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Abstract
Osteoarthritis (OA) is an increasingly common degenerative 
joint condition, estimated to affect more than 100 million people 
worldwide and more than 40% of people over 70 years of age. There 
is currently no pharmacological cure. The genetic contribution to 
osteoarthritis is estimated at between 39 and 60% in knee and hip 
OA respectively and a number of Genome Wide association studies 
have identified a number of alleles and loci that confer increased 
susceptibility to OA. In the last few years a number of key studies 
have demonstrated that genes known to play a role in the normal 
skeletal developmental processes of endochondral ossification, 
chondrocyte hypertrophy and joint formation are reactivated during 
osteoarthritis progression. Significantly, in some cases modification 
of these developmental genes can modulate osteoarthritis severity. 

The high levels of genetic contribution make osteoarthritis an 
ideal target for both forward genetic screening efforts focused 
on identifying novel genes involved in chondrocyte differentiation 
and hypertrophy, which are likely to be involved in osteoarthritis 
progression and reverse genetics focused on modulation of 
genes involved in developmental skeletogenesis in later life. The 
functional study of genes associated with aging can be problematic 
in part because of the limited availability of animal models and the 
high costs associated with keeping aged animals. Therefore, the 
developmental aspect opens up the prospect of using chemical 
screens, such as those commonly performed in the zebrafish and 
frogs, to identify potential pharmaceutical modifiers of disease 
phenotypes. Here, we explore the current models for OA and 
compare genes, including mechanosensitive genes, involved in 
developmental joint formation and osteoarthritis. 
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to many of the joint tissues. These include significant loss of the 
articular cartilage, which normally covers the bone surfaces, through 
breakdown of the structural proteins of the cartilage matrix [3]. This 
loss of cartilage is twinned with changes to the underlying bone, 
primarily thickening of the subchondral bone and the formation of 
osteophytes, which can protrude into the joint causing stiffness [4] and 
an inflammatory response mediated principally by proinflammatory 
cytokines [5].

Much is known about the environmental factors that increase 
OA susceptibility, principally age, sports injury, obesity and diet 
[6,7]. However, in recent years there has been a shift in attention 
from studies focused primarily on these environmental effects on 
cartilage destruction, towards the genetic factors regulating disease 
onset. It has been estimated from a number of twin studies that 
the genetic contribution to OA lies between 39 and 60% in hip 
and knee OA, respectively [8,9]. One aspect that makes large scale 
genetic epidemiology studies of OA somewhat difficult is the use of 
an unambiguous disease phenotype, as the disease is highly variable 
ranging from symptom-free radiographic disease to painful end 
stage OA requiring joint replacement surgery (reviewed in [10]). The 
largest and most extensive Genome Wide Association Study (GWAS) 
published to date was the arcOGEN study, which included 7400 OA 
cases and identified a number of loci [11]. Since then many other 
association studies have been published (with varying power) which 
have identified further risk alleles in a number of other genes [12-14]. 
Genes involved in early stages of disease pathogenesis are likely to 
present the best targets for development of new therapies; therefore 
their identification is of paramount importance.

It has long been appreciated that one of the most damaging 
aspects of OA is the body’s own vigorous attempt to repair the 
damage to articular cartilage [15]. Cartilage repair recapitulates a 
number of developmental pathways, including those involved in 
the normal embryonic replacement of cartilage with bone during 
endochondral ossification [16,17]. Of note, there is an increasing 
amount of evidence that aberrant reactivation of embryonic skeletal 
processes might play a contributory factor in disease progression. In 
this review we show recent evidence that reactivation of pathways 
relevant to skeletal development and joint morphogenesis contribute 
to OA risk, and discuss how this might open up new avenues for 
therapeutic intervention. Given that animal models of OA are of great 
value in addressing these issues, we also summarize the advantages 
and limitations of the different models.

A Brief Introduction to Osteoarthritis
Osteoarthritis is the most common form of arthritis, and 

represents a major cause of disabilities in the western world [1]. 
Current treatment for OA includes pain management and in more 
severe cases surgical replacement of the joint, known as total joint 
replacement (TJR) is performed [2]. However, a pharmaceutical cure 
to reverse the damage caused by OA has not yet been found.

Osteoarthritis is a disease of the whole joint, involving changes 
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using either in vitro models (such as primary cultures of normal 
and osteoarthritic chondrocytes), or using various rodent models, 
predominantly in mouse, rat or guinea pig.

Since chondrocytes constitute the main cell type in a normal adult 
joint, cell cultures of chondrocytes are commonly used. These can 
either be monolayer cultures [22,23], 3D cultures [24], or cultures on 
artificial substrates [25]. They can be derived either from chondrocyte 
cells lines or cultured from stem cells such as mesenchymal stem 
cells (MSCs), which are often taken from patients carrying specific 
risk alleles to test the effects on chondrogenesis [26]. More recently, 
induced pluripotent stem cells have been used [27]. Additionally, 
explants from laboratory animals, such as mouse ribcage explants or 
calvaria have been used to study the effects of known OA-inducing 
stimuli (e.g. levels of mechanical stress, inflammation) in vitro [28]. 
Culture systems and cartilage tissue engineering are reviewed in 
detail elsewhere [29] and will not be covered further here.

Many animal models traditionally used to study OA have 
focused on destruction of the cartilage in weight bearing joints. This 
is usually achieved either through surgery by disrupting the medial 
meniscus, by destabilising the whole joint by anterior cruciate 
ligament transection, or by destruction of cartilage through chemical 
means, such as injection of collagenases or papain [30]. The extent 
of OA progression is then characterised by histomorphological 
studies, applying a set of defined criteria, which has been set out 
for each animal species by OARSI (Osteoarthritis Research Society 
International) to allow closer correlation between the results obtained 
from animal studies to human clinical characteristics [31-34].

One problem with surgical models, while undoubtedly of value, 
is that by focusing mainly on cartilage destruction they may not give 
much insight into subtle changes occurring during the early stages 
of OA and often do not fully recapitulate the transcriptional changes 
which are observed between human normal and osteoarthritic 

Endochondral ossification and osteoarthritis

Recently, a number of groups have identified a set of genes with 
a central role in OA progression and pathogenesis (summarised 
in Table 1), and these genes share well-characterised roles in 
developmental endochondral ossification; spanning a number of 
types, from signalling proteins like Gdf5, hormones such as PTHrP, 
transcription factors such as Sox9, ERG and structural matrix proteins 
such as Type X collagen, amongst others. Together these reports 
suggest the involvement of a number of important and well known 
signalling pathways such as the Hedgehog, Wnt, BMP and TGFbeta 
pathways in influencing OA susceptibility and disease progression. 
Many of the genes (summarised in Table 1 and in Figure 1) appear 
to exert their effects in the disease by promoting the transition from 
a quiescent state to the re-entry of the chondrocyte into the cell cycle 
and differentiation to a hypertrophic state, similar to their role in the 
control of developmental endochondral ossification. A number of 
these genes appear to play a role in the ‘early’ stages of OA, raising the 
tantalising prospect that amongst the proteins controlling the entry 
to chondrocyte hypertrophy may be pharmaceutical drug targets 
that could be manipulated to limit OA progression. Supporting this 
idea, modulation of some of these ‘developmental’ genes has been 
demonstrated to decrease the severity of OA in vivo [18]. Indeed 
many new OA drugs currently in preclinical studies or in early stages 
of human trials modulate the developmental pathways discussed 
above; reviewed in [2].

This re-employment of developmental transcription factors and 
return to the ‘fetal gene program’ is a mechanism common to number 
of pathological states of the heart [19,20] and the brain [21].

Traditional models of OA: In vitro models, stem cells, tissue 
engineering and in vivo models

Currently the majority of research focused on OA is performed 

Table 1: Comparative genetics of endochondral ossification/osteoarthritis.

Gene or pathway Role in Endochondral Ossification Implication in OA Selected references
Col10a1 (type X collagen) Secreted by hypertrophic chondrocytes Increase in type X collagen as chondrocytes lose their 

‘articular cartilage identity’ and become hypertrophic 
and calcified

[40,41]

PTHrP Secreted by cells in the perichondrium, acts to keep 
chondrocytes proliferating and to prevent differentiation

Increased production of PTHrP by synovial fibroblasts 
in human OA, although decreased levels of PTH1R (its 

receptor) in rabbit OA

[42 and reviewed in 43]

Runx2 Stimulates chondrocyte hypertrophy and osteoblast 
differentiation

Upregulated in cartilage during early stages of OA [44-46]

Hif2a Transcriptionally activates Runx2 Highly expressed in OA cartilage, overexpression 
leads to cartilage destruction

[17,47]

Mmp-13 (Collagenase 3) Required in the growth plate to prevent premature 
hypertrophy

Increased expression in OA cartilage leading to 
catabolism of Type II cartilage

[48,49]

Sox9 Required for expression of a number of cartilage 
specific genes, including type II collagen

Levels are decreased in OA. Reintroduction of Sox9 
leads to increased synthesis of cartilage matrix

[50,51]

Gdf5 Required for correct cartilage development and joint 
placement

SNPs in Gdf5 associated with disease onset in multiple 
cohorts

[52,53]

Frzb Expressed during chondrocyte condensation and 
promotes chondrocyte maturation

SNPs in Frzb associated with OA in some cohorts but 
not in others

[54-57]

Hedgehog signalling Indian Hedgehog is produced by prehypertrophic 
chondrocytes and regulates both hypertrophic 
differentiation and chondrocyte proliferation

Increased hedgehog (Hh) signalling levels lead to 
increased OA severity, modulation of Hh signalling can 

reduce OA severity

[18,58]

Bmp and TGFbeta Antagonistic interactions in the growth plate in the 
control of chondrocyte proliferation and hypertrophy

Implicated in osteophyte formation [59,60]

Sulf2 Endochondral ossification, mutations lead to vertebral 
fusions changes and growth plate dynamics

Increased expression in osteoarthritic cartilage [12,61]

COL11A1 Important for normal differentiation and spatial 
organization of growth plate chondrocytes

Reduced expression in OA cartilage. Heterozygotes 
show higher levels of MMP13 and reduced tensile 

stiffness in articular cartilage. COL11A1 significantly 
associated with OA.

[14,62,63]

Chondroitin sulfatases Designate early stages of stem/progenitor cell 
differentiation

CHST11 identified as an OA susceptibility gene via 
GWAS

[11,64]

Syndecan 4 Expressed during chondrocyte differentiation. Its 
deficiency inhibits chondrocyte proliferation

Mediates matrix degradation by controlling ADAMTS-5 
through direct interaction with the protease and 

through regulating MAPK-dependent synthesis of 
MMP-3.

[64]

Erg Transcription factor induced by Gdf5. Involved in 
maintaining chondrocyte differentiation and inhibiting 

maturation to hypertrophy

Conditional Erg mouse mutants at the joint are more 
susceptible to OA defects in aging and following 

surgically-induced OA

[66-68]
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cartilage [4]. They, therefore, risk missing some of the changes 
occurring in the earliest and potentially most treatable stages of OA.

In addition to surgical models, an increasing number of genetically 
modified mouse models are established, in which genes identified 
from in vitro, human genetic, or other animal research models are 
knocked out in a targeted fashion, then analysed for joint phenotypes 
and OA. These include such mouse knockouts as Type II and Type 
IX collagen [35,36], COMP (Tsp5) [37], CCN3/Nov [38] and Ephrin 
B2 [39]. While these rodent mutants allow OA onset to be studied, 
it remains difficult to follow disease progression at a cellular level, as 
dynamic imaging of the skeleton at cellular resolution is impossible. 
As such imaging tends to focus on radiography and MRI in live 
animals twinned with post mortem histology. Therefore, ideally new 
models will combine the ability to identify novel genes with functional 

genomics and biochemical data and on the mechanisms by which 
these genes exert their effects and ideally the ability to use dynamic 
imaging. The developmental angle to the disease raises the tantalising 
prospect of using additional models to complement those currently 
used for OA research such as zebrafish, medaka and xenopus.

The uncovering of a ‘developmental’ aspect of OA should 
facilitate use of traditional developmental models such as mice 
and zebrafish, which are ideally suited for functional genetic 
studies. These include phenotype-driven forward genetic screens 
to identify novel genes involved in OA, and offer the advantage of 
an unbiased approach to identifying new genes through randomly 
generated mutagenesis approaches. ENU-based (N-ethyl-N-nitroso 
urea) random mutagenesis forward genetic screens in mouse are 
increasingly being used [40]. Through one such screen a new allele 
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Figure 1: Osteoarthritis phenotype vs. endochondral ossification –changes and markers common to both processes. 
A: Normal joints feature intact articular cartilage covering subchondral and trabecular bone; B: Osteoarthritic joint features include thinned articular cartilage, 
exposed subchondral bone, osteophytes formation and trabecular thinning; C: Schematic of a cartilage growth plate undergoing endochondral ossification from 
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of Gdf5 was identified, the mutant displaying joint malformation and 
early onset of OA [69]. Finding back a gene already implicated in 
OA pathogenesis provides a proof of principal that forward genetic 
screens can identify OA susceptibility genes. Forward genetic screens 
have been used successfully for 20 years in zebrafish [70,71]. They 
have only more recently been applied to skeletal research, but are 
already beginning to identify genes involved in skeletogenesis [72-
76]. The zebrafish mutant’s dackel (dak) and pinscher (pic), have 
identified genes involved in the human bone disease Hereditary 
Multiple Exostoses (HME) [77], and further insight into osteogenesis 
imperfecta has come from zebrafish [78]. Furthermore, ageing 
zebrafish has been shown to develop skeletal phenotypes that strongly 
resemble human osteoarthritis [79]. Therefore, while zebrafish form 
fewer synovial joints (they only have synovial joints in the craniofacial 
skeleton), they have the potential to complement existing small animal 
models in understanding the genetic link between skeletogenesis and 
osteoarthritis.

While forward genetic screening provides the potential of 
identification of new genes related to disease, reverse genetics is 
a useful tool for functional studies of known genes, for example 
those identified from GWAs studies that require further functional 
analyses. Site-specific genome editing has become easier and suitable 
over the years. Traditional technology of Cre/loxp highly used in mice 

has enriched the knowledge on bone formation and also OA with 
the generation of conditional knockout animal models [80] but also 
transgenic lines for lineage tracing in mice and live zebrafish [81-85]. 
Lineage tracing experiments have contributed to the identification of 
different populations of osteoprogenitor cells in hypertrophic cartilage 
and origins of heterotopic ossifications, helping to understand the 
“developmental” aspect of OA and reasons why cartilage elements 
might respond differentially to treatments [86]. New technologies 
of genome editing have emerged, ZFN (Zinc Finger Nucleases) 
and TALEN (Transcription Activator-Like Effector Nuclease) [87] 
have been used elsewhere for functional tests in a variety of model 
organisms, for example frame shift alleles for kif6 were generated in 
zebrafish through TALEN and confirmed its role in development of 
spinal scoliosis [88]. More recently the advent of Crispr (Clustered 
Regularly- Interspaced Short Palindromic Repeats) has revolutionized 
the field providing a powerful facility over other methods to edit 
the genome. The system has been used successfully in a diversity of 
organisms including mice, rat, zebrafish, other vertebrates and cell 
lines (stable, iPSCs and primary) to either generate knockouts, tissue 
specific gene disruption, deletion of regulatory regions or correction 
of single base pair mutations [89-93]. The technology has yet to be 
extensively used for the study of bone formation and related diseases, 
however Crispr/Cas9 has already contributed to attribute function 
to upstream regions of Mmp13 (Matrix metalloproteinase 13) that 
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when deleted result in complete loss of basal transcript activity [94]. 
Crispr has also been used to generate stable rat chondrocyte Aggrecan 
knockout cell lines [95], and to study Lrp5 during cell migration and 
shaping of the craniofacial skeleton [96]. The possibility of correction 
of the causative mutations may in future be applied to treatment 
of a spectrum of diseases including OA. Furthermore, multi target 
Crispr/cas9 combined with faster platforms such as zebrafish has the 
potential to validate candidate genes previously identified through 
GWAS and elucidate the importance of groups of altered genes for 
the cause of complex diseases as OA.

The generation of an increasing number of transgenic lines 
marking chondrocytes, osteoblasts and osteoclasts via promoters 
such as osterix [97-99], osteocalcin and runx2 [100,101], or col2a1 and 
col10a1 [102,103] along with those reporting on signalling pathway 
activity [104] will further benefit fish skeletal research. The increasing 
use of zebrafish and Xenopus for skeletal research will likely include 
screening of chemical libraries [105,106]. This could be through 
classical screening techniques on the many fish skeletal transgenic 
lines. Additionally, ex vivo approaches such as screening for skeletal 
compounds on scales removed from transgenic zebrafish expressing 
an sp7 (osterix) luciferase transgene have already identified a number 
of novel osteogenic compounds [107].

Joint shape, foetal movement and biomechanics
Loading, wear and tear and biomechanics have long been 

understood to play a role in OA pathogenesis, and it may be that 
there is a developmental aspect to the role of joint biomechanics in 
OA pathogenesis (see Figure 2 for genes in common between both 
joint development and OA). We now appreciate that the mechanical 
environment experienced during early development is important for 
normal skeletal development and correct joint morphogenesis. There 
are a number of conditions and syndromes for which abnormal or 
reduced movement are believed to be causal; including the relatively 
common developmental dysplasia of the hip (DDH sometimes also 
known as congenital dysplasia of the hip or CDH), which affects 
between 1.3 per 1000 births [108], arthrogryposis affecting 1:4000 
births [109] and fetal akinesia deformation sequence (FADS) in which 
fetal movements are completely lacking, leading to joint contractures, 
craniofacial deformities and growth restriction, which affects 1:15000 
births [110,111].

Genes and joint shape

From developmental studies in animal models, it is evident that 
mechanical forces from muscle activity are required for accurate 
joint formation [112,113]. The identification of mechanosensitive 
genes and the roles they play at the developing joint are starting to 
be elucidated from regulation of interzone cell differentiation, aiding 
cavitation and promoting chondrogenesis and morphogenesis [114-
116]. The Wnt pathway has been implicated as mechanosensitive with 
34 Wnt genes differentially expressed between control and muscle-
less Splotch mutant mice in the developing humerus, [117]. Beta-
catenin, which acts downstream of the canonical Wnt pathway, also 
showed reduced activation at the joint site in mice Splotch mutants 
and local loss of Wnt9a expression, [118]. Interestingly, the Wnt 
pathway has been implicated as a major player in OA progression 
[119]. As a result of muscle paralysis during early development many 
genes relevant to OA, such as Col2a1, BMP2, and PTHrP, show 
altered expression at the developing knee joint, [116]. Jaw movement 
constraint in ex utero mice resulted in reduction of Ihh and PTHrP 
expression [114]. Gdf5, which is normally down regulated prior to 
cavitation was reduced in cultured articular surface cells following 
the application of mechanical strain [115]. Immobilisation lead to 
elevation of Gdf5 in fused joints, reflecting the increase in numbers of 
chondrocytes at the joint site that express Gdf5 for chondrogenesis. 
Splotch mice, however, displayed an initial maintenance, and then 
decreased expression of Gdf5 at the interzone as a result of the 
absence of mechanical strain, [118]. The identification of genes that 
are misexpressed at the joint in animal models following reduced 
muscle activity can lead to further opportunities to identify the role 
that these mechanosensitive genes play in OA.

Locating regions that are under strain during development can 
help pin point those cells which are most likely to be responding to 
biomechanical cues to identify novel mechanosensitive genes and 
pathways. Finite Element (FE) modelling is an engineering technique 
that can computationally calculate and map the magnitude and 
location of strains acting on a 3d model [120]. FE analysis (FEA) 
has been exploited to model strains acting on skeletal elements 
during bone formation [121], the pattern of strains present during 
chick knee joint and zebrafish jaw joint morphogenesis [122,123]. 
Areas of high strain have been found to occur at regions that 
normally undergo cell behaviour changes such as proliferation or 
cell reorientation that impact on joint shape and that are affected in 
immobilised models [122,123]. FE modelling can be used to predict 
changes to strain patterns as a result of reduced muscle activity and 
can be used to identify mechanosensitive genes, such as ColX and Ihh 
involved in bone formation [124]. Further studies could help identify 
more mechanosensitive genes involved in joint morphogenesis in 
development that play a role during OA.

Future of OA research and potential for use of new models/
screens

As outlined above, recent genetic findings have identified a 
number of osteoarthritis susceptibility genes which also regulate 
Endochondral ossification and joint morphogenesis during skeletal 
morphogenesis; variation in these genes seems likely to be involved 
both in the onset of osteoarthritis and subsequent progression towards 
clinical outcomes. This developmental focus will allow a number of 
powerful models currently used to study developmental genetics and 
cell behaviour including chick, xenopus and zebrafish to be brought 
into osteoarthritis research, to complement existing research tools. 
These include forward genetic screens, reverse genetics with CRISPr 
and high-throughput in vivo chemical screens, to identify and 
functionally characterise new targets for pharmaceutical intervention 
and novel chemical modulators of pathways. This heralds an exciting 
period for OA research and hopefully new therapies for this disease 
will soon follow.
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