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Abstract
Polycystic Ovary Syndrome (PCOS) is a common endocrine 
disorder, present in 5-13% women of reproductive age. The 
endocrine manifestations of PCOS include excess andro-
gen production of ovarian and/or adrenal origin and arrest-
ed follicular development leading to chronic oligo- or anovu-
lation. Long term health risks of women with PCOS include 
cardiovascular disease, type 2 diabetes mellitus and endo-
metrial cancer. PCOS is diagnosed by chronic anovulation, 
polycystic ovaries on ultrasound and biochemical/clinical 
manifestations of hyperandrogenism. Phenotype expres-
sion is heterogeneous and varies throughout the woman’s 
life cycle, making early confirmation difficult. South Asians 
with anovulatory PCOS manifest severe symptoms at a 
younger age, with greater insulin resistance and a higher 
prevalence of the metabolic syndrome than white Euro-
peans, thereby reflecting their ethnic propensity to type 2 
diabetes mellitus. PCOS appears to be a multigenic trait, 
although contributing genes remain undefined yet. Sever-
al studies have been carried out to identify the candidate 
genes and polymorphisms affecting the multiple biological 
pathways of PCOS. The main objective of this article is to 
review the role of genes regulating the Hypothalamus-Pitu-
itary-Gonadal (HPG) axis - mainly KISS1, GPR54 receptor 
gene, GnRH (Gonotropin Releasing Hormone), GnRHR 
(Gonotropin Releasing Hormone Receptor), FSH (Follicle 
Stimulating Hormone), FSHR (Follicle Stimulating Hormone 
Receptor), LHβ (Luteinizing Hormone beta subunit) and 
LHCGR (Luteinizing Hormone/Choriogonadotropin recep-
tor) genes; with special focus on its association with PCOS.
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Hypothalamic pituitary gonadal axis, Polycystic ovary syn-
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Introduction
Polycystic Ovary Syndrome (PCOS) is a common en-

docrine disorder, affecting women of reproductive age 
with prevalence varying between 5-13%. PCOS typical-
ly presents during adolescence with a wide spectrum 
of phenotypes that are characterized by features of 
anovulation (amenorrhoea, irregular cycles) combined 
with symptoms of androgen excess (hirsutism, acne, 
alopecia) and polycystic ovaries on ultrasound [1]. The 
characteristic biochemical abnormalities are elevation 
of serum androgen concentrations (particularly testos-
terone and androstenedione) and Luteinizing Hormone 
(LH) concentrations, but with normal or low levels of 
Follicle-Stimulating Hormone (FSH) [2]. Diagnosis of 
PCOS is based on the ‘Rotterdam criteria’, which re-
quire the presence of two of the three following fea-
tures: polycystic ovaries, anovulation and androgen ex-
cess (clinical and/or biochemical) [3].

Current studies suggest that excess androgen pro-
duction may induce the polycystic ovarian morphology, 
leading to the endocrine disruption of this disorder. In 
addition, presentation of PCOS in adolescence suggests 
that there is an underlying predisposition to the typical 
ovarian abnormalities that has origins before the onset 
of puberty. The basis of these two hypotheses was ob-
tained from studies done by Abbott and colleagues on 
female Rhesus monkeys. In this study, the animals were 
exposed to high concentrations of testosterone in uter-
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us and when they developed as adults showed typical 
features of PCOS such as hypersecretion of LH, ovarian 
hyperandrogenism, anovulation in relation to increased 
body weight and insulin resistance [4,5]. This shows that 
PCOS is induced by excess androgens and may arise by 
‘programming’ of the hypothalamic-pituitary-ovarian 
axis by androgens in prenatal life [6].

PCOS is associated with metabolic abnormalities, 
central to which are insulin resistance and hyperinsulin-
emia, which carry an increased risk of developing type 
2 diabetes in later life [2]. In addition, PCOS is one of 
the leading causes of female infertility. Lifestyle chang-
es, such as losing weight, can trigger body changes that 
facilitate conception in women with PCOS [7].

Based on current research on PCOS there is strong 
evidence that genetic factors play a major role in its 
etiology. Despite several genetic studies dissecting the 
variants of genes from multiple biological pathways in 
its pathophysiology, the mode of inheritance of PCOS re-
mains unclear [8]. Current findings favor PCOS as a com-
plex endocrine disorder that results from the interaction 
of susceptible and protective genomic variants in several 
genes under the influence of environmental factors [9-
11]. Candidate genes involved in steroid hormone me-
tabolism, gonadotropin and gonadal hormones action, 
obesity and energy regulation, insulin secretion and 
action have been studied and implicated in the patho-
genesis of PCOS. There may be several interlinking fac-
tors that affects expression of PCOS. A single cause for 
PCOS is unlikely [12]. Moreover, a study on phenotype 
genotype correlation in PCOS revealed that a PCOS ge-
netic gradient resulted from genetic drifts due to a serial 
founder effect that occurred during ancient human mi-
grations. The overall prevalence of the disease supports 
intra-locus sexual conflict as alternative to the natural 
selection of phenotypic traits in females [13].

We believe that focusing on the Hypothalamus-Pitu-
itary-Gonadal (HPG) axis related genetic polymorphisms 
may shed fresh light on providing a more complete pic-
ture on the genetic basis of PCOS. Heritability can be 
studied by 4 methods - twin studies, family association 
studies, candidate gene studies and Genome-Wide As-
sociation Studies (GWAS). In this review we have ana-
lyzed the heritability based on the candidate gene stud-
ies related to the HPG axis and PCOS.

In our review, the role of genes regulating the HPG 
axis - mainly KISS1, GPR54 receptor gene, GnRH (Gono-
tropin Releasing Hormone), GnRHR (Gonotropin Releas-
ing Hormone Receptor), FSHβ (Follicle Stimulating Hor-
mone beta subunit), FSHR (Follicle Stimulating Hormone 
Receptor), LHβ (Luteinizing Hormone beta subunit) and 
LHCGR (Luteinizing Hormone/Choriogonadotropin re-
ceptor) genes; with special focus on their association 
with PCOS were selected. Several studies have been car-
ried out to identify the association of polymorphisms of 
these genes with polycystic ovary syndrome. However, 

repeatability of results has remained low.

KISS1 and GPR54 Genes
Female reproductive function depends on the prop-

er development and regulation of the HPG axis. Kiss-
peptins are peptide products of KISS1 gene that partici-
pate in the control of the HPG axis. Kisspeptin act via G 
protein-coupled receptor known as GPR54 [14,15]. The 
GPR54 - KISS1 pathway has an essential role in the initi-
ation and maintenance of mammalian fertility [16].

The KISS1 gene is localized on chromosome 1q32 
and consists of three exons, of which only part of the 
second and third exons are finally translated into a 
precursor 145 amino acid peptide, which is cleaved 
into three forms of kisspeptins containing 54, 14, or 13 
amino acids. The three peptides exhibit the same affin-
ity for their single receptor (GPR54) since they share a 
common C-terminal decapeptide. GPR54 gene maps to 
chromosome 19p13.3 and includes five exons, encod-
ing a 398 amino acid protein with seven hydrophobic 
trans-membrane domains [17].

The KISS1 gene was originally identified in 1996 as 
a suppressor of metastasis in human malignant mela-
noma [18]. The role of Kisspeptin in reproduction was 
identified in 2003, which revealed the current under-
standing of the neuroendocrine regulation of human 
reproduction and the role of kisspeptin in puberty [19]. 
Kisspeptin signals directly to the GnRH neurons through 
the action on the kisspeptin receptor (GPR54) to release 
GnRH into the portal circulation, which in turn stimu-
lates the secretion of LH and FSH from the gonadotro-
phs of the anterior pituitary [20]. GnRH secretion is de-
regulated in PCOS. Therefore, it can be postulated that 
altered patterns of kisspeptin inputs to GnRH neurons 
leads to dysregulated gonadotropin secretion in PCOS.

The most important function of the KISS1/GPR54 
system in the process of puberty makes it necessary 
to investigate the mutations and polymorphisms in the 
KISS1 and GPR54 genes and their association with PCOS. 
However, polymorphisms in KISS1 and GPR54 genes in 
relation to PCOS are not well studied. Therefore, further 
research should focus on identifying the polymorphisms 
in KISS1 and GPR54 genes and their expression levels in 
relation to PCOS and determine the association of these 
polymorphisms with clinical, biochemical and endocrine 
features in order to obtain a complete view of the sce-
nario predisposing to PCOS. This will help expand our 
understanding of the basis of KISS1 and GPR54 genes 
in PCOS.

The KISS1 gene encodes kisspeptin that signals di-
rectly to the GnRH neurons through the action on the 
kisspeptin receptor (GPR54) to release GnRH into the 
portal circulation, which in turn stimulates the secretion 
of LH and FSH from the gonadotrophes of the anterior 
pituitary by binding to its receptor GnRHR-1. LH and FSH 
act on gonads (by binding to their receptors LHCGR and 
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FSHR respectively) and stimulate the release of estro-
gen testosterone and progesterone (Figure 1).

GnRH and GnRHR Gene
The GnRH and its receptor (GnRHR) genes are im-

portant regulators of the HPG axis, and abnormalities 
in their function lead to impaired pubertal development 
and sexual maturation [21].

GnRH is a neurohormone consisting of 10 amino ac-
ids (decapeptide) that is produced in the arcuate nuclei 
of the hypothalamus [22]. GnRH stimulates the secre-
tion of the two gonadotropins-LH and FSH by the anteri-
or pituitary gland which stimulate spermatogenesis, fol-
liculogenesis and ovulation. In addition, gonadal steroid 
hormones androgen, estrogen and progesterone par-
ticipate in the negative feedback loop and inhibit GnRH 
and gonadotropin expression [23]. Four different GnRHs 
are reported to be expressed in various mammals. Of 
the four GnRHs, only GnRHI (mammalian GnRH) and 
GnRHII (chicken GnRH II) genes were identified in the 
human genome [24].

The GnRH1 gene is located on chromosome 8p21.2. 
It spans about 5 kb and contains 3 exons. It encodes the 
GnRH1 precursor, which contains 92 amino acids, and 
it is subsequently processed to GnRH1, an active deca-
peptide. GnRH is the principal hormone regulating the 
pituitary gonadotropins, there by affecting the ovarian 
physiology. Lack of negative feedback regulation on 
GnRH pulse frequencies, can lead to excess secretion 
of LH; which in turn increases androgen biosynthesis in 
ovarian theca cells and results in hyperandrogenism, a 
key etiological factor in the pathogenesis of anovulation 
and infertility in PCOS women [25].

The GnRHR gene is located on chromosome 4q13.2. 
Its genomic sequence covers about 19 kb and it includes 
3 exons. GnRHR gene encodes the receptor for GnRH1 
hormone. This receptor is a member of the seven-trans-
membrane, G-protein Coupled Receptor (GPCR) family. 
It is expressed on the surface of pituitary gonadotrope 
cells as well as lymphocytes, breast, ovary, and pros-
tate. Following binding of GnRH1, the receptor asso-
ciates with G-proteins that activate phosphatidylinosi-
tol-calcium second messenger system and activation of 
the receptor leads to the secretion of LH and FSH [23].

So far, no major defects within GnRH1 and GnRHR 
genes have been found in association with PCOS. How-
ever, a polymorphism in the first exon of GnRH1 has 
been described, constituting an amino acid variation at 
codon 16 (Trp16Ser). A study by Valkenburg, et al. [26] 
showed distribution of the Trp16Ser alleles of GnRH1 
was similar in PCOS cases and controls and failed to 
identify any association with PCOS. Therefore, we can 
conclude that GnRH1 and GnRHR genes mutations are 
uncommon in subjects with PCOS.

FSH and FSHR Genes
Follicle Stimulating Hormone (FSH) is a glycoprotein se-

creted by the anterior pituitary. It is a heterodimer consist-
ing of common α-subunit and a hormone-specific β-subunit 
that contributes to the receptor binding specificity [27]. 
FSH secretion is regulated by GnRH and in turn regulates 
gonadal functions in males and females by activating their 
cognate receptors. In women, it plays a crucial role in the 
follicle development, oocyte maturation, steroidgenesis 
regulation, proliferation of granulosa cells and induces syn-
thesis of the androgen-converting enzyme aromatase [28].
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Figure 1: Diagrammatic representation of the HPG axis pathway in humans.  
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LHB and LHCGR Genes
Luteinizing Hormone (LH) is a member of the glyco-

protein hormone family that includes human Chorionic 
Gonadotropin (hCG), FSH, and Thyroid Stimulating Hor-
mone (TSH). They are α/β heterodimers with a common 
α -subunit and a unique β -subunit. The β -subunit con-
fers biologic specificity [45,46]. The two LH subunits (α 
and β) are encoded by separate genes. The α subunit 
gene is in chromosome 6 and the β subunit gene is in 
chromosome 19 [47]. LH stimulates follicular develop-
ment, steroidogenesis, and the formation of corpus lu-
teum [48], and ovulation results from a surge in LH levels 
[49]. LH acts by binding to its high affinity receptor known 
as Luteinizing Hormone/Choriogonadotropin receptor/
Choriogonadotrophin receptor (LHCGR) [48]. LHCGR is a 
G protein-coupled hormone receptor and is expressed in 
numerous tissues including the gonads, uterus [50], fal-
lopian tubes [51], placenta and fetus [52]. Both LH and 
hCG are endogenous ligands for LHCGR [53]. LHCGR is 
encoded by LHCGR gene located on chromosome 2p21 
and composed of 11 exons occupying about 700 kbp [54].

The relationship between LH signaling pathway and 
PCOS has not been clearly understood. However, abnor-
mal LH signaling is believed to play a significant role in 
augmenting ovarian androgen production in PCOS lead-
ing to anovulation [55]. LHβ and LHCGR gene mutations 
may change the structure or function of the LH and LH-
CGR, either activating or inactivating their bioactivity, 
which cause anovulation, amenorrhea, and polycystic 
ovaries in women [56]. Several studies have proven the 
genetic associations of LHβ and LHCGR polymorphisms 
with PCOS, although the results of different populations 
and loci of polymorphisms showed inconsistencies.

There are 2 common mutations of LHβ gene that 
were associated with PCOS; one in codon 8 and other in 
codon 15. Point mutation in codon 8 causes amino acid 
replacements from Trp to Arg; and in codon 15 from 
Ile to Thr [57]. Kurioka, et al. showed that these muta-
tions were considerably associated with PCOS [58] and 
Tapanainen, et al. concluded that the presence of these 
mutations may help to diagnose the risk for PCOS par-
ticularly among obese women [59]. However, studies in 
a British population revealed that the incidence was not 
higher in women with PCOS, though it was increased in 
obese women with PCOS [60]. In contrast, Huhtaniemi, 
et al. reported that variant LH occurs with normal fre-
quency in non-obese patients with PCOS but is under-
represented in obese patients with PCOS [61]. These 
results show that the clinical significance of the variant 
LH with respect to PCOS is contradictory. The same mu-
tations were reported from Finland [62] and a similar 
LH form was described from Japan [57], which suggests 
that this variant LH represents a universal polymor-
phism [62]. Worldwide carrier frequency of this com-
mon genetic variant has been analyzed and reported as 
a prevalence of 7% in U.S. Hispanics, 18% in England and 
42% in Lapps of northern Finland [60,62,63]. However, 

The effect of FSH is mediated by binding to its re-
ceptor - FSHR (Follicle Stimulating Hormone Receptor), 
which is specifically situated on the granulosa cells of 
the ovary [29]. FSHR gene is located on chromosome 
2p21 and comprises 10 exons and 9 introns.

The FSH and FSHR genes are necessary for female fer-
tility. The importance of FSHR in the signaling transmis-
sion of FSH made FSHR gene one of the important can-
didate genes for PCOS [30]. More than 900 SNPs in the 
FSH and FSHR genes have been reported [31]. Mutations 
in FSHR gene can lead to arrest of follicle development 
at several phases of growth [32,33]. Genetic variants in 
the FSHR gene may have effects on the phenotype. These 
effects include variable development of secondary sex 
characteristics, primary amenorrhea, hypoplastic ovary, 
and high serum FSH levels [34,35]. The two most clinically 
relevant polymorphisms of FSHR gene are in exon 10. One 
polymorphism is located at codon 307 in the extracellu-
lar domain of the receptor, where alanine is replaced by 
threonine (A307T; rs6165). The other polymorphism is in 
the intracellular domain at codon 680, where asparagine 
is replaced by serine (N680S; rs6166) [34,36].

The association between FSHR gene polymorphisms 
and PCOS were examined by several studies but the re-
sults were contradictory. Gu, et al. reported Ser680Asn 
of FSHR gene polymorphism was associated with PCOS 
in Korean women, whereas the Ala307Thr was not [37]. 
Meanwhile Dolfin, et al. showed that the Ala307Thr 
of FSHR polymorphism was related to PCOS in Italian 
women [38]. In addition, Unsal, et al. found that the 
genotype frequencies of the Ala307Thr and Ser680Asn 
polymorphisms of FSHR were not different between 
cases and controls in Turkish adolescent girls [39]. 
Sudo, et al. reported a significant increase in the Ala-
307Thr frequency among Japanese women with PCOS 
when compared to normal subjects [40]. A significant 
association between the polymorphism Ala307Thr and 
PCOS was also reported by a recent study on Chinese 
women [41]. However, Mohiyiddeen, et al. did not find 
any association between the Ser680Asn polymorphism 
of FSHR gene and PCOS in a British population [42]. In 
addition, Valkenburg, et al. concluded that FSHR gene 
variants were strongly associated with the severity of 
PCOS clinical features, but not with disease risk [26]. 
Orio, et al. reported no significant relationship between 
various polymorphisms of FSHR gene and PCOS in Ital-
ian females [43]. Contradictory findings of the different 
studies may be due to the variation in sample size and 
ethnicity of the study population.

Importantly, most studies have focused on associa-
tion of FSHR gene polymorphism with PCOS, whereas 
association of FSHβ gene polymorphism with PCOS is 
less explored. Tong, et al. concluded that FSHβ gene 
mutations were found to be uncommon in patients with 
PCOS. However, AccI polymorphism was found to be as-
sociated with the syndrome in some women, especially 
those with obesity and hyperandrogensim [44].
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Danish origin and have suggested that the gene products 
of the LHCGR gene is linked with the diagnosis of PCOS, de-
spite ethnicity [69-71]. Valkenburg, et al. found that LHCGR 
18insLQ insertion allele frequency was significantly lower 
in white Europeans with PCOS than controls [26].

Table 1 summarizes the major findings of the can-
didate genes of the HPG axis and their association with 
PCOS.

Conclusions
PCOS appears to be a multigenic trait, although the 

contributing genes broadly remain undefined. This re-
view explored in-depth the possible associations be-
tween PCOS and genetic polymorphisms of the many 
genes linked to the HPG axis and found the reported as-
sociations to be conflicting. The discrepancy of findings 
is likely to be due to variations in study design, sampling 
technique and sample size, along with demographic and 
genetic differences among the study populations.

these studies also reported that the LH variant is less 
common in Asian countries.

The LHCGR gene has at least 300 known polymor-
phisms [45,64]. A study by Capalbo, et al. on S312N 
(G935A) polymorphism in exon 10 of the LHCGR gene 
revealed that this variant is strongly linked with PCOS in 
the Sardinian population [54]. The finding of this study 
was supported by two other studies by Ha, et al. [65] 
and Bassiouny, et al. [66]. They found that the G935A 
polymorphism of LHCGR gene is associated with PCOS in 
Hui Chinese and Egyptian populations. On the contrary, 
Almawi, et al. [67] and Valkenburg, et al. [26] reported 
that G935A polymorphism was not overtly associated 
with PCOS in Bahraini Arab and Caucasian populations. 
Furthermore, Thathapudi, et al. revealed that the GG 
genotype, rather than AA, conferred a significant risk 
for developing PCOS in South Indian women [68].

Eriksen, et al. found an association with rs13405728 
variant in the LHCGR gene and PCOS in white Europeans of 

Table 1: Comparison of genotype associations with PCOS. 
Gene SNP Mutation A.A change Sample size Association 

(Yes/No)
Population

KISS1 rs4889 C/G Pro → Arg PCOS = 28
Controls = 30

Yes Saudi Arabian Albalawi 
FS, et al. [70]

GnRH1 rs6185 G/C Trp → Ser PCOS = 518
Controls = 2996

No Caucasian Valkenburg 
O, et al. [26]

FSHR rs6165 G/A Ala → Thr PCOS = 235
Controls = 128

No Korean Gu BH, et al.  
[37]

rs6165 PCOS = 44
Controls = 50

No Turkish Unsal T, et al. 
[39]

rs6165 PCOS = 40
Controls = 66

Yes Italian Dolfin E, et al. 
[38]

rs6165 PCOS = 96
Controls = 426

Yes Japanese Sudo S, et 
al. [40]

rs6165 POF = 40
PCOS = 60

Controls = 90

Yes Chinese Du J, et al. [41]

FSHR rs6166 G/A Ser → Asn PCOS = 44
Controls = 50

No Turkish Unsal T, et al. 
[39]

rs6166 PCOS = 58
Controls = 80

No UK Mohiyiddeen L, et 
al. [42]

rs6166 PCOS = 235
Controls = 128

Yes Korean Gu BH, et al. 
[37]

FSHR Various 
polymorphism

PCOS = 50
Controls = 50

No Italian Orio F Jr, et al. 
[43]

FSHB rs6169 C/T Tyr → Tyr PCOS = 135
Controls = 105

No Singapore
Chinese Tong Y, et al. 

[44]
LHB rs1800447/ 

rs3449826
T/C
A/G

Trp → Arg
IIe → Thr

PCOS = 130
Controls = 96

Associated with 
↑ Testosterone 

levels

Brazilian Batista MC, et 
al. [71]

LHCGR rs2293275 A/G Asn → Ser PCOS = 518
Controls = 2996

No Caucasian Valkenburg 
O, et al. [26]

rs2293275 PCOS = 198
Controls = 187

Yes Sardinian Capalbo A, et 
al. [54]

rs2293275 PCOS = 100
Controls = 60

Yes Egyptian Bassiouny YA, 
et al. [66]
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We propose the need to analyze polymorphisms in 
multiple candidate genes of PCOS to determine its exact 
genetic basis. Development of a genetic diagnostic tool 
that would help in screening multiple candidate genes 
simultaneously is suggested. Such a tool would also help 
elucidate which of these SNPs are present in the differ-
ent phenotypic subgroups of affected women. Such 
an approach would help foster a better understanding 
of the genetic basis for the pathophysiology underly-
ing PCOS in different subgroups and populations. This 
knowledge could then be leveraged to devise the most 
optimal screening and effective management strategy 
for an affected woman, depending on her phenotypic 
subgroup and ethnicity.
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