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Abstract
The cerebellum is known to participate in motor functions, 
but the role of the histaminergic system, and specifically 
the H4 receptors, in its functions is still unclear. In the pre-
sent study, we investigated the effects of intravermis mi-
croinjections of an H4 receptor agonist (VUF-8430) on mice 
behavior undergoing a rotarod (Experiment 1) and open 
field (Experiment 2) test. The cerebellar vermis of male 
mice was implanted with a single guide cannula. All experi-
ments were performed on two consecutive days: exposure 
(R1- first day in the rotarod test or OF1- first day in the open 
field test), followed by re-exposure (R2- second day in the 
rotarod test or OF2- second day in the open field test) 24 h 
later. The animals received saline (SAL) or VUF (0.15 nmol; 
0.49 nmol; 1.48 nmol/0.1 μl) administered intravermis im-
mediately after R1 or OF1. The data were analyzed using 
one-way ANOVA and Duncan's post hoc test. In Experi-
ment 1, the drug led to a decrease of consolidation latency 
for the VUF 0.49 and VUF 1.48 groups compared to the 
control SAL group in R2. In Experiment 2, the VUF 1.48 
group had a significant increase in freezing time in the open 
field in OF2 compared to OF1. These results suggests that 
the H4 agonist VUF 8430 at its highest dose (1.48 nmol) im-
pairs memory consolidation in open field and rotarod tasks 
in mice (Graphical abstract).
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Introduction
The cerebellum has a role in regulating movement 

planning, accessing and sorting sensorial information 
to perform a specific action, and in motor learning [1]. 
Studies have shown that it also participates in non-
motor functions, such as cognitive and emotional pro-
cesses [2,3]. Popa, et al. [4] proposed that the cerebel-
lum’s role in motor and non-motor functions is related 
to a common way of information processing, suggesting 
that the cerebellar cortex has the capacity to establish 
connections between different sensorial signals.

The cerebellum also participates in the perception 
and recognition of emotional information, as well as 
in the experience and regulation of emotional states 
related to motor, cognitive and social behaviors, emo-
tional memory, pain, language and mood disorders [5]. 
Sacchetti, et al. [6] suggested an involvement of the 
cerebellum - more specifically the cerebellar vermis - 
in conditioned fear, demonstrating its role in aversive 
memory consolidation, inhibiting or facilitating motor 
activity through freezing or active avoidance behaviors.

The histaminergic system actively participates in 
cerebellum-mediated motor balance, coordination and 
emotional functions [7,8] and four types of receptors 
mediate the actions of the biological effects of hista-
mine, including H1, H2, H3 and H4 receptors [9,10]. The 

https://doi.org/10.23937/2690-3172/1710012
https://doi.org/10.23937/2690-3172/1710012
http://crossmark.crossref.org/dialog/?doi=/10.23937/2690-3172/1710012&domain=pdf


ISSN: 2690-3172DOI: 10.23937/2690-3172/1710012

Fernandes et al. Int J Cogn Behav 2021, 4:012 • Page 2 of 7 •

H4 receptors are expressed in hematopoietic cells, act-
ing on allergic and inflammatory processes [11]. How-
ever, recent studies using RNA messenger detection in 
the cerebellum, amygdala, corpus callosum, prefrontal 
cortex and thalamus, have reported a participation of 
these receptors in the central nervous system (CNS) 
both in humans [9] and mice [12]. A study by Sanna, et 
al. [13] was the first to describe the behavioural phe-
notype of H4 receptors-deficient mice and the results 
illustrated that these receptors modulates various neu-
rophysiological functions such as locomotor activity and 
anxiety, confirming the importance of the integrity and 
functionality of these receptors in the histaminergic 
regulation of neuronal functions.

The drug VUF 8430 has a high affinity for H4 recep-
tors and can be used as an important pharmacological 
tool in research [14]. In our laboratory, we demonstrat-
ed that VUF 8430 impaired emotional memory consoli-
dation in mice via the cerebellar vermis, regardless of 
whether the proposed activities were related to anxi-
ety, as in the elevated plus maze, or related to fear, as 
in an inhibitory avoidance task [15]. Furthermore, a 
decrease in protein expression in the cerebellar vermis 
was verified by CREB and phosphorylated CREB levels, 
which corroborates these deficits [16].

There are few studies of H4 receptors in the CNS, 
and our group was the first to investigate them in the 
cerebellum through different behavioral tests [15,17] 
to elucidate the neuronal processes modulated by H4 
receptors. Thus, the aim of the present study was to ad-
vance the understanding of functions of H4 receptors in 
the cerebellar vermis and its relationship on emotional 
memory consolidation and motor activity in mice ex-
posed and re-exposed to rotarod and open field tests.

Methods

Animals
The experimental subjects were 86 adult male Swiss 

mice (Federal University of São Carlos - UFSCar, SP, Bra-
zil), weighing 25-35 g, and maintained under a 12 h light 
cycle (lights on at 7:00 a.m.) in a controlled environment 
at a temperature of 23 ± 1°C and humidity of 50 ± 5%. 
All mice were naïve to behavioral tests at the beginning 
of the study. The experimental sessions were conduct-
ed during the light period of the cycle (8:00-12:00 h) to 
minimize the influence of the circadian rhythm on be-
havioral responses.

All procedures were approved by the Animal Ethics 
Commission of the Federal University of Sao Carlos (pro-
tocol 8336250515), which follows the standards of the 
Brazilian Neuroscience and Behavior Society (SBNeC), 
which are based on the US National Institutes of Health 
Guide for Care and Use of Laboratory Animals.

Drug
VUF 8430 (Sigma Chemical Co., St. Louis, MO, USA), 

an H4 receptor agonist, was dissolved in sterile 0.9% sa-
line solution (SAL). The VUF solution was microinjected 
at doses of 0.15, 0.49 and 1.48 nmol in a volume of 0.1 
μl. The doses were selected based on a previous study 
conducted by Fernandes, et al. [15]. The solutions were 
stored in coded tubes.

Surgery and microinjection
Mice received a general anesthesia with ketamine 

hydrochloride (100 mg/kg, IP) and xylazine (10 mg/
kg, IP) and were then treated with local anesthesia on 
the scalp (3% lidocaine with norepinephrine; 1:50.000) 
and placed in a stereotaxic instrument. The cerebellar 
vermis of the mice was implanted with a single 7-mm 
guide cannula (25-gauge), according to the following 
coordinates from the mouse brain atlas of Franklin and 
Paxinos [18]: 6.5 mm posterior to the Bregma; 0 mm 
lateral to the midline; and 2.0 mm ventral to the skull 
surface. The guide cannula was fixed to the skull using 
dental acrylic and jeweler’s screws. A dummy cannula 
(33-gauge) was inserted into the guide cannula to re-
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by recording the number of crossed quadrants and rear-
ings, respectively. The non-motor behavior was evaluat-
ed measuring the time spent in a central area from the 
apparatus, and the time of freezing during the test. The 
difference between OF1 and OF2 were indicative of the 
modulation of learning consolidation [22]. At the end of 
each session, the floor and walls of the apparatus were 
cleaned with 5% ethanol.

Histological analysis
At the end of testing, the animals received an an-

esthetic overdose, followed by a 0.1 μl infusion of 1% 
methylene blue according to the microinjection proce-
dure. The injection sites were verified histologically ac-
cording to the atlas of Franklin and Paxinos [18]. Ani-
mals with injection sites outside the cerebellar vermis 
were excluded from the study. Histological analysis 
confirmed that a total of 86 mice exhibited accurate 
positioning of the cannula placements in the cerebellar 
dorsal vermis, particularly at coordinates 6.24 and 6:36. 
The sample sizes of the different experiments cohorts 
were as follows:

Experiment 1: SAL (n = 10), VUF 0.15 nmol (n = 11), 
VUF 0.49 nmol (n = 12) and VUF 1.48 nmol (n =11); Ex-
periment 2: SAL (n = 10), VUF 0.15 nmol (n = 10), VUF 
0.49 nmol (n = 11) and VUF 1.48 nmol (n =11).

Statistical analysis
All data passed the tests of normality and variability, 

and all the results were analyzed using Levene's tests 
for homogeneity of variance. The data were analyzed 
using a one-way ANOVA. Differences indicated by sig-
nificant F values were further verified by post hoc Dun-
can's multiple range tests. In all cases, p < 0.05 was con-
sidered significant.

Results

Experiment 1
Effects of intravermis cerebellar microinjections of 

SAL or VUF-8430 (0.15 nmol, 0.49 nmol or 1.48 nmol) 
on motor learning consolidation in mice exposed (R1) 
and re-exposed (R2) to a rotarod test.

Forty-four animals had an accurate cannula place-
ment and were included in Experiment 1. The one-way 
ANOVA indicated that were no significant differences 
between the animals before the microinjections, which 
allowed the use of R1 as a pool.

The statistical analysis revealed a difference between 
the testing days (R1 and R2) [F (3,40) = 3.51, p < 0.01] 
and Duncan’s test indicated a significant increase in the 
consolidation latency compared to R1 results (pool) 
for animals that received saline (SAL). Moreover, a sig-
nificant difference was detected between the groups 
on R2 (p < 0.01), and the post hoc analysis indicated a 
decrease in consolidation latency for the VUF 0.49 and 
VUF 1.48 groups compared to the control group that re-

duce the incidence of occlusion. Postoperative analge-
sia was provided for 3 days by adding acetaminophen 
(200 mg/ml) to the drinking water at a ratio of 0.2 ml 
acetaminophen to 250 ml water for a final concentra-
tion of 0.16 mg/ml.

After four days of recovery from the surgery, saline 
or drug solutions were infused into the cerebellar ver-
mis using a microinjection unit (33-gauge cannula; In-
sight Equipamentos Científicos Ltda, Brazil), which was 
attached to a 5 μl Hamilton micro syringe via polyethyl-
ene tubing, and an infusion pump that was programmed 
to deliver a volume of 0.1 μl over 60 s.

Apparatus and experimental procedures
Rotarod: The automated rotarod apparatus consists 

of an acrylic box (450 x 540 x 350 mm) with an 8 cm 
diameter cylinder, transversely installed approximately 
20 cm from the floor of the equipment, kept rotating 
through a motor. The box is divided into five bays, ap-
proximately 3 cm wide, allowing the analysis of five ani-
mals simultaneously. A sensor located on the floor of 
the device measures the falling latency of the animals 
automatically.

The rotarod test was performed on two consecu-
tive days (R1 and R2). The mice walked over a rotating 
cylinder to avoid falling. On day one (R1), the animals 
were initially kept on the rotarod for 5 minutes, allow-
ing habituation to the apparatus. Fifteen minutes after 
habituation, the mice were exposed to the rotarod at an 
accelerating speed (8 to 16 r.p.m.) until they fell or up to 
5 minutes [19] to assess motor coordination and motor 
learning. The accelerated rotarod test was performed 
to evaluate motor coordination and motor learning by 
measuring latency to falling off a rod that was rotated 
with increasing velocity [20]. After the end of R1, the an-
imals received the pharmacological treatment. On R2, 
the animals were re-exposed at the same experimental 
conditions as R1, without the microinjections, to char-
acterize motor learning. The increase or decrease of the 
fall latency were indicative of improvement or reduc-
tion on motor learning, respectively. The apparatus was 
cleaned with 5% ethanol between each animal.

Open field: The open field apparatus consisted of a 
wood box (52.5 cm x 52.5 cm) with lateral walls (27.5 
cm), and a base divided in 25 quadrants. This test allows 
the simultaneous evaluation of motor and anxiety-like 
behaviors [21].

The open field test was performed on two consecu-
tive days (OF1 and OF2), on which the animal was care-
fully placed at the center of the open field, and free 
exploration was allowed for 5 minutes. After the end 
of OF1, the animals received the pharmacological treat-
ment according to the microinjection procedure previ-
ously described.

The motor and exploratory behaviors were assessed 
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Forty-two animals had an accurate cannula place-
ment and were included in Experiment 2. The one-way 
ANOVA indicated that were no significant differences 
between the animals before the microinjections, which 
allowed the use of OF1 as a pool.

Statistical analysis showed a difference between 
testing days (OF1 and OF2) for the time that the mice 

ceived SAL (Figure 1).

Experiment 2
Effects of intravermis cerebellar microinjections of 

SAL or VUF-8430 (0.15 nmol, 0.49 nmol or 1.48 nmol) 
on learning consolidation in mice exposed (OF1) and re- 
exposed (OF2) to an open field test.
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Figure 1: Effects of intravermis cerebellar microinjections of SAL or VUF-8430 (0.15 nmol, 0.49 nmol, 1.48 nmol) on memory 
consolidation of motor learning on rotarod. Mean ± SEM for the fall latency [seconds (s)]. Groups: SAL (n = 10), VUF 0.15 
nmol (n = 11), VUF 0.49 nmol (n = 12) and VUF 1.48 nmol (n =11). * p < 0.05 compared to R1 (pool); # p < 0.05 compared to 
R2 control group (SAL). One-way ANOVA and Duncan’s post hoc test were used for statistical analyses.
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Figure 2: Effects of intravermis cerebellar microinjections of SAL or VUF-8430 (0.15 nmol, 0.49 nmol, 1.48 nmol) on the open 
field test. Mean ± SEM for the time of freezing in seconds (s). Groups: SAL (n = 10), VUF 0.15 nmol (n = 10), VUF 0.49 nmol 
(n = 11) and VUF 1.48 nmol (n = 11). * p < 0.05 compared to OF1 (pool). One-way ANOVA and Duncan’s post hoc test were 
used for statistical analyses.
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planning and initiating of movement [26]. In the pre-
sent study, when we used an H4 agonist microinjected 
in the cerebellar vermis in mice, there was a deficit in 
the consolidation of motor learning in the animals in the 
rotarod test. Coffman, et al. [27] suggested that there 
is a site in the cerebellar vermis where the cortical mo-
tor areas can influence the descending control systems 
involved in the regulation of whole-body posture and 
locomotion and this could explain the different results 
obtained in other cerebellum regions.

As observed, the histaminergic neural system is in-
volved in the regulation of locomotor activity. However, 
studies investigating the effects of HA on rodent motor 
control have different results. While some studies have 
shown that HA produces a biphasic effect on sponta-
neous locomotor activity in rats, with initial transient 
hypoactivity followed by hyperactivity, and that the 
reduction of HA in knockout animals to histaminergic 
receptors causes a decrease in locomotor activity, dem-
onstrating a facilitating role of this neurotransmitter in 
motor activity [28,29]; other studies involving i.c.v. HA 
microinjections observed only the hypoactivity [30,31]. 
Galeotti, et al. [19] suggest a significant deficit in the 
involvement of motor coordination in mice undergo-
ing the rotarod test when the highest dose of the H4 
agonist VUF 8430 was used, corroborating the results 
obtained in the present study.

In Experiment 2, the intravermis microinjections of 
VUF 8430 did not result in significant differences in lo-
comotor and exploratory activity during re-exposure to 
the open field, or on the amount of time spent on the 
central and peripheral areas of the apparatus. However, 
the 1.48 nmol dose significantly increased the immo-
bility time of the animals re-exposed to the open field 
(OF2) when compared to the first day of testing (OF1). 
These data may indicate an impairment via cerebellar 
H4 receptors in the memory consolidation on re-expo-
sure to the apparatus.

Escaping, fighting or freezing behaviors are respons-
es classically related to aversive stimuli [32], and the de-
termination of the defensive mode is dependent on dif-
ferent factors, such as the physical and temporal prox-
imity of the threat and familiarity with absence or pres-

spent frozen at the open field [F
(3,38) = 2.94, p < 0.05]. 

Duncan’s post hoc analysis revealed that the group that 
received the higher dose of VUF-8430 (1.48 nmol) had a 
significant increase in immobility time in the open field 
compared to OF1 results (pool; p < 0.05; Figure 2). A 
one-way ANOVA indicated that there was no difference 
between the groups (OF1 and OF2; Table 1) in the num-
ber of crossed quadrants [F

(3,38) = 0.47, p > 0.05], number 
of rearings [F

(3,38) = 0.84, p > 0.05)] or time in the central 
area [F

(3,38) = 1.26, p > 0.05].

Discussion
The results of Experiment 1 demonstrated that the 

microinjections in the cerebellar vermis of the histamin-
ergic H4 receptor agonist VUF 8430 at the doses of 0.49 
nmol and 1.48 nmol decreased the latency of the ani-
mals undergoing the rotarod test, indicating that these 
doses impaired the consolidation of motor learning in 
mice.

Classically, the cerebellum participates in the neces-
sary plastic changes for motor learning, and cerebellar 
ablation results in an inability to acquire certain adap-
tive behavior [23]. The cerebellum has a network of 
regulatory pathways for correct control of a given mo-
tor act, comparing, modulating and adjusting the stimuli 
through its projections to cortical motor areas, contrib-
uting to the regulation and planning of movement as 
well as sensory acquisition and temporal organization 
[24]. Therefore, individuals with cerebellar injuries pre-
sent disturbances in the precision and coordination of 
the movements performed [1]. In the present study, we 
believe that the deficits found in the rotarod test after 
the drug microinjection into the cerebellar vermis might 
be related to the animals’ motor coordination since we 
did not observe deficits in mobility in the EPM [15].

Song, et al. [25] using the rotarod test, observed that 
the microinjection of histamine (HA) in the cerebellar in-
terpositus nucleus in rats improves motor performance, 
balance and coordination abilities, suggesting that hy-
pothalamic-cerebellar histaminergic projections can 
modulate the cerebellar circuit to ensure the accuracy 
of movements. In addition, HA excites neurons from 
the dentate nucleus in the cerebellum via H2 receptors, 
suggesting the involvement of these projections in the 

Table 1: Effects of intravermis cerebellar microinjections of VUF-8430 in mice exposed (OF1) and re-exposed (OF2) to the open 
field test.

Behaviour OF1  OF2
Pool SAL VUF 0.15 nmol VUF 0.49 nmol VUF 1.48 nmol

Crossed quadrants 185.83 ± 12.67 190.20 ± 30.41 150.80 ± 19.44 188.18 ± 31.24 163.27 ± 31.40
Number of readings 30.33 ± 2.92 39.90 ± 7.94 29.40 ± 6.65 26.55 ± 5.44 25.82 ± 5.38
Time in the central area 31.74 ± 3.41 27.20 ± 6.91 34.20 ± 8.20 22.48 ± 5.00 18.96 ± 3.12
Time of freezing 1.56 ± 0.77 4.60 ± 2.39 1.48 ± 0.82 5.47 ± 2.71 12.50 ± 3.71*

The data are presented as the mean values (± SEM). The number of crossed quadrants, number of rearings, time spent in the 
central area and time of freezing were measured at OF1 and OF2. One- way ANOVA did not show significant differences among 
groups at OF1, which allowed the use of OF1 as a pool. *: Significant difference between test days (OF1 and OF2) p < 0.05.
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studies is available in the literature. Thus, there is a 
need for further evidence to assist in guiding future in-
vestigations, elucidating the role of these receptors in 
the CNS, and making them potential therapeutic targets 
for diverse clinical manifestations, such as amnestic dis-
orders, since in both models used in the present study, 
the VUF 8430 at its highest dose (1.48 nmol), impaired 
learning. Hence, we suggest that the histaminergic neu-
ral system, via H4 receptors present in the cerebellar 
vermis, can modulate motor learning and emotional 
memory consolidation in mice, leading to behavioral 
adjustments as observed in this study.
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