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Abstract
We have analyzed kidney stones from patients from Greece in 
which the mineral phase was calcium oxalate monohydrate (COM) 
as identified by powder-XRD and FTIR spectra. SEM-EDS analysis 
revealed microscale-COM crystal aggregates mixed with organic/
biological matter. XRF revealed that in addition to Ca (max. ca. 21.4 
wt.%; av. ca. 21 wt.%) and Sr (max. 35 ppm; av. 34 ppm), there 
were significant levels of heavy metal impurities, namely Zn (max. 
214 ppm; av. 204 ppm), Pb (max. 149 ppm; av. 136 ppm), Fe (max. 
136 ppm; av. 132 ppm) and Cu (max. 17 ppm; av. 15 ppm), as well 
as minor amounts of Br. As identified by IRMS, all three examined 
kidney stones presented a very light δ13C signature (average δ13C 
ca. -25.4‰ PDB) as compared to previously reported data on kidney 
stones from humans from different geographical locations. The 
δ18O values averaged ca. -7.31‰ PDB. With regard to radioactive 
isotopes, HR γ-ray spectrometry demonstrated the existence of the 
natural radionuclides 214Pb and 214Bi due to 238U-series, and also an 
additional amount of 40Κ. We conclude that these kidney stones from 
southeastern Europe are enriched in essential biometals (Zn and 
Fe), and also contain a high content of harmful heavy metals such as 
Pb, and traces of U. This elemental composition may be related to a 
toxic diet and/or environmental pollution.
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Introduction
Kidney stone disease (urolithiasis) is a serious health problem, 

involving more than 5% of the population, especially in developing 
countries [1,2]. Urolithiasis, the formation of urinary calculi in the 
kidney, bladder and/or urethra, can be attributed to several risk factors 
related to geographical region, gender and dietary habits [e.g. 3-5]. 
Urine ion supersaturation, and the effects of various mineralization 
promoters and inhibitors, in combination with genetic risk factors, 
plays a significant role in the crystallization process within kidney 
stones [5]. Understanding the elemental and isotopic composition of 
kidney stones is central to understanding their initiation and growth, 
and to developing treatments that prevent their formation.

Kidney stones vary in composition and contain a wide variety 
of different organic and inorganic compounds. They can be broadly 
classified into five types of stones depending on their major chemical 
composition: (a) calcium oxalate, (b) calcium phosphate, (c) uric 
acid, (d) struvite and (e) cystine [e.g. 3,6]. Calcium oxalate-containing 
stones are the most common type, where the mineral phase can exist 
as calcium oxalate monohydrate (COM), calcium oxalate dihydrate 
(COD) and rarely calcium oxalate trihydrate (COT), the latter being 
the most thermodynamically unstable form of calcium oxalate. COM 
is the most stable form, and it predominates in more than 80% of 
total stones. Struvite, uric acid and cystine stones are found in a 
smaller percentage of cases, at 15%, 5-10% and 1% respectively of 
total kidney stones [3,5-7].

In previous studies by others, analytical techniques such as X-ray 
Fluorescence/XRF and Proton Induced X-ray Emission/PIXE were 
used to verify the concentrations of trace elements in COM stones 
[8-14]. Further analytical techniques, such as Inductively Coupled 
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Materials and Methods
Kidney stones of different sizes were examined after surgical 

removal from patients at the Laikon General Hospital in Athens 
(Greece). Three kidney stones were subjected to further detailed 
analysis after optical examination.

Microscopic analysis was performed using a Jeol JSM-5600 
microscope equipped with an Oxford EDS microanalytical system. 
XRD patterns were acquired by a Siemens D5005 (Bruker AXS) 
X-ray diffractometer using Cu Kα-radiation. FTIR spectra were 
collected using a Perkin Elmer Spectrum One spectrometer operating 
in the frequency range 4000-450 cm-1 with a 2 cm-1 nominal energy 
resolution. KBr discs were prepared for each measurement from 1.3 
mg of powdered sample. An in-house developed transferable milli-
beam XRF spectrometer was used for the XRF analysis. This XRF 

Plasma -Optical Emission & -Mass Spectrometry/ICP-OES & ICP-
MS, Atomic Absorption Spectrometry & Emission Spectrometry/
AAS & AES, Instrumental Neutron Activation Analysis/INAA and 
Synchrotron-based methods were also used [9,11,15-25].

The main purpose of the present work was to contribute to 
information on the chemical composition of European kidney stones, 
specifically those from southeastern Europe (Greece). Here, XRF was 
also used for the quantitative analysis of COM kidney stones which were 
previously characterized using multiple techniques (Scanning Electron 
Microscopy/SEM, X-ray Diffraction/XRD, and Fourier-Transform 
Infrared Spectrometry/FTIR). Also, carbon and oxygen isotopic ratios 
(δ13C and δ18O) were measured using Isotope Ratio Mass Spectrometry/
IRMS whereas high-resolution (HR) Gamma (γ)-ray spectrometry 
measurements provided with data of natural radionuclides (238U-series, 
232Th-series, 40K) in COM kidney stones from the human body.

         

Figure 1: SEM images of kidney stones from the present study (upper: COM crystal aggregates; lower: post-colored image indicating COM crystals partly 
covered by organic/biological matter).
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of each sample was used. Finally, the radionuclides contained in 
the COM kidney stones were determined by high-resolution γ-ray 
spectrometry using a Canberra high-purity Ge detector (HPGe).

Results and Discussion
Representative morphology and aggregations of COM micro-

crystals comprising human kidney stones from Greece, as recorded 
by SEM, are shown for one sample in Figure 1. In vitro studies have 
shown that carboxylate-rich urinary macromolecules, as well as an-
ionic molecules, can serve as adhesives that stimulate the aggregation 
of COM crystals [26]. The powder XRD patterns of all three samples 
disclosed characteristic peaks corresponding to COM [27,28] where-
as the FTIR spectra included characteristic bands in the region be-
tween 4000-450 cm-1 attributable to the vibrations of O–C–O, C–O 
and C=O, at 781, 1316 and 1621 cm-1, arising from oxalates of COM 
[29,30] (Figure 2). All the above bulk data confirmed that the exam-

spectrometer involves a Rh-anode side-window low power X-ray 
tube (50 W, 50 kV maximum high voltage, 75 μm Be window) 
encompasses a Si–PiN diode X-ray detector (500 μm nominal crystal 
thickness, energy resolution of about 165 eV (FWHM) at Mn-Kα). 
For this study, the X-ray tube was functioned at 40 kV with hard 
filtering (i.e., Ni: 42.5 mg/cm2, V: 33.0 mg/cm2) to improve peak-to-
background ratio for the determination of metallic trace elements. 
Quantitative analysis was based on elemental calibration factors 
obtained experimentally using a set of thin mono-elemental targets 
with endorsed areal density. Thin pellets of a 1.3 cm diameter each 
were prepared by compressing the homogenized sample powder 
using a 5 tonnes hydraulic press.

Stable carbon and oxygen isotopes were measured by Isotope 
Ratio Mass Spectrometry/IRMS (Thermo Scientific Delta V Plus 
equipped with a FlashEA 1112 elemental analyser). For evaluating 
the δ13C and δ18O values of the studied kidney stones, 150-200 mg 
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Figure 2: Powder-XRD pattern (upper) and FTIR spectrum (lower) of COM kidney stones from the present study.
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existence of Br (av. 4 ppm) in the studied kidney stones, but the role 
of Br in calcium oxalate stone formation needs further investigation 
[16]. Iron and copper were present in all examined samples, with 
a maximum concentration of 136 ppm and 17 ppm, respectively 
(av. 132 and 15 ppm). Beans, meats and water are the main source 
of Fe, whereas green foods, meats, flour and milk products are 
rich in Cu [11]. The role of Fe in stone formation has not been 
elucidated completely. According to Muñoz, et al. [32], ferric ions 
affect the development of calcium oxalate stones by forming stable 
chemical interactions with the oxalate ions on their crystal surface. 
Nevertheless, Meyer, et al. [33] reported that Fe does not influence 
calcium oxalate crystal growth. The relative low concentration of Cu 
compared to the global average could be related to its low excretion 

ined biominerals belong to the COM type of kidney stones. XRF anal-
ysis (Figure 3) revealed the presence of essential biometals (Ca, Fe, Cu, 
Zn) within the stones, as well as potentially toxic metals, alkali earth 
metals and halogens (Pb, Sr, Br). The presence of Au L-characteristic 
X-rays in the XRF spectrum is attributable to contamination by the 
XRF spectrometer component materials, namely the X-ray detector 
(contact electrode). Calcium was found to be the major nonorganic 
constituent in all kidney stones (max. ca. 21.4 wt.%; av. ca. 21 wt.%).

Dairy and milk products, eggs, water and tea, amongst others, 
influences Ca content in humans [11]. Strontium (max. 35 ppm; 
av. 34 ppm) might substitute for Ca due to its valence and similar 
ionic radius [31]. The precipitation of bromide salts could explain the 
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Figure 3: Representative XRF spectrum concerning the COM kidney stones from Greece. The presence of Au L-characteristic X-rays is due to interference by 
the XRF spectrometer materials, namely the X-ray detector (contact electrode).
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Figure 4: Average concentration of elements in calcium oxalate kidney stones (average of global values from the literature [8-11,13,14,16-23] and average of 
Greece from the present study).
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from other studies [38,39]. These low values could be attributable 
to remaining organic material trapped between the calcium oxalate 
crystals (Figure 1). The isotopic composition of carbon reflects the 
dietary habits of the patients. From the δ13C values the kidney stones 
are enriched in the light isotope 12C. In a previous study, it was showed 
that biogenic calcium oxalate was enriched in the light isotope 12C 
compared to geological calcium oxalate which was enriched in the heavy 
isotope 13C [40]. DeNiro and Epstein [41] and Jim, et al. [42] were able 
to determine the influence of various food animals (pigs and rats) in the 
isotopic composition of carbon. However, the accurate determination 
of food influence in the isotopic composition of humans is difficult to 
establish because of the variety of dietary habits. Likewise, the isotopic 
composition of oxygen reflects the living geographical location of the 
patients. Dotsika, et al. [43] showed that δ18O values around -7.5‰ 
PDB are typical values corresponding to areas near the sea.

Here we reveal for the first time using high-resolution γ-ray 
spectrometry that the kidney stones of urolithiasis patients may 
contain radioactive isotopes. Natural radionuclides such as 214Pb 
(475 Bq/Kg) and 214Bi (375 Bq/Kg) due to 238U- series and 40K (4 Bq/
Kg) were determined (Figure 6). This also reveals that traces of U are 
present in the kidney stones. Finally, it is noticeable that artificial 
radionuclides such as 137Cs (arising from nuclear accidents including 
Chernobyl) were not detected.

Conclusions
The present study characterized calcium oxalate monohydrate 

human kidney stones from Greece by means of microscopic, 
diffraction and spectroscopic techniques (SEM-EDS, XRD, FTIR), 
as well as by XRF, IRMS and high-resolution γ-ray spectrometry 
techniques, to elucidate their chemical and isotopic composition. 
XRF analysis indicated that Ca is the principal metal in the COM 
aggregates, along with Zn, Pb and Fe. According to IRMS results, 
all kidney stones showed a similar δ13C signature (average δ13C ca. 
-25.4‰ PDB) which is rather low compared to values reported in the 
literature, whereas the δ18O values were found to have an average of 
ca. -7.31‰ PDB. Concerning radioactive isotopes, γ-ray spectrometry 
revealed the existence of 214Pb and 214Bi, due to 238U- series, and also 
a detectable amount of 40K. From these results, we can conclude that 
the examined Greek kidney stones are enriched in metals essential for 
the normal functioning of the body such as Zn (max. 214 ppm; av. 
204 ppm), but they also contain excess harmful elements such as Pb 
(max. 149 ppm; av. 136 ppm) and traces of U. This might be related to 
a potentially toxic diet and/or environmental pollution.
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in urine [14]. In addition, Zn (max. 214 ppm; av. 204 ppm) was found 
to occur in concentrations slightly higher than the global average 
(Figure 4). Similar to Sr, Zn can substitute for Ca in the crystal lattice 
of calcium oxalate stones [14,34]. The presence of Zn could also be 
associated with levels of atmospheric pollution [35]. In comparison to 
other geographic areas around the world, these Greek kidney stones 
contained comparatively high amounts of Zn and Fe, and less Cu 
(max. 17 ppm; av. 15 ppm), as illustrated in Figure 5.

It is evident that the kidney stones examined here are highly 
enriched in potentially toxic metals such as Pb, as compared to the 
global average (Figure 4). The presence of Pb (max. 149 ppm; av. 136 
ppm) may be natural and/or industrial, as well as unexpected (e.g., 
home-made wine [36]), whereas high concentrations of Pb are found 
to be related to Ca-containing stones rather than organic phases [14]. 
It is notable that no concentrations of As were observed, even though 
high As concentrations have been observed in other biominerals such 
as cholesterol gallstones from England and Greece [37].

The carbon and oxygen stable isotopic composition of the kidney 
stones was found to be in the same range. The average δ13C and δ18O 
values of the samples were calculated at -25.4‰ PDB and ca. -7.31‰ 
PDB, respectively. The δ13C values are low compared with findings 

         

Figure 5: Ternary plot showing the main heavy metal (Fe, Cu, Zn) 
composition of calcium oxalate kidney stones from different countries of the 
world ([8-11,13,14,16-23] and Greece from the present study).

         

Figure 6: Representative HR γ-ray spectrum, indicating natural radioactivity, concerning the studied COM kidney stones from Greece.
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