is available.

A serologic diagnosis of Influenza can be made, 
but like culture, is less accurate than PCR. ELISA IgM 
sensitivity has been reported in 84% [3] of cases 
detected by either PCR or culture. A fourfold titer rise 
of EIA has been demonstrated in only 47% [6] of PCR-
positive cases, but has been reported to provide an 
additional sensitivity of up to 34% [6] to that of PCR, and 
may be complementary. Similarly, among PCR-positive 
cases, IF has been reported positive in 71% [7], with a 
specificity of 94% [7], but IF requires serial evaluation 
to demonstrate a diagnostic fourfold titer rise. The 
time required to make a serologic diagnosis limits its 
utility, although the reduced specificity of serology 
illustrates the many PCR-negative cases. Both ELISA and 
CF are commercially available, but are not generally 
recommended for diagnosis.

PCR can be used to rapidly detect the Influenza virus. 
The pooled sensitivity of rapid NAAT for FluA and FluB 
have been reported 92% [5] and 95% [5], respectively, 
with a specificity of 98% [5]. As previously noted, there 
are cases that PCR fails to detect, but the sensitivity of 
PCR in cases detected by either culture or serology has 
been reported at 92% [3] and 98% [8], with a specificity 
of 84% [3] and 98% [8]. Viral mPCR PPA with Flu PCR has 
been reported at 90% [9], 93% [10], 95% [11], and 100% 
[12,13] with a NPA of 100% [9,11-13]. PCR remains the 
diagnostic test of choice for Flu due to its excellent 
diagnostic accuracy, but either empiric treatment or 
further diagnosis with culture and serology should be 
considered if there is ongoing clinical suspicion and the 
need for a diagnosis.

Parainfluenza virus
Parainfluenza virus (PIV) is a single-stranded 

negative-sense RNA virus in the family Paramyxoviridae 
made up of subtypes 1-4.

Cell culture sensitivity has been reported at 11% [14], 
36% [15], 63% [16], and 67% [5] of PCR-positive cases, 
with a specificity of 100% [16]. However, as with Flu, 
cell culture takes time while adding very little sensitivity 
to PCR alone [14-16], and is therefore generally not 
recommended.

The sensitivity of PIV antigen detection by IF has 
been reported at 50% [17] and 53% [16] of PCR-positive 
cases, but as is true with culture, adds minimal additional 
sensitivity to PCR alone [16,17]. Likewise, conventional 
fluorescent antibody (FA) fails to add cases to those 
detected by PCR, with a sensitivity reported at 33% 
[18] and 66% [19], a rate which remains consistently 

https://doi.org/10.23937/2474-3658/1510260


ISSN: 2474-3658DOI: 10.23937/2474-3658/1510260

Ferguson et al. J Infect Dis Epidemiol 2022, 8:260 • Page 3 of 18 •

a NPA of 98% [47] and 100% [9,11,12]. The reduced 
sensitivity against a DFA or culture reference standard 
indicates that multiple modalities may be necessary to 
confidently rule out infection.

Human enterovirus
Human Enteroviruses (EVs) are positive-sense RNA 

viruses in the family Picornaviridae that can lead to 
either upper or lower respiratory tract infection.

The sensitivity of cell culture has been reported at 
28% [48] of seropositive cases, at 33% [49], 35% [50], 
and 60% [51] of PCR-positive cases, and at 61% [52] of 
those positive by either PCR or NASBA, with a specificity 
of 95% [51] and 99% [49,52]. Culture may be positive in 
PCR-negative infection, but also requires several days to 
perform, limiting its utility.

A serological diagnosis can also be obtained for EV 
infection, but also with less sensitivity than culture or 
PCR. IgM neutralizing antibody sensitivity has been 
reported at 29% [48] of culture-positive cases, with a 
specificity of 78% [48]. The sensitivity of ELISA IgA, IgG, 
or IgM has been reported at 73% [53] of PCR-positive 
cases. The accuracy of CF is uncertain. Serology is 
not commonly utilized as it does not always provide 
additional sensitivity to PCR, but CF is nevertheless 
widely commercially available and may be considered 
in PCR-negative cases.

Nasopharyngeal PCR has been reported positive in 
84% [49], 86% [51], and 100% [50] of culture-positive 
cases, and 88% [52] of cases positive by either culture, 
PCR, or NASBA, with a specificity of 93% [49] and 
95% [52]. mPCR cannot distinguish Enterovirus from 
Rhinovirus, but does have a PPA with EV PCR of 95% [9] 
and 98% [11,12], with a NPA of 94% [12], 96% [9], and 
100% [9]. PCR is the test of choice in the diagnosis of 
Enterovirus, but can be supplemented with serology in 
PCR-negative cases where clinical suspicion is high.

NASBA sensitivity has been reported at 91% [52] of 
PCR-positive cases, with a specificity of 92% [52], but is 
also infrequently used and is not commercially available.

Human rhinovirus
Human Rhinovirus (RV) is a positive-sense RNA virus 

in the family Picornaviridae consisting of greater than 
100 serotypes that presents with symptoms similar to 
EV.

Cell culture sensitivity has been reported at 11% 
[49], 30% [53,54], 31% [55], 56% [56], and 65% [57] of 
PCR-positive cases, with a specificity approaching 100% 
[49,53,55]. Culture may be positive in PCR-negative 
cases, however, and so may be considered when PCR is 
negative [58].

Serology for RV has been performed, but is 
infrequently used due to poor sensitivity. CF sensitivity 
has been reported at only 17% [59] of PCR-positive 

provide an additional sensitivity of 11% [21], 26% [19], 
and 27% [32] to PCR and 26% [31] to the combination of 
culture and PCR, but is unfortunately not commercially 
available. CF has approximately half the sensitivity 
of EIA [32] and is not known to add sensitivity to the 
combination of EIA and PCR. Therefore, CF is not 
recommended [33].

PCR can be rapidly performed for a diagnosis of 
RSV infection. The sensitivity of nasopharyngeal PCR 
is excellent, having been reported at 91% [13] of DFA-
positive cases, 94% [34] and 100% [35] of culture-
positive cases, and 98% [36] of cases positive by either 
IF or culture, with a specificity of 100% [34]. Nasal swabs 
are less sensitive than nasopharyngeal aspirate, limiting 
their utility, and in the setting of a negative nasal swab, 
bronchoscopy should be considered. Viral mPCR PPA 
with RSV PCR has been reported at 93% [9] and 99% 
[11,12], with a NPA of 98% [12] and 100% [9,11]. PCR 
accuracy is excellent and remains the diagnostic test 
of choice, but as with Flu and PIV, PCR may not detect 
certain cases and if negative should be supplemented 
with serology or culture.

Human metapneumovirus
Human metapneumovirus (HMPV) is a negative-

sense RNA virus in the family Paramyxoviridae.

Culture is challenging and the cytopathologic effects 
can require more than two weeks to occur [37], making 
it of limited utility. Culture sensitivity among PCR-
positive cases has been reported at 32% [38], 68% [39], 
and 100% [9], and adds minimal sensitivity to PCR alone. 
Similar to most other cases of respiratory viruses, cell 
culture is not recommended.

IF sensitivity has been reported at 73% [40] and 85% 
[38] of PCR-positive cases, with a specificity of 97% [40]. 
Similarly, among PCR-positive cases, DFA sensitivity has 
been reported at 50% [41], 63% [42], and 74% [43], 
with a specificity of 94% [43] and 100% [42]. DFA is 
commercially available, but generally not recommended 
due to the superior accuracy of PCR.

The sensitivity of serologic detection by EIA has been 
reported at 33% [9], 60% [21], and 78% [44] of PCR-
positive cases, with a specificity of 98% [21], but EIA can 
provide an additional 20% [21] and 46% [9] sensitivity 
to PCR alone. Serology should be considered in PCR-
negative cases, although not widely commercially 
available.

The pooled sensitivity of PCR has been reported at 
91% [12] of cases detected by either DFA or culture, with 
a specificity of 100% [12]. Among DFA-positive cases 
only, the sensitivity has been reported at 67% [45] and 
95% [42], and among culture-positive cases has been 
reported at 80% [46] and 100% [5,35], with a specificity 
of 97% [45] and 100% [35,46]. mPCR PPA with HMPV 
PCR has been reported at 93% [9] and 98% [11,12] with 
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of bronchoscopy, nasal wash, or serology. PCR may be 
negative in culture-positive cases, and a negative PCR 
should also prompt consideration of cell culture or 
serology. mPCR PPA with AdV PCR has been reported 
positive at 89% [9], 95% [12] and 100% [11,73], with 
a NPA of 96% [73], 97% [12], and 99% [9,11]. As with 
many viruses, PCR is the first line diagnostic test but 
can be supplemented with culture if suspicion is high. 
In the absence of culture availability, serology should be 
considered.

Coronavirus (CoV: 229E, HKU1, NL63, OC43, SARS-
CoV, SARS-CoV-2)

Coronaviruses (CoVs) are single-stranded RNA 
viruses within the family Coronaviridae. The most 
commonly recognized strains include NL63, OC43, 229E, 
HK1, Severe Acute Respiratory Distress (SARS-CoV and 
SARS-CoV-2), and Middle Eastern Respiratory Syndrome 
(MERS).

Cell culture sensitivity has been reported at 41% [74] 
and 50% [75] of PCR-positive cases. Culture provides 
additional sensitivity to the use of PCR alone, but like 
culture for most viral infections, requires time and skill 
and should only be considered when PCR fails to detect 
the virus.

BALF DFA sensitivity has been reported at 80% [76] 
of PCR-positive cases, but is not recommended due to 
the superior sensitivity of PCR. Additionally, it is by no 
means certain that it provides additional sensitivity to 
PCR.

Among cases of SARS-CoV-2 PCR-positive infection, 
chemiluminescent immunoassay (CLIA) IgM or IgG 
pooled sensitivity has been reported at 98% [77], 
with a specificity of 97% to 98% [77]. ELISA IgM or IgG 
pooled sensitivity has been reported at 84% [77] of 
PCR-positive cases, with a specificity of 98% [77]. LFIA 
IgM or IgG pooled sensitivity has been reported at 66% 
[77] of PCR-positive cases, with a specificity of 97% 
[77]. Among PCR-positive cases, the pooled sensitivity 
of either CLIA or ELISA has been reported at 85% 
[78,79], with a specificity of 92% [79] and 99% [78]. CLIA 
serology can provide additional cases to PCR and should 
be considered when PCR is negative.

Among cases of SARS-CoV-1 infection, loop-mediated 
amplification (LAMP) sensitivity has been reported at 
71% [80] of cases detected by either serology or PCR, 
but it is not widely commercially available.

Nasopharyngeal PCR sensitivity for 229E has been 
reported at 50% [81] of culture-positive cases and 62% 
[76] of cases positive by either culture or serology. PCR 
for OC43 has been reported at 40% [81] of culture-
positive cases and 100% [76] of cases positive by either 
culture or serology. PCR for HK1 has been reported 
at 100% [76] of cases positive by either culture or 
serology. PCR for NL63 has also been reported at 100% 

cases. In addition to its limited diagnostic value, serology 
is not commercially available.

Nasopharyngeal PCR sensitivity has been reported 
at 80% [56], 95% [57], 97% [54,60], and 100% [49,53] 
of culture-positive cases, with a specificity of 59% [49], 
64% [56], 84% [54], and 93% [55], lowered by both 
cross-reaction with Enterovirus [51] and asymptomatic 
shedding [48]. Additionally, nasal swabs may be inferior 
to nasopharyngeal aspirate, with a reported sensitivity 
of 74% [61] of cases detected by nasopharyngeal 
aspirate. As previously noted, mPCR does not distinguish 
Enterovirus from Rhinovirus, but has a PPA with RV 
reported at 95% [9] and 98% [11,12], with a NPA of 94% 
[12], 96% [9], and 100% [11]. PCR is highly accurate and 
is the test of choice in diagnosing Rhinovirus, however 
culture should be considered for PCR-negative cases.

Adenovirus
Adenovirus (AdV) is a double-stranded DNA virus 

of the family Adenoviridae with the most commonly 
implicated serotypes 1 through 5, 7, 14, 19, and 37 [25].

Cell culture sensitivity has been reported at 26% [62] 
and 100% [63] of PCR-positive cases and 40% [62] of 
those detected by IF, with a specificity of 88% [62].

Fluorescent antigen detection sensitivity has 
been reported in only 24% [20] and 26% [62] of PCR-
positive cases, and 36% [62], 68% [64], and 87% [65] 
of culture-positive cases, with a specificity of 80% [62]. 
Immunofluorescence adds only 2% sensitivity to PCR 
[20] and is generally not recommended. LFIA techniques, 
however, have improved sensitivity to a reported 55% 
[66], 92% to 97% [63], and 97% [67] of culture-positive 
cases, and 97% to 100% [63] of PCR-positive cases, 
with a specificity of 99% [66]. AdV DFA is commercially 
available, but is not recommended whenever PCR is 
available.

Serologic detection by EIA has been reported at 3% 
[9] and 23% [21] of PCR-positive cases and 44% [64] 
of culture-positive cases, but requires serial titers to 
demonstrate a fourfold rise, limiting its utility. Although 
serology fails to provide additional sensitivity to culture 
[68], the addition of serology to PCR has been reported 
to provide an additional 3% [9] and 24% [21] sensitivity 
and should be considered if culture is not obtained. EIA 
serology is not widely commercially available. CF is even 
less sensitive than EIA, and is not recommended [69].

The sensitivity of AdV PCR in nasopharyngeal 
specimens has been reported 61% [64], 76% [70], 87% 
[71], 91% [62], 97% [63], and 100% [71] of culture-
positive cases, 100% [17] of antigen-positive cases, and 
100% [72] of cases positive by either AdV antigen or 
culture, with a specificity of 20% [62], 78% [73], and 99% 
[17,53]. Nasal PCR has been reported positive in only 
44% [61] of cases positive by a nasopharyngeal aspirate, 
and a negative nasal swab should prompt consideration 
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conditions such as AIDS, stem-cell transplantation, and 
the use of immunosuppressive medications [89].

BALF culture sensitivity has been reported at 
60% [90] of clinically diagnosed cases, which may be 
misleadingly low as cases of CMV diagnosed clinically 
often have alternative diagnoses, but nevertheless has 
also been reported at 69% [90], 86% [91] and 89% [92] 
of those either clinically diagnosed or identified through 
immunohistochemical detection. BALF culture sensitivity 
has been reported positive in 96% [93] and 100% [94] of 
cases confirmed by tissue culture and histopathology, 
with a specificity of 45% [94], 95% [91], 97% [90], 
and 100% [93]. The specificity of the combination of 
culture and immunostaining has been reported up to 
100% [91], making this virtually diagnostic of infection. 
Culture is of questionable utility however, as the virus 
may require up to four weeks to grow and has both 
limited sensitivity and specificity, is often detected in 
asymptomatic patients, and is not routinely utilized. 
CMV blood culture sensitivity has been reported at only 
25% [95] of those with antigenemia, and 38% [96] of 
those with PCR-positive infection, severely limiting its 
yield.

BALF cytology sensitivity has been reported at 
29% [93] of those positive by either histopathology 
or tissue culture and at 56% [92] of cases with 
immunohistochemical detection, with a specificity 
of 100% [93]. Among clinically diagnosed cases, 
transbronchial biopsies demonstrate typical features in 
93% [90]. Biopsies may be display cytopathic changes 
in asymptomatic patients, possibly indicating early 
infection, but should be performed when there is clinical 
suspicion of CMV disease.

BALF fluorescent antibody staining sensitivity 
has been reported at 59% [93] and 89% [97] of 
histopathology-proven cases, and 100% [91] of cases 
detected by immunohistochemistry, with a specificity of 
95% [91], 99% [95], and 100% [93]. The combination of 
staining and culture has been reported to increase the 
sensitivity to 100% [92], although specificity is reduced. 
BALF DFA sensitivity has been reported at 78% [98] of 
culture-positive cases, with a specificity of 100% [98].

The sensitivity of the CMV pp65 antigen has been 
reported at 85% [99] of those with histopathologic 
confirmation, and pooled at 65% [100] of PCR-positive 
cases, with a specificity of 94% [100] and 100% [99]. 
The pp65 antigen has been reported to add up to an 
additional pooled 12% [100] sensitivity to the use of PCR 
alone. Therefore, PCR and pp65 antigen testing should 
ideally be used concurrently, although the pp65 antigen 
is not widely commercially available.

EIA IgG serology sensitivity has been reported at 30% 
[101] of PCR-positive cases, but has poor specificity due 
to cross-reaction with Epstein-Barr Virus and Human 
herpesvirus-6. IgM sensitivity has been reported as 

[76] of cases detected by either culture or serology. The 
sensitivity of PCR for these four strains combined has 
been reported at 87% [76] of cases positive by either 
culture or serology. The sensitivity of PCR for SARS-
CoV-1 has been reported at 78% [80] of serologically-
detected cases, while PCR sensitivity for MERS-CoV has 
been reported at 100% [82] of culture-positive cases, 
with a specificity of 100% [82], but evaluated in only 
a small sample. SARS-CoV-2 nasal PCR sensitivity has 
been reported at 73% [80] of cases positive by either 
culture or serology. The accuracy can vary by the source 
of collection with sputum, saliva, and nasopharyngeal 
aspirate exhibiting a pooled sensitivity of 97% [79], 
62% [79], and 73% [79], respectively. mPCR PPA for 
229E PCR has been reported at 92% [12] and 100% 
[11], with an NPA of 99% [11] and 100% [12]. OC43 PPA 
has been reported at 81% [12] and 97% [11], with an 
NPA approaching 100% [11,12]. NL63 PPA has been 
reported at 95% [11] and 100% [12] with a NPA of 99% 
[11,12]. HKU1 PPA has been reported at 93% [11] and 
100% [12], with a NPA of 99% [12] and 100% [11]. PCR 
is the diagnostic test of choice, although cell culture and 
serology may detect additional cases.

Human bocavirus
Human Bocavirus (HBoV) is a DNA virus in the 

Parvoviridae family, consisting of HBoV-1 and HBoV-2.

HBoV has not yet been isolated in cell culture and 
thus the sensitivity of viral culture is currently unknown. 

EIA serology sensitivity has been reported at 59% 
[83], 70% [84], 77% [85], 82% [86] of nasopharyngeal 
PCR-positive cases, and 92% [84] of serum PCR-positive 
cases, with a specificity of 99% [84] and 100% [86]. 
Serology for HBoV is not yet widely commercially 
available.

HBoV-1 antigen sensitivity has been reported at 76% 
[87] of PCR-positive cases, with a specificity of 100% [87]. 
Antigen testing is also not commercially available, but 
also would not appear to add any increased sensitivity 
over PCR.

The sensitivity of nasopharyngeal PCR has been 
reported at 75% [88], 88% [83], and 100% [84,86,88] 
of serology-positive cases. The sensitivity of nasal swab 
PCR has been reported at only 50% [61] of those found 
positive by nasopharyngeal aspirate. Accordingly, a 
negative nasal swab should prompt consideration 
of bronchoscopy or nasal wash. Specificity has been 
reported at 78% [86] and 96% [88], and is higher 
for mRNA than DNA. Like serology, PCR is not yet 
commercially available.

Cytomegalovirus
Cytomegalovirus (CMV), or Human herpesvirus-5, 

is a DNA virus in the family Herpesviridae. Risk factors 
for CMV pneumonia include immunocompromising 
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and 83% [108] of clinically diagnosed cases, with a 
specificity of 93% [112], 96% [72], and 100% [109]. 
HSV PCR is commercially available and can supplement 
culture, although has not been extensively studied in 
BALF.

Varicella-zoster virus (VZV)
Varicella-Zoster Virus (VZV) is a member of the 

family Herpesviridae, which may lead to pneumonia 
in immunocompromised patients. Very little data 
is available regarding the diagnosis of Varicella 
pneumonia, and the diagnosis is generally made from 
the characteristic skin rash.

The sensitivity of culture for vesicular lesions has 
been reported at only 44% [107] of clinically diagnosed 
cases and 56% [115] of DFA-positive cases, with a 
specificity of 97% [115]. Culture may be performed 
on BALF, although like HSV it has been poorly studied 
and the sensitivity of respiratory secretion culture is 
unknown. Presumably its sensitivity will be less than 
that of vesicular lesion culture.

DFA sensitivity for vesicular lesions has been reported 
at 92% [115] of culture-positive cases, with a specificity 
of 80% [115]. DFA can therefore detect additional cases 
to the poorly sensitive culture but has not yet been well 
studied in BALF and so has uncertain utility.

Serological methods may be utilized, but only with 
limited accuracy. ELISA IgM sensitivity has been reported 
at 25% [116] of PCR-positive cases. Like other diagnostic 
tests for VZV, serology has not been well-studied in 
cases of pneumonia. Both EIA and CLIA serology are 
commercially available, but there as yet is no clear role 
for serology in the diagnosis of VZV pneumonia.

VZV PCR sensitivity of vesicular lesions has been 
reported at 98% [115] of cases positive by either culture 
or DFA and at 97% [107] of clinically diagnosed cases, 
with a specificity of 91% [115]. BALF PCR sensitivity 
similarly has been reported at 96% [117] of clinically 
diagnosed cases. Despite limited data on BALF, PCR 
appears to be the diagnostic test of choice.

Hantavirus
Hantaviruses are single-stranded, negative-sense 

RNA viruses of the family Bunyaviridae, consisting of 
over 20 different strains [118].

Culture is not generally performed due to the risk 
it presents to laboratory personnel, and moreover the 
sensitivity is uncertain.

ELISA IgM sensitivity has been reported at 73% [118] 
and 97% [119] of clinically diagnosed cases, and 100% 
[120] of PCR-positive cases, with a specificity of 100% 
[119]. PCR is more likely than ELISA to be positive in 
the first seven days, whereas ELISA is more likely to 
be positive thereafter. IF serology sensitivity has been 
reported at 40% [121] and 93% [122] of serologic cases 

low as 0% [101], but when positive, can persist for 
months. Passive acquisition of IgG to CMV can also 
occur in transplant recipients. With poor sensitivity and 
specificity, serology has no clear role in diagnosis of 
acute CMV infection and is not recommended.

BALF CMV PCR sensitivity has been reported at 
91% [102,103] of clinically diagnosed cases, and 86% 
[71], 98% [104], and 100% [91,94,104] of culture-
positive cases. The specificity has been reported at 77% 
[103,105], 87% [105], 94% [91], 95% [72,102], 99% [99], 
and 100% [94]. Serum PCR sensitivity has been reported 
at only 50% [106] and 60% [94] of histopathology-proven 
infection, and thus a negative serum PCR should prompt 
consideration of bronchoscopy. BALF PCR has adequate 
sensitivity to rule out CMV infection, but due to poor 
specificity, histopathology and cytology should also be 
obtained when there is clinical suspicion of infection.

Herpes simplex virus
Herpes simplex viruses (HSV-1, HSV-2) are 

members of the family Herpesviridae. Risk factors 
for HSV pneumonia include hematopoietic stem cell 
transplantation or HIV.

The sensitivity of a surface swab culture has 
been reported at 83% [107] of clinically diagnosed 
cases, meaning cases which generally present with a 
characteristic vesicular rash. The sensitivity is lower, 
however, having been reported at only 33% [108] of 
lung specimens obtained from autopsy-confirmed 
cases, and in surface swabs at 50% [109] of PCR-positive 
cases, with a specificity of 100% [109]. The sensitivity of 
BALF culture for HSV is unknown.

EIA serology sensitivity has been reported at 
58% [110] among culture-positive cases and 94% to 
100% [111] of those with a positive Western Blot, 
with a specificity of 68% to 85% [111]. Serology is not 
recommended in diagnosing acute HSV pneumonia due 
to a high prevalence of antibodies in the community.

DFA can be evaluated from body fluid, and is most 
commonly obtained from swabs from open vesicles. The 
sensitivity of DFA for HSV1 has been reported at 54% to 
76% [112] and 76% for HSV1 [113] and 93% for HSV2 
[112,113] of culture-positive cases, with a specificity 
of 99% [113]. DFA fails to add a meaningful number 
of additional positive cases to culture and is thus not 
recommended. The accuracy of DFA in BALF specimens 
is uncertain and so is also not recommended.

Cytologic identification of inclusion bodies has been 
reported in 55% [114] of PCR-positive cases. Cytology 
and tissue histopathology have been reported to 
identify CMV in 68% [110] and 80% [108] of culture-
positive cases, respectively.

PCR sensitivity in vesicular lesions has been reported 
in 86% [109] of patients with viremia, 97% [112] of 
patients positive by antigen detection or viral culture, 
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onset of rash [136]. The specificity has been reported 
at 82% [136], and 87% to 100% [138]. CF sensitivity has 
been reported at 89% [135] of those found positive by 
ELISA IgM and similarly at 89% [130] of those positive by 
IF. CF is not commercially available, however, and also 
requires a longer processing time than ELISA, limiting its 
utility. Lastly, CLIA sensitivity has been reported at 97% 
[139] of cases diagnosed by ELISA IgM with a specificity 
of 93% [139]. Any one of the three available techniques 
(IF, ELISA, or CLIA) may be positive when used alone, 
and therefore either combining methods or using them 
sequentially can increase sensitivity.

The sensitivity of PCR from respiratory secretions has 
been reported at 53% [140], 90% [133], and 98% [141] 
of seropositive cases by ELISA, 68% [133], 81% [142], 
and 96% [137] of clinically diagnosed cases, 85% [143] 
of culture-positive cases, and at 90% [143] of LAMP-
positive cases. The sensitivity of PCR has been reported 
to be more than 50% higher [140] in the first two weeks 
of the rash than in the following two weeks and is thus 
the preferred test in the early stage of infection. PCR 
appears to have a higher sensitivity than serology in the 
acute phase, while serology sensitivity is superior in the 
convalescent phase. PCR has not been well evaluated in 
BALF, but can be performed in cases in which there is 
clinical suspicion.

LAMP sensitivity of respiratory secretions has been 
reported at 100% [143] of PCR-positive cases, and 95% 
[143] of culture-positive cases, but is not commercially 
available and also has uncertain utility (Figure 1).

Parasitic Pneumonia

Lymphatic filariasis (Wuchereria bancrofti, Brugia 
malayi, Brugia timori, and others)

Lymphatic filariasis is a parasitic infection caused 
by nematodes such as Wuchereria bancrofti, Brugia 
malayi, and Brugia timori which are is transmitted to 

by ELISA, with a specificity approaching 100% [122]. 
ELISA serology is commercially available and should be 
used for the initial diagnosis of Hantavirus.

Serum PCR sensitivity has been reported at 33% 
[123], 50% [124], 93% [125], and 100% [120] of serology-
positive cases by ELISA, and 85% [118] of clinically 
diagnosed cases, with specificity approaching 100% 
[125]. BALF PCR sensitivity has been reported at 88% 
[126] of seropositive cases. PCR is not commercially 
available, however, and is not certain to provide 
additional yield to serology.

Measles
Measles virus is a negative-sense RNA virus in the 

family Paramyxoviridae that can lead to pneumonia, 
bronchiolitis, or bronchitis.

Among clinically diagnosed cases, the sensitivity of 
cell culture has been reported at 45% [127] and 54% 
[128,129], and among cases diagnosed by IF serology 
reported at 29% [130], 64% [129], 67% [127] and 89% 
[131]. Culture however, may require up to 10 days, 
severely limiting its utility [131].

Various serologic techniques can be used to 
diagnose Measles, including commercially available IF, 
ELISA, and CLIA. The sensitivity of IF has been reported 
at 34% [132] of PCR-positive cases, 46% [127] and 83% 
[130] of clinically diagnosed cases, and at 68% [127] 
and 89% [129] of culture-positive cases. IF and culture 
can be complementary as either may be individually 
positive. ELISA IgM sensitivity has been reported at 
56% [133] of PCR-positive cases, and at 63% [134], 
74% [135,136] 85% [137], and 98% to 100% [138] of 
clinically diagnosed cases. In the acute phase, IgM has 
been reported at 58% to 85% [138] of CF-positive cases, 
but in the convalescent phase has been reported to 
increase to 88% [136], 93% to 98% [138] and 97% [135], 
and may remain positive for over one month from the 

         

Figure 1: Viral pneumonia (“*” Indicates that the test is not widely commercially available).
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Strongyloides stercoralis
Strongyloides stercoralis is a nematode transmitted 

directly to humans through soil, leading to pneumonia 
with eosinophilia.

The sensitivity of the stool microscopic examination 
varies according to the method employed. Among 
clinically diagnosed cases, the pooled sensitivity of the 
Baermann method has been reported at 72% [162], agar 
plate culture (APC) at 89% [162], direct examination at 
21% [162], and formaldehyde-ether (FEC) pooled at 
48% [162]. Obtaining serial stool cultures can increase 
sensitivity. For example, among culture positive cases 
tested over seven consecutive days, only 53% [163] have 
been reported positive on day one. Stool APC appears 
to be the preferred coprologic test and among cases 
detected by either microscopy, FEC, Harada-Mori filter 
paper culture, or APC, the sensitivity has been reported 
at 96% [164]. Among cases detected by PCR, however, 
the sensitivity has been reported at only 18% [165]. Of 
these PCR-positive cases, the addition of the Baermann 
method to APC has been reported to increase sensitivity 
by 24% [165]. The reduced sensitivity when PCR is added 
to the reference standard indicates that coprologic 
techniques alone are insufficient to make a trustworthy 
diagnosis. Among cases serologically confirmed by 
ELISA or LIPS, the sensitivity of microscopy by either 
FEC, Baermann, or stool APC has been reported at 53% 
[166]. Lastly, of serologically diagnosed cases by IF, the 
sensitivity of microscopy by Lutz, Rugai, or APC has been 
reported at 95% [167]. Microscopic examination can be 
performed on BALF, although it is not certain to provide 
additional sensitivity to fecal microscopy [168].

Serologic methods may provide a useful supplement 
to direct examination. Luciferase Immunoprecipitation 
System (LIPS) sensitivity for S. stercoralis has been 
reported in 85% [166] of cases detected by stool 
microscopy, with a specificity approaching 100% [166]. 
ELISA IgG serology sensitivity has been reported at 75% 
to 91% [166], 79% [169], 90% [170] and 95% [171] of 
cases detected by stool microscopy, and at 69% [169] 
of PCR-positive cases, with a specificity of 29% [171], 
76% [169], and 99% [166,170]. IF serology sensitivity 
has been reported at 94% [166] and 95% [167] of cases 
detected by stool microscopy, with a specificity of 92% 
[166] and 96% [167]. Only ELISA is widely commercially 
available and should be used in conjunction with stool 
detection.

Stool PCR can be used to detect Strongyloides. The 
pooled sensitivity of PCR has been reported at 71% 
[172] of cases detected by microscopy but reduced 
to 57% [172] of cases detected by either serology or 
microscopy, with a specificity of 95% [172]. Because 
serology may sometimes be positive due to remote 
infection, the true sensitivity is on the upper end of the 
range, but when used in isolation it lacks the sensitivity 
to rule out active infection. PCR on BALF is neither well 
studied nor commercially available.

humans through a mosquito vector, leading to tropical 
pulmonary eosinophilia.

Successful detection of microfilaria (mf) by stool 
microscopy has been reported in 7% [144], 46% [145], 
80% [146], and 85% [146] of cases with a positive serum 
circulating filarial antigen (CFA), but only 16% [147] of 
stool PCR-positive cases. The sensitivity of microscopic 
methods may vary, as thick smear detects 94% [146] of 
cases found by the micropore chamber method.

CFA cards can be used to detect the Onchocerca 
gibsoni circulating antigen (Og4C3) of Wuchereria. 
ELISA antigen sensitivity for Wuchereria has been 
reported at 95% [148-150], 98% [151], 99% [152], and 
100% [145,146,153,154] of cases detected by either 
mf micropore or thick smear, with a specificity of 
94% [153], 98% [151], and 100% [149,150], indicating 
the technique’s ability to identify mf-negative 
cases. ELISA CFA sensitivity for Brugia is slightly less, 
having been reported at 75% [144] and 83% [149] of 
cases positive by microscopic blood smear. The CFA 
immunochromatographic test (ICT) sensitivity among 
serology-positive cases for Wuchereria has been 
reported at 90% [155], with a specificity approaching 
100% [155]. The sensitivity, however, decreases to 60% 
[155] following the administration of drugs which are 
commonly used in endemic regions. In low-prevalence 
areas with cases which have been detected by the 
ELISA CFA, ICT sensitivity has been reported at only 36% 
[156]. Although it is not widely commercially available, 
ELISA CFA assay is recommended in conjunction with 
microscopy.

Serologic methods have been used to detect 
recombinant antigens such as Wb14 and WbT. ELISA 
sensitivity for Wuchereria has been reported at 75% 
[140] of clinically diagnosed cases, 90% [157] and 93% 
[157,158] of microscopically detected cases, and at 
95% [159] of CFA-positive cases, with a specificity of 
51% [159], 70% [159], 96% [158], 97% [157], and 100% 
[157]. Luciferase Immunoprecipitation System (LIPS) 
sensitivity for Wuchereria has been reported at 98% 
[160] of mf-detected cases, with a specificity of 100% 
[160]. ELISA IgG4 serology is commercially available, and 
may be complementary to microscopy and CFA. Positive 
serology may however, indicate past rather than active 
infection and should be interpreted with caution.

Serum PCR sensitivity for Wuchereria has been 
reported at 94% [143] of clinically diagnosed cases and 
100% [147,161] of mf-positive cases, with a specificity 
of 100% [161]. The sensitivity of serum PCR for Brugia 
is uncertain, however the specificity approaches 
100% [161] of microscopically detected cases. Neither 
Wuchereria nor Brugia PCR is commercially available 
and both are uncertain to add any additional sensitivity 
over CFA. Furthermore, the accuracy of PCR on BALF has 
not yet been thoroughly evaluated.
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95% [179], 99% [173], and 100% [175,187].

Paragonimus (westermani, mexicanus, africanus, 
and others)

Paragonimus is a lung fluke from the Trematoda 
phylum that infects the lungs of humans who ingest 
crustaceans which are eaten raw or undercooked.

Paragonimus eggs can be identified by microscopy 
in either sputum or stool samples, as patients may 
unknowingly swallow sputum. The sensitivity of sputum 
microscopy has been reported at 10% [185] and 62% 
[188] of cases serologically detected by ELISA, and 
14% [185] and 46% [189], and 72% [190] of clinically 
diagnosed cases. Of these clinically diagnosed cases 
of pulmonary paragonimiasis, the sensitivity of stool 
detection has been reported to reduce to 65% [190]. 
Either sputum or stool can be independently positive, 
and of clinically diagnosed cases the sensitivity of 
combining stool and sputum can increase sensitivity to 
85% [190]. Therefore, detection by both sputum and 
stool microscopy is recommended concurrently for 
initial testing. Empiric treatment should be considered 
for microscopy-negative cases in which there is still 
clinical suspicion, as alternative diagnostic tests are not 
commercially available.

Skin testing is infrequently utilized, but has been 
reported positive in 97% [191] of cases detected by 
either stool or sputum microscopy, but is not widely 
commercially available.

Serum antigen sensitivity has been reported at 42% 
[192] and 86% [193] of clinically diagnosed cases, and 
at 100% [193,194] of microscopy-positive cases, with 
a specificity of 94% [192]. The paragonimiasis antigen 
is not commercially available and is not currently 
recommended.

ELISA serology sensitivity has been reported at 89% 
[186], 90% [174], 96% [192], and 100% [188,195,196] 
of microscopy-positive cases, with a specificity of 
96% [186], 97% [195,196], and 100% [197]. Of cases 
positive by microscopic egg detection, the sensitivity of 
IF exceeds CF, reported at 42% and 33%, respectively 
[198]. No serologic method is widely commercially 
available, but ELISA does show promise as a complement 
to microscopy.

PCR has been performed on BALF, but is neither well 
studied nor commercially available.

Toxocara (canis, cati, and others)
Toxocara is a parasitic, zoonotic roundworm 

transmitted by the fecal-oral route which manifests 
with allergic symptoms, neurologic symptoms, and 
pneumonia. Hosts of the roundworm include cats, dogs, 
foxes, coyotes, and wolves.

The sensitivity of culture is not known and thus BALF 
culture is generally not recommended.

Roundworm (Ascaris lumbricoides, Ascaris suum)
Roundworms are a parasite from the nematode 

phylum transmitted to humans through the fecal-
oral route. Pneumonia occurs as a result of migration 
through the lungs.

Stool microscopy can be performed with several 
methods including the Kato-Katz (KK), formaldehyde-
ether (FEC), and spontaneous tube sedimentation (STS) 
technique. The sensitivity of KK thick smear method 
has been reported at 49% [173], 70% [174], and 90% 
[175] of PCR-positive cases, and at 50% [176] and 75% 
[177] of cases positive by any microscopic technique, 
with specificity at 67% [173] and 100% [174]. Therefore, 
utilization of multiple techniques may improve 
sensitivity. Among PCR-positive cases, sensitivity of 
microscopy by KK, FEC, or wet preparation has been 
reported at 67% [178].

PCR has been used to detect Ascaris lumbricoides. 
Stool PCR sensitivity has been reported at 31% [173] of 
cases detected by the KK method, 82% [179] of those 
detected by the FEC method, and at 80% [178], 95% 
[175], 97% [174], and 100% [180], of all microcopy-
positive cases, with a specificity of 81% [173], and 83% 
[179], 93% [175], and 95% [174]. As is the case with 
other parasitic infections, the accuracy of PCR on BALF 
is unknown. Unfortunately, Ascaris PCR for either stool 
specimens or BALF is not widely commercially available.

LAMP sensitivity has been reported at 96% [181] 
of cases detected by the microscopic thick smear 
technique, with a specificity of 62% [181], but is also not 
widely commercially available.

Hookworm (Ancylostoma duodenale, Necator 
americanus)

Hookworms are helminth nematode parasites 
transmitted through soil that following migration to the 
lungs, lead to eosinophilic pneumonia.

Identification of eggs by stool microscopy has been 
reported in 0% [182], 29% [178], 31% [174], 32% [173], 
43% [179], and 88% [183] of PCR-positive cases, with a 
specificity of 99% [173] and 100% [174,183]. Utilizing 
multiple methods may increase the sensitivity of 
microscopy. For example, among cases detected by any 
of four methods, the sensitivities of the FEC, KK, STS, and 
APC have been reported at 64% [176], 56% [176], 78% 
[176], and 86% [176], respectively. Stool microscopy, 
although possessing limited sensitivity, is still the only 
widely commercially available test.

PCR is neither well studied in BALF nor commercially 
available, but so far, the accuracy of stool PCR has 
been promising. Among cases with egg detection by 
stool microscopy, the sensitivity of stool PCR has been 
reported at 0% [182], 43% [179], 79% [184], 89% [175], 
90% [178], 92% [174], 93% [173], and 100% [183,185], 
with a specificity of 79% [186], 84% [173], 91% [174], 
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Serologic methods are commonly used in the 
diagnosis of toxoplasmosis. EIA IgG has been present in 
83% [208] of PCR-positive cases. ELISA IgM sensitivity 
has been reported at 100% [209] of clinically diagnosed 
cases, and at 100% [210] of those with positive BALF 
microscopy. The specificity has been reported at 78% to 
99% [209], although IgM levels may sometimes remain 
elevated for months. Although not yet commercially 
available, serology does appear to have adequate 
sensitivity to be used in conjunction with PCR or 
microscopy.

BALF PCR sensitivity has been reported at 100% 
[204] of cases positive by microscopy [204] but only 
50% [206] of those with a serologic titer rise, although 
as yet has been reported in only small numbers. As 
PCR is not known to provide additional sensitivity to 
the combination of microscopy and serology, its use is 
not currently recommended [207]. PCR is commercially 
available and may be considered, however, in cases of 
high clinical suspicion with either equivocal serology or 
negative BALF culture (Figure 1 and Figure 2).

Conclusion
Although many pathogens still lack effective treat-

ment, there may be value in identifying the presence 
of infection. Hospitalized patients with pneumonitis 
found to be PCR- and culture-negative are commonly 
diagnosed with drug-induced pneumonitis, radiation 
pneumonitis, organizing pneumonia, or nonspecific in-
flammation. In these instances, prolonged immunosup-
pressive therapy is commonly administered, which itself 
carries a risk of exacerbating the undiagnosed infection. 
Therefore, it is desirable to determine the causative 
organism to before treating with immunosuppressive 
therapies. Accurate diagnostic tests for several viral and 
parasitic pathogens are lacking. These instances require 
astute clinical judgement and a high index of suspicion 
is needed. Pathogen-targeted therapy should be con-
sidered even in the presence of non-diagnostic tests for 
most infectious agents.

Serology is an effective means of diagnosis. EIA IgG 
sensitivity among clinically diagnosed cases has been 
reported uniformly at 87% [199], 91% [200], 92% [201], 
with a specificity of 86% [200], and 100% [199], although 
specificity can be limited due to cross-reactivity with 
Strongyloides and Trichinella. The sensitivity of ELISA IgE 
with a titer greater than 1 TU/liter has been reported 
at 81% [202] of cases positive by Western Blot, with a 
specificity of 54% [202]. Above a higher threshold of 
50 TU/liter, the sensitivity lowers to 42% [202] while 
specificity increases to 96% [202]. Conversely, among 
cases positive by ELISA, the sensitivity of Western 
blotting has been reported at 100% [202]. Only Toxocara 
ELISA is commercially available but if negative, empiric 
treatment should still be considered [203].

While PCR has been performed on animals, 
information on its accuracy when used on human tissues 
is lacking. In addition, PCR is not commercially available.

Toxoplasma gondii
Toxoplasma gondii is an obligate intracellular 

protozoan acquired through ingestion of uncooked 
meat or infected water. Risk factors include pregnancy, 
HIV, and solid organ transplantation.

The sensitivity of BALF culture is unknown but culture 
of respiratory secretions can be performed [204]. Tissue 
culture sensitivity, however, has been reported at 100% 
[205] of microscopy-positive or serology-positive cases. 
The sensitivity of culture in fetal specimens with serologic 
evidence of infection, however, has been reported at only 
80% [206]. Consistent with these findings, microscopic 
detection of BALF organisms by a Giemsa stain has been 
reported at 75% [204] of autopsy-confirmed cases, but 
increases to as high as 100% [204,207] of PCR-positive 
cases. BALF IF sensitivity has been reported at 33% [204] 
and 100% [205] of microscopy-positive cases, although as 
yet it has been evaluated only in small numbers. Because 
serology is not commercially available, microscopy-
negative cases should be followed by either tissue 
sampling or empiric treatment.

         

Figure 2: Parasitic pneumonia (“*” Indicates that the test is not widely commercially available).
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