
International Journal of

Brain Disorders and Treatment
Review Article: Open Access

C l i n M e d
International Library

Citation: Lu S, Wang F, Huang JH (2016) Pathological Changes of Astrocytes under 
Seizure. Int J Brain Disord Treat 2:008
Received: December 14, 2015: Accepted: January 07, 2016: Published: January 09, 2016
Copyright: © 2016 Lu S, et al. This is an open-access article distributed under the terms of 
the Creative Commons Attribution License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and source are credited.

Lu, et al. Int J Brain Disord Treat 2016, 2:008

ISSN: 2469-5866
Volume 2 | Issue 1

Pathological Changes of Astrocytes under Seizure
Shanshan Lu1, Fushun Wang1,2,3* and Jason H. Huang3*
1Department of Psychology, Nanjing University of Chinese Medicine, China
2Department of Neurosurgery, University of Rochester, USA
3Department of Neurosurgery, Baylor Scott & White Health, USA

*Corresponding author: Fushun Wang and Jason H. Huang, Department of Neurosurgery, Baylor Scott & White 
Health, Temple, Texas 76508, USA, E-mail: fushun_wang@urmc.rochester.edu, jhuang@sw.org

Introduction
Epilepsy is a common chronic neurologic disorder affecting at 

least 50 million people [1,2], or more than 1% of the population 
worldwide [3-5]. Epileptic seizures are uncontrolled sudden attacks 
of a non-convulsive or convulsive nature associated with intensive 
neuronal firing. Spatially restricted foci in seizure brain can often 
be identified for epilepsies acquired after tumors, head trauma, or 
other severe focal brain, insults brain [6]. The cellular or molecular 
mechanisms underlying epileptic form activity have not been fully 
understood, but the contributions of astrocytic cells have been 
suggested by many studies.

Astrocytes are the most abundant glial cell type in the brain [7], 
which are characterized by leaflet-like processes and very irregularly 
shaped cell bodies, and cover almost all excitatory synapses in the 
brain [7,8]. Historically, glial cells were only thought to provide 
neurons with only metabolic and physical supports, to control the 
ionic homeostasis, and control the neuronal excitability through 
K+ buffering, and serve as the primary energy source for neurons 

[9,10]. Current research has expanded their function to important 
homeostatic and neuronal modulatory functions [11]. Astrocytes 
are involved in regulating ion homeostasis, maintenance of the 
blood brain barrier (BBB) function, metabolism of amino acid 
neurotransmitter, as well as nutrient and energy support for neurons 
[12]. Our recent reports demonstrated that astrocytes could actively 
regulate these processes with intracellular Ca2+ wave regulated 
signaling pathways [13,14]. The present review summarized the 
roles of reactive astrocytes in the development and progression of 
epileptic seizures, and discussed the relevance of calcium signaling in 
astrocytes to therapeutic management of the disease.

Astrogliosis after Brain Injury
Almost all traumatic brain injury (TBI), including prolonged seizures, 

results in reactive gliosis (astrogliosis), which are characterized by severe 
biochemical and morphological changes of pre-existing astrocytes and 
also new astrocyte generation. These astrocytes constitute a dense scar 
tissue that has been suggested to separate the injured tissue from its 
surroundings and demarcate the lesion area. Experimental ablation of 
astrocytes after TBI results in larger lesions, worse demyelination, local 
tissue disruption, and exacerbated neuron death. Activated astrocytes is 
beneficial in that they produce a barrier against the spread of neurotoxicity 
and prevent excitatory amino acid induced cell death [15]. The glial scar 
consists predominately of microglia, reactive astrocytes, and extracellular 
matrix molecules, such as chondroitin sulfate proteoglycans. The reactive 
astrocytes provide metabolic and tropic support to prevent secondary 
degeneration. In addition, astrocytes provide tropic support at the injury 
site which promotes the survival of nearby neurons. Though astroglial 
scars are essential for wound repair, they also interfere with axonal 
regrowth [16]. Their effects of inhibiting axon regrowth have been 
studied and described in considerable mechanistic and descriptive detail. 
For instance, it was found that the astrocytes are oriented perpendicular 
to lesions during scar border formation, and they quantifiably reorient to 
become more or less parallel to the lesion as scar formation progresses. 
And it is found that the initial perpendicular orientation of the elongated 
astrocytes appear remarkably similar to that of palisading astrocytes 
perpendicular to cortical lesions after TBI and implicated in post TBI 
epileptic foci [17]. In addition, the mechanisms of glial scar inducing 
seizure are also possibly due to astrogliosis, with its ability of K+ buffering 
and neurotransmitter clear up decreased.
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Cytokines Released by Reactive Astrocytes
Although glial scar formation has been recognized for over 120 

years, fundamental aspects of the cellular mechanisms, molecular 
regulation, and adaptive function underlying astrogliosis remain 
poorly understood [16]. Lesion-derived diffusible inflammatory 
factors such as cytokines, growth factors might be involved, for 
signaling mechanisms that determine astrogliosis have for some 
time been associated with penetrating CNS lesions that disrupt 
the BBB, instead of CNS insults where BBB function is preserved; 
and astrogliosis varies according to the distance from lesions [16]. 
Dysfunction of the BBB is a hallmark of brain insults and usually 
surrounds the core lesion. Focal epilepsy typically arises either within 
or adjacent to a cortical lesion [18].

Astrocytes can produce many pro- and anti-inflammatory 
molecules and have dynamic functions. The production of TGF-β 
and TNF-α by astrocytes can lead to detrimental effects depending 
on the receptors activated and expression timing [19]. TGF-βs play 
a critical role in the intercellular communication, and are involved 
in embryogenesis, cell growth, would healing, morphogenesis, and 
apoptosis in a wide variety of cells [18]. TGF-β1 expression is up-
regulated in the brains suffering from Alzheimer’s disease, stroke, 
multiple sclerosis, tumor or traumas. TGF-βs have also been found 
to be elevated in the cerebro-spinal fluid (CSF) of patients with brain 
injury [20]. The preferentially uptake of serum albumin by glial cells 
within hours following brain injury in prior to the seizure development 
[21], raised the hypothesis that glial functions and dysfunctions play 
a critical role in the epileptic generation [18]. Aronica et al further 
reported that the up-regulated expression of TGF-β in astrocytes 
from the hippocampus of SE-experienced rats [22].

Multiple inflammatory factors induced by pathologically TBI 
induced changes have been described, for example, growth factors 
such as TNF-α, TGF-β can induce changes in neuronal calcium 
homeostasis. The release of TNF-α, TGF-β could be released by 
astrocytes in responses to excitotoxic injection. The epileptic brain 
can also be induced by astrocytic dys-regulation of the vascular 
system. The up-regulation or induction of IL-1β, complement 
components, and many other inflammatory factors within 
perivascular astrocytes, may have dramatic effects on the vascular 
system leading to disruption of the BBB [23]. Recent studies from 
several laboratories confirmed the role of vascular pathology in the 
epileptic development and demonstrated a critical role for astrocytes 
in epilepsy. Mechanical stimulation under pathological conditions 
could provide the injured CNS with impaired domain, mass effects, 
swelling, or tissue hypertrophy [24].

Reactive astrocytes are characterized by up-regulation of 
glial fibrillary acidic protein (GFAP) expression and significant 

hypertrophy of cell bodies and processes. Interestingly, the severity 
of astrocygliosis is often a predictor of post TBI seizure, and intra-
operative recordings have found that post TBI seizures and temporal 
lobe epilepsy are often initiated in, or immediately adjacent to glial 
scar tissue (McKhann 2000). Our previous studies found that a 
marked increase in overlap of processes between adjacent astrocytes 
after brain injury (Figure 1). There are two distinct types of reactive 
astrocytes in animals with focal epilepsy: hypertropic astrocytes, 
which located just beyond the annular sector occupied by palisading 
astrocytes; and palisading astrocytes, which immediately surround 
the injury site, whose processes form a halo around the lesion with 
striking radial orientation. The hypertropic astrocytes plays an 
important role in pathogenesis of seizures by releasing the cytokines, 
and also exert a continued deleterious effect on tissue [25]. Palisading 
astrocytes exhibited a complete loss of individual domains and 
appeared to form a physical barrier separating the lesion from the 
surrounding cortical tissue. Astrocytes are possibly organized in 
non-overlapping domains, and the loss of domain due to astrocytic 
structure changes are paralleled by functional changes, such as 
expression levels of glutamine synthetase and glutamate transporter.

Astrocytic Modulation of Glutamate
The astrocytic function of housekeeping is to maintain a low 

concentration of extracellular glutamate and prevent excitotoxicity. 
Astrocytic uptake of glutamate terminates the effects of glutamate 
as a neurotransmitter [26,27]. And it is commonly accepted that 
GLT-1 transporters (excitatory amino acid transporter-2/EAAT2) 
in astrocytes play a large role in glutamate uptake. High affinity 
glutamate transporters, GLAST1 and GLT1 subtype, are enriched 
in astrocytic processes, and play the predominant role for glutamate 
clearance in the brain. Glutamate transporting is an electrogenic and 
energy demanding process, with one glutamate being co-transported 
with three Na+. And then glutamate is converted to glutamine via 
an ATP-consuming process, catalyzed by a glutamine synthetase, 
an astrocyte-specific enzyme, in the astrocytes. Glutamine is 
subsequently released to fuel the neurons and recycled into glutamate 
for glutamatergic neurotransmission. Glutamine synthetase (GS) 
plays a critical role in the glutamate metabolism [26], and glutamine 
synthetase has been shown to be up-regulated in reactive astrocytes. 
But it appears to be reduced in the epileptic hippocampus, indicating 
potential changes in the astrocytic transporters. Similiar change of 
glutamate transporters have similarly been shown to be reduced 
in the epileptic hippocampus [28], which might be due to Na+, K+-
ATPase impairment affected by high extracellular K+.

It is now reported that peri-synaptic astrocyte may detect spillout 
of glutamate and other substances from active synapses under seizures 
and respond structurally by modifying and extending their processes. 

Figure 1:  Loss of astrocytic domain organization after brain injury.

Left: astrocyte in normal conditions; Right: new astrocytes and normal astrocytes at the glial scar mixed together, demonstrating loss of the domain organization, 
modified from Oberheim et al [17]. Green, GFAP; red, DiD; scale bar = 20 μm.
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Astrocytes respond to synaptic neurotransmitters release with both 
Ca2+ waves and glio transmitter release that can further enhancing 
seizures, with important implications in the epileptic brain [29]. In 
addition, astrocytes can also modulate synaptic function and modulate 
inter-synaptic crosstalk via regulation of extracellular glutamate 
diffusion. In addition, glutamate can interact with mGLuR to induce 
astroglial cell swelling by modulating intracellular Ca2+, which can be 
detected simultaneously with changes in cell volume. Expressions of 
the EAAT2 transporters are significantly decreased in CA1 region in 
the sclerotic human hippocampus. In addition, sclerotic brain tissues 
removed during epilepsy surgery are characterized by down-regulation 
of glutamate synthetase in astrocytes [30]. The glutamate cycle is the 
major way to remove released glutamate from extracellular space. 
Following its synaptic release from the glutamatergic neuron terminals, 
glutamate is transported into astrocytes where it is converted into 
glutamine by glutamine synthase; glutamine is exported and taken up 
by neurons, where it is converted back to glutamate by mitochondrial 
glutaminase. Indeed, glutamate-glutamine cycling appears to be slowed 
in sclerotic hippocampus removed during epilepsy surgery [31]. With 
this process slowing down, intracellular glutamate might be increased 
and released into extracellular space, and astrocytic glutamate signaling 
might be enhanced. There is no question that glutamate can act as a key 
transmitter of bidirectional communication between astrocytes and 
neurons, and many studies have pointed out that astrocytes can release 
glutamate. Previous studies in our lab suggested the role of astrocytes in 
initiation, maintenance and spread of epileptiform activities by astrocytic 
glutamate release (Figure 2) [32]. Synchronized population spikes 
are key concomitants to seizure. Some studies have indicated multi-
synaptic excitatory pathways can trigger synchronized burst activity in 
picrotoxin (GABAA receptor blocker)-induced seizure activity, while 
some other evidence pointed to the roles of both recurrent inhibition 
and gap-junction coupling. Studies in our lab suggested that an action-
independent source of glutamate can trigger local depolarization events 
and synchronized bursting activity.

Increase in [K+]O can Induce Paroxysmal Oscillation
It is found that K+ buffering is impaired in sclerotic tissue, by 

comparison of hippocampal slices obtained from patients without or 
with or mesial temporal sclerosis [33]. Impaired astrocytic K+ buffering 
is expected to result in slower K+ clearance, lower seizure threshold 
and thereby contributing to seizure generation. The concentration 
of extracellular K+ is an important factor that regulates the neuronal 
excitability in the neural network [9,10]. Extracellular K+ accumulation is 
considered to be a favorable condition for the seizure onset, and impaired 
K+ uptake by astrocytes might be the initiation of epileptiform activity 
in the hippocampus. It is estimated that the passage of a single action 
potential can trigger 1 mM transient increase in extracellular K+( [K+]o 
), above the ~3 mM resting level. Intensive neuronal stimulation causes 
nearly 5 mM an increase above the resting level. Peaks of 10-12 mM 
K+ can be reached during hyper-synchronous neuronal activities that 
characterized epileptic disorders [29,34]. Increased K+ due to intense 
neuronal firing discharges can depolarize neurons and facilitate the 
development of epileptiform discharges [35]. However, even though it 
is well established that the extracellular [K+]o concentration increases 
during seizure, but whether astrocytic buffering imparing is the primary 
seizure-eliciting factor remains unknown. Astrocytes play an essential 
role in maintenance of extracellular K+ at a level compatible with normal 
neuronal activity [11]. In vitro studies have shown that stimulation-
induced K+ increases are paralleled by K+ accumulation in astrocytes, 
suggesting the roles of astrocytes in K+ regulation [36]. The level of K+ was 
determined by K+ mediated currents, glial buffering and K+ pump [14]. 
Our studies also suggested that agonist induced Ca2+ wave can facilitate 
the extracellular K+ uptake (Figure 3) [13,14,37], but when either K+ 
pump or glial buffering failed to act normally, the K+ increase leads to 
paroxysmal bursting. In addition, with K+ buffering ability decreases, 
many other functions might also be affected, such as intracellular Cl- will 
also be increased. With intracellular Cl- increase, the inhibition pathway 
was impaired [38].
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Figure 2: Photolysis of caged Ca2+ (NP-EGTA) in an astrocyte elicits a local depolarization shift in the presence of 1 μM TTX. Upper panel: Sequence of pseudocolor 
images of an astrocyte loaded with NPEGTA/AM and fluo-4/AM. Delivery of UV pulses targeting the astrocyte elevates cytosolic Ca2+ and triggers a spontaneous 
depolarization shift. Scale bar, 20 μm; Lower panel: traces of astrocytic Ca2+ concentration and field potential, and depolarization shift. Modified from Tian et al. [32]
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Conclusion
Epilepsy is a common chronic neurologic disorder affecting ~1% 

of the population with an estimated lifetime risk greater than 4%. In 
spite of optimal medical management, many patients with epilepsy 
remain medically refractory and suffer from debilitating seizures. 
Treatment options for these patients include new antiepileptic drugs, 
which target ion channels, such as Na+, Ca2+ channels or GABA 
receptors. These drugs are only effective in a small percentage of 
patients, not as effective as resective surgery which are effective 
in 60~80% of patients. So far there are few treatments targeting 
astrocytes, even though many studies pointed to astrocytic cells. 
Historically, astrocytes were thought to provide only physical and 
metabolic support for neurons, serving as the primary energy source 
for neurons and maintaining the water and ionic homeostasis and 
buffering K+. In addition, it is now clear that astrocyte can release of 
gliotransmitters in response to synaptic neurotransmitters induced 
Ca2+ waves and that in turn can further influence synaptic activity, 
with important implications in the epileptic brain [29]. Astrocytes 
play a critical role in glutamate uptake, mostly through the GlT-
1 transporter, with assistance by additional uptake via the EAAT1 
transporters. Glutamine synthetase plays a key role in the metabolism 
of uptaken glutamate. In addition, the major housekeeping functions 
of astrocytes include the maintenance of extracellular K+ homeostasis 
[37]. Some investigators reported changes in the pathological 
changes of glial cells in epileptic scar tissue, and these astrocytes 
failed to take K+ [39]. In conclusion, astrocytes are highly complex 
cells, and function to support the neuronal microenvironment and 
to modulate the excitability of neural networks under seizures [40]. 
Many properties of astrocytes also make them important targets for 
the developing field of treatment of epilepsy.
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