Radicular Cysts in Primary Dentition with Different Clinical and Radiographic Characteristics

Fernanda Mafei Felix da Silva, Andrea Laudares Marques, Thais Rodrigues Campos Soares, Carla Martins and Gloria Fernanda Castro*

Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Brazil

Abstract
Radicular cysts are considered rare in primary dentition. The aim of this article was to present two cases of radicular cysts associated to primary molars with different characteristics. Two children sought care at a dental clinic with complaints of a painless swelling and the absence of a premo-lar, respectively. The first case was a seven-year-old boy who complained of an increased volume in the region of the mandibular right primary second molar. The second case was a 12-year-old girl, who complained of the absence of the mandibular right second premolar and gingival inflammation. In both cases, surgery was performed to remove the lesion and the elements involved. Histological examinations confirmed the radicular cysts. After six months, complete regression of the lesions was reported, and the patients were referred for orthodontic treatment. Radicular cysts can cause damage to the elements involved, adjacent teeth and the occlusion of the patient.

Keywords
Radicular cyst, Primary tooth, Child

Introduction
Radicular cysts represent 60% of odontogenic cysts but are very rare in primary dentition [1]. According to a study by Mass, et al. in 1995, the mean age of all the cases studied was 7.7-years-old, with an almost equal distribution between genders [2]. In relation to the location in the arcades, the mandibular primary teeth are affected more frequently than the maxillary teeth [3]. In most cases they are asymptomatic lesions with slow development; however, these cysts can become large and lead to tooth mobility and displacement of adjacent teeth [4].

The etiology is related to pulp injuries or pulp necrosis caused by deep dental caries or dental trauma [2]. According to Bernardi, et al. [5], the mechanism to develop radicular cyst includes pulp necrosis, colonization and proliferation of microorganisms within the root canal system, release of bacteria toxins and inflammatory mediators into the periapical region and a combination of factors involving epithelial-stromal interaction. The periradicular inflammation leads to proliferation of epithelial cell rests [5].

A radicular cyst can be found via a routine radiography but the definite diagnosis can only be made by histopathologic examination. Radiographically, they appear as round or pear-shaped unilocular radiolucent lesions in the periapical region [6] and are bordered by a thin rim of cortical bone [7]. Radicular cysts and periapical granulomas have a similar radiographic appearance; however, radicular cysts are less common and often larger [8]. Various treatment options include root canal therapy, cyst enucleation, extraction of the affected tooth and marsupialization for the decompression of larger cysts [4,5]. This paper related two cases of children with radicular cysts associated to primary molars, with different characteristics.

Case Description
Case 1
A 7-year-old male patient was brought by his parents to the Pediatric Dental Clinic of the Federal University of Rio de Janeiro with the chief complaint of a painless swelling in the lower right side of his face.

*Corresponding author: Gloria Fernandes Castro, Associate Professor, Department of Pediatric Dentistry Orthodontics, School of Dentistry, Universidade Federal do Rio de Janeiro, Caixa Postal 68066, Cidade Universitária, CEP: 21941-971, Rio de Janeiro, Brazil, Tel: +5521-3938-2101, E-mail: gfbacastro@yahoo.com.br
Anamnesis revealed no important systemic diseases. The extra-oral examination indicated a well-defined, firm swelling on the right side of the face. The intra-oral examination revealed mobility of the mandibular right primary second molar (#T) which presented a temporary restoration (Figure 1A). The patient also presented caries lesions in the primary maxillary incisors (#D, #E, #F, #G), maxillary right primary second molar (#B), mandibular right primary first molar (#S), maxillary left primary second molar (#J) and mandibular left primary second molar (#K). Cone-beam CT examination showed a rounded radiolucent unilocular lesion below the mandibular right primary second molar (#T), displacing the permanent second premolar successor (#29) to the lower mandible border (Figure 1B) and a cortical expansion (Figure 1C), suggesting a radicular cyst. Treatment plan included removal of the elements #T and #S, followed by surgical enucleation of the lesion. The affected teeth were extracted under local anesthesia. Analgesics and antibiotics were prescribed and post-operative orientations were given.

At the one-week follow up consultation, the suture was removed and there was good healing of the gingival tissue. Restorative treatments in the maxillary primary incisors and the maxillary primary second molars were then carried out. It was not possible to perform the space maintainer because the first permanent molar was not erupted. The patient is in orthodontics follow-up for space management. After six months a periodical clinical follow-up is still ongoing; however, the loss of space was noticeable. Radiographically no changes have been observed in the successor tooth or the presence of any further injuries (Figure 1D).

Case 2

A 12-year-old female patient was seen at the Pediatric Dental Clinic for her first consultation with complaints of the absence of her right lower second premolar (#29) and gingival inflammation. Anamnesis revealed that the patient was having nutritional counseling since she was overweight, but no systemic diseases were reported. The intra-oral examination revealed that the patient was in her permanent dentition, but the right lower second premolar (#29) was absent and she presented gingival hyperplasia (Figure 1D). Carious lesions were observed in the following elements: left lower first permanent molar (#18) and right lower first permanent molar (#30); and generally there was poor oral hygiene. A panoramic exam suggested a radicular fragment of the right lower second primary molar (#T) with an extensive radicular radiolucent lesion and the absence of the right lower second premolar (#29) (Figure 2B). The tooth fragment and lesion were removed under local anesthesia. The wound was sutured and post-operative orientations were given. After one week, the patient returned for suture removal and cementation of a space maintainer. Finally, restorative treatment of the other tooth elements was performed. Clinical and radiographic follow-ups are ongoing for six months (Figure 2C).

Figure 1: Clinical and radiographic exams of Case 1 (A) Initial intraoral examination with an extensive provisional restoration and edema; (B) Tomography showed a radiolucent unilocular lesion below the mandibular right primary second molar displacing the permanent second premolar successor; (C) Image showed a cortical expansion; (D) Radiographic follow-up after six months.
growth and affect a permanent dentition. A study by Mass, et al. presenting 32 children with radicular cysts, reported
that all cysts were related to primary molars. The clinical
feature of most of the patients was swelling and pain [5]. In
this report, each case presented different clinical features
and radiographic characteristics. In the first case, there
was a bony swelling, tooth mobility of element #T, a radio-
lucent lesion around and below the affected tooth and dis-
placement of the successor tooth #29. While in the second
case, there was gingival hyperplasia, absence of any bony
swelling and absence of tooth #29. However, there were
no complaints of pain in either case.

The treatment of choice for both cases was to re -
move the affected teeth, enucleation of the lesion,
space management of the involved region and protec-
tion against infection. The surgical technique used in
both cases was enucleation, in which the involved teeth
and lesion are removed. This technique is best suited in
order to avoid the permanence of any infected tissue
and to obtain samples for histopathological analyzes.
On the other hand marsupialization, which is a more
conservative technique, does not obtain the best ma-
terial for histopathological examinations [13]. The two
cases are presently in clinical and radiographic monitor-
ning for six months. Case 1 was referred to orthodontics
to recover adequate space for the successor tooth to
erupt; while in Case 2, a space was preserved for a fu-
ture dental implant. Both cases had a common purpose
to allow the tooth to perform its physiological functions.

Histopathological Examination

The curettage material was sent for histopatholog-
cal analysis that showed a predominant presence of
acute inflammatory cells, stratified squamous epithe-
lium with underlying connective tissue and confirmed
the diagnostic of radicular cysts (Figure 3).

Discussion

Radicular cysts are considered rare in primary den-
tity, compared with permanent dentition [9]. This
prevalence may be underestimated, as often a histo-
pathological diagnosis is not performed when primary
teeth are involved [10]. The most affected teeth in pri-
mary dentition are mandibular molars with endodon-
tic involvement. On the other hand, in the permanent
dentition, the teeth most affected are the incisors [11].
In both cases here, the dental elements involved were
primary lower molars, which is in agreement with the
observations in the literature.

Dental caries is the most common etiological factor
of radicular cysts in primary teeth [12]. In this report,
the patient in Case 1 had an extensive provisional resto-
ruration due to previous caries, an experience which may
explain the appearance of the radicular cyst. In Case
2, no previous history relating to the element #T was
found, and therefore no etiological factor for the devel-
opment of the cyst was identified.

Usually radicular cysts are asymptomatic, have slow
growth and affect a permanent dentition. A study by Mass,
et al. presenting 32 children with radicular cysts, reported
that all cysts were related to primary molars. The clinical
feature of most of the patients was swelling and pain [5]. In
this report, each case presented different clinical features
and radiographic characteristics. In the first case, there
was a bony swelling, tooth mobility of element #T, a radio-
lucent lesion around and below the affected tooth and dis-
placement of the successor tooth #29. While in the second
case, there was gingival hyperplasia, absence of any bony
swelling and absence of tooth #29. However, there were
no complaints of pain in either case.

The treatment of choice for both cases was to re-
move the affected teeth, enucleation of the lesion,
space management of the involved region and protec-
tion against infection. The surgical technique used in
both cases was enucleation, in which the involved teeth
and lesion are removed. This technique is best suited in
order to avoid the permanence of any infected tissue
and to obtain samples for histopathological analyzes.
On the other hand marsupialization, which is a more
conservative technique, does not obtain the best ma-
terial for histopathological examinations [13]. The two
cases are presently in clinical and radiographic monitor-
ning for six months. Case 1 was referred to orthodontics
to recover adequate space for the successor tooth to
erupt; while in Case 2, a space was preserved for a fu-
ture dental implant. Both cases had a common purpose
to allow the tooth to perform its physiological functions.
Conclusion

Routine clinical and radiographic examinations to find any asymptomatic injuries in pediatric patients are required since patients often do not have any complaints, especially since undiagnosed injuries can bring problems, as could have happened in these two cases. In the first case the germ of the permanent successor could have been affected and in the second case a loss of space would have made future treatment more complex.

References