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tion than others. In the following we consider the situa-
tion where an efficacious treatment is tolerable for the 
majority of subjects but can cause unacceptable harm 
to a subgroup. In case this subgroup could be identified 
and individuals could be classified accordingly, the drug 
could be safely administered by applying it only to sub-
jects not at risk of harm.

To give an idea of the type of harm we have in mind 
we use natalizumab in multiple sclerosis as an example 
[2]. This drug, an immunosuppressant, increases the risk 
of a rare brain infection called Progressive Multifocal 
Leukoencephalopathy (PML) that usually leads to death 
or severe disability [3]. There is no known biomarker by 
which one could separate patients at high or low risk of 
PML other than a John Cunningham Virus (JCV) infection 
which also increases the PML risk. Because the PML risk 
increases over time of exposure, treatment with natali-
zumab has to be stopped after 2 years. The medication 
is only accessible through a restricted distribution pro-
gram [4].

The decision to administer a drug only to a subgroup 
of patients instead of the broader population bears the 
risk to withhold an efficacious treatment from a sub-
group. Not personalizing the drug use for efficacy rea-
sons when it should be done risks to offer a subgroup 
of patients a non-efficacious treatment. If safety is a 
concern for a subgroup, one would offer a harmful drug 
to this subgroup if the drug would be given to all pa-
tients. Therefore the balance between false-positive 
and false-negative predictions is different when person-
alized medicine is concerned with efficacy or safety. In 
the latter case, preventing harm may have priority to 
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Introduction

Personalized or precision medicine is established in 
oncology and starts to become adopted in other thera-
peutic areas as well. Drug regulators have bought into 
the concept such that a good number of newly devel-
oped drugs obtained approval only for a subgroup of 
patients identifiable by a specific biomarker (see for ex-
ample) [1].

As it stands, personalized medicine currently focuses 
primarily on efficacy, i.e., on the identification of sub-
groups of patients that respond better to an interven-
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groups of patients have a higher risk of Symptomatic Intra-
cerebral Hemorrhage (SICH), the results of 4 prospective 
observational studies including 1966 acute stroke patients 
treated within 3 hours with alteplase have been analyzed 
[6]. No (numerical) SICH rates by subgroup are presented 
in the paper but a forest plot depicting the incidences of 
SICH for each subgroup. Surprisingly, the SICH rate of 6.4% 
from the National Institute of Neurological Disorders and 
Stroke (NINDS) study [7] is used as reference instead of 
the one obtained from the 4 studies which are 4.7% with a 
95% confidence interval of 3.8-5.9%. The paper concludes: 
“There was no statistically significant increase in the SICH 
rate in any of the five specified subgroups of patients (ad-
vanced age, NIHSS > 20, Hispanic ethnicity, diabetes and 
CHF)”.

Lumiracoxib related liver injury

Concerns over hepatoxicity have contributed to the 
withdrawal or non-approval of lumiracoxib which is effi-
cacious in osteoarthritis and acute pain. To identify ge-
netic markers able to select individuals at risk for devel-
oping drug induced liver injury a case-control genome 
- wide association study was conducted in 41 lumiracox-
ib treated patients with liver enzyme elevations above 
5 times Upper Limit of Normal (ULN) and 176 patients 
without liver injury [8] using DNA samples collected 
from the TARGET study [9]. Endpoints were time to liv-
er enzyme elevations above 5 times ULN. Fine mapping 
identified a strong association to a common HLA haplo-
type. HLA-DQA1*0102 had the best results in terms of 
negative predictive value (99%) and sensitivity (73.6%).

To further examine the performance characteristics 
of the marker, all remaining 4518 lumiracoxib treated 
patients from the TARGET study with DNA available 
who had given informed consent were genotyped for 
presence or absence of HLA-DQA1*0102. Kaplan-Meier 
(KM) estimates of the cumulative incidence of liver en-
zyme elevations were obtained for HLA-DQA1*0102 car-
riers and non-carriers and compared to estimates for all 
patients treated with lumiracoxib, ibuprofen or naprox-
en. As it turns out, the KM curve for lumiracoxib treated 
subjects who are DQA*0102 carriers is increasing much 
faster over time than the KMs for patients treated with 
the comparator drugs. The risk of non-carriers under lu-
miracoxib is similar to the risk in the overall population 
under the comparator treatments (Figure 1 in [8]). The 

the extent that it is desirable to identify individuals from 
the susceptible group at the expense of falsely identify-
ing some not belonging to it. In other words because the 
utility of predictive safety markers is to exclude patients 
at risk of harm, sensitivity is of greatest importance.

We present three examples from the literature that 
are concerned with finding subgroups of patients at 
high risk of unwanted effects, mainly to illustrate what 
has been done in this regard in the past. Then mainly 
two methods to identify subgroups will be described 
briefly, one based on significance tests and one on the 
Individual Treatment Effect (ITE) which is defined as the 
expected effect in an individual characterized by specif-
ic covariates. These considerations are then applied to 
the first of the three examples and contrasted with the 
results of the publication. In a small simulation study 
the performance of the methods will be investigated. 
Finally some conclusions are drawn on the applicability 
of subgroup selection in the context of drug safety.

Three Examples

Renal safety of contrast media

Contrast-Induced Nephropathy (CIN) is a serious 
complication of diagnostic and interventional proce-
dures. In [5] the risk of nephrotoxicity was compared 
under two contrast media, Isosmolar Iodixanol (IOCM) 
and a Low-Osmolar Medium (LOCM). Furthermore the 
authors set out to identify predictors of contrast induced 
nephropathy. An individual patient data meta-analy-
sis including 2727 patients from 16 double-blind, ran-
domized, controlled trials with stratification according 
to Chronic Kidney Disease (CKD) and Diabetes Mellitus 
(DM) was performed. Endpoints were increase in se-
rum Creatinine (Cr) and incidence of post-procedural 
contrast-induced nephropathy, defined as a rise of cre-
atinine by more than 0.5 mg/dl. The CIN rates by sub-
groups are shown in Table 1. The authors conclude that 
“Patient-related predictors of CIN were found to be CKD 
and CKD + DM, but not DM alone”. We get back to this 
conclusion in Section 4.

Risks of bleeding under alteplase

Even after approval of recombinant tissue plasmino-
gen activator for acute ischemic stroke concerns remained 
about the risk of bleedings. To analyze whether special sub-

Table 1: Number of patients with CIN over total number of patients by patient subgroups and contrast media from [5].

Population IOCM LOCM OR (95% CI) p-value
All 19/1382 47/1340 0.38 (0.22-0.66) < 0.001
CKD = Y 10/362 31/371 0.31 (0.15-0.65) 0.001
CKD = N 9/1020 16/969 0.53 (0.23-1.21) 0.16
CKD = Y, DM = Y 4/115 18/116 0.20 (0.06-0.65) 0.003
CKD = Y, DM = N 6/247 13/255 0.46 (0.17-1.24) 0.16
CKD = N, DM = Y 1/178 3/158 0.29 (0.03-2.84) 0.35
CKD = N, DM = N 8/842 13/811 0.59 (0.24-1.43) 0.28

CI = Confidence Interval; CKD = Chronic Kidney Disease; DM = Diabetes Mellitus; IOCM = Isomolar Contrast Media; LOCM = 
Low-Osmolar Contrast Media; OR = Odds Ratio; P-values are from Fisher’s exact test.
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subjects. If they are continuous (like age), subsets can 
be obtained by defining a threshold and assigning all 
subjects with values above the threshold to one subset 
and the rest to the other subset. Subgroups can then 
be formed by intersections of the subsets generated 
by covariates as shown for two covariates X1 and X2 in 
Figure 1 (see [10] for an overview). There are basically 
two ways to identify subgroups: First, to consider the 
treatment effect within each subgroup or to consider 
the excess effect in one subgroup relative to the effect 
in a reference subgroup, i.e., treatment by subgroup 
interactions. The first analysis can be done on the raw 

paper concludes: “The results presented here provide 
strong evidence that the HLA-DQA1*0102 allele would 
have clinical utility as a screening marker to exclude car-
riers from lumiracoxib treatment”.

Methodology for Subgroup Identification

Subgroups defined in terms of covariates

The most intuitive way to account for subgroups 
when analyzing clinical trials is to identify covariates po-
tentially predictive for a treatment effect. If these vari-
ables are binary (like gender) they define two subsets of 

Figure 1: Subgroups defined by the individual treatment effect in the case of two binary (upper diagram) or two numerical 
covariates (lower diagram). In either case only two subgroups are obtained.
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Figure 2: Subgroups defined by two binary (upper diagram) or two numerical covariates X1 and X2 with corresponding 
thresholds x1 and x2 (lower diagram).
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subgroups does not require data modeling. However, the 
approach can generate very large numbers of subgroups 
even for moderate numbers of covariates. It requires di-
chotomization of otherwise continuous covariates which 
can become problematic. If interactions rather than direct 
effects in subgroups are to be considered, modeling may 
be required. Basing decisions on tests for differences with-
in groups or interactions emphasizes statistical significance 
rather than relevance.

The approach using the ITE defines subgroups in terms 
of relevant expected outcomes rather than covariate re-
lated thresholds. It divides the covariance space in two 
subsets regardless of the number of covariates. However 
it may require modeling and lead to rather unintuitive re-
lationships between effects and covariates.

Reanalysis of the First Example

To illustrate the two concepts of subgrouping we re-
analyze the CIN rate data from [5] presented in Table 1. 
Though the data stem from 16 randomized trials, only 
summary data are reported in the paper.

Model fitting

For our analysis we fitted a saturated logistic model 
to the data. Let 1X , 2X  denote the indicator variables 
for CKD and DM, respectively, let Z  denote the treat-
ment indicator with  = 0Z  coding for IOCM and  = 1Z  for 
LOCM. Let ( ),  p z x  be the probability of CIN in a patient 
with covariates  = X x  treated with  = Z z . Then

( )( ) ( )1 1 2 2 1 1 2 1 1 2 2 1 1 2

prognostic effects predictive effects

logit ,  x  =  +  +  +  +  +  +  + p z x x x x x x x x zα β β γ δ η∈ ∈


      (1) 

The prognostic effects describe the dependence of 
the response under treatment  = 0Z  while the predic-
tive effects account for the additional impact of the co-
variates under  = 1Z .

We fitted model (1) to the learning data set in Table 
1 and obtained the results in Table 2. The odds ratios 
and confidence intervals are identical to those in Table 
3 of [5], however, the p-values differ since we took the 
results of the asymptotic tests from the logistic model 
rather than from Fisher’s exact test as was done in [5]. 
Nevertheless, the results are practically identical since 
the corresponding comparisons result in either very 
small or large p-values. Note that the comparison of pa-
tients with and without diabetes was not done in [5], 

data from each subgroup while the second may require 
modeling to define interactions.

Some authors prefer to consider interactions to 
identify subgroups over within subgroup comparisons 
[11,12]. However, they also acknowledge that interac-
tion tests can suffer from lack of sensitivity. For this rea-
son, interaction based methods may not be appropriate 
for safety analyses and will not be considered further.

Subgroups defined in terms of the individual treat-
ment effect

Another way to define subgroups utilizes the Individ-
ual Treatment Effect (ITE) which is defined as follows: 
For controlled studies, let ( ),  Y z x  be the outcome of a 
subject with covariates ( ) ( )1 1X = ,...,  = ,...,K KX X x x  under 
intervention { } = 0,  1Z z  ∈ . The individual treatment ef-
fect [13,14] is defined by

( ) ( ){ } ( ){ }x  = g 1,    g 0,  D E Y E Y−      x x

for some link function g (see [15]). Examples are

( )  = y yg  for normal/log-normal outcomes (e.g., lab 
values)

( ) ( ) = logit  = log
1  y

yy y  
 − 

g

for binary data (e.g., occurrence of adverse events)

Given the appropriate ITE one can set a threshold c 
to obtain a corresponding subgroup

( ) ( ){ } = ;   S c D c≤x x

An example for two covariates is shown in Figure 2. 
The threshold c reflects a clinically relevant effect to be 
defined by clinicians, regulators or policy makers.

Comparison of the two options

The aim of both approaches is to identify subgroups 
based on a classification rule. The first method uses sig-
nificance tests to achieve this goal; the second method 
does not consider significance at all but relevance of an 
expected effect, in our case a potentially severe side ef-
fect. The two options of defining subgroups have advan-
tages and disadvantages. The marginal thresholds used 
under the first approach are easy to interpret and the 
subgroups are defined in a straightforward manner based 
on the original data. Considering treatment effects within 

Table 2: Odds ratios of the risk of CIN under contrast medium 1 relative to medium 0, Odds ratios and confidence intervals are 
identical to those in Table 4 of [5], p-values differ from those of Fisher’s exact test which are presented in the paper.

Subgroup Events/patients OR (95% CI) p-value
All 66/2722 0.38 (0.22-0.66) 0.0005
CKD = Y
CKD = N

41/733
25/1989

0.31 (0.15-0.65)
0.53 (0.23-1.21)

0.0017
0.1301

DM = Y
DM = N

26/567
40/2155

0.29 (0.08-0.56)
0.52 (0.27-1.00)

0.0019
0.0511

CKD = Y, DM = Y
CKD = Y, DM = N
CKD = N, DM = Y
CKD = N, DM = N

22/231
19/502
4/336
21/1653

0.20 (0.06-0.60)
0.46 (0.17-1.24)
0.29 (0.03-2.84)
0.59 (0.24-1.43)

0.0043
0.1254
0.2885
0.2414
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Bagging the individualized treatment effect

The decision rule in the ITE based method depends 
solely on the point estimates of the odds ratios. One 
wonders how stable such a predictor is or whether it 
can be improved to reduce prediction error. Bagging (or 
bootstrap aggregating) predictors is a method for gen-
erating multiple versions of a predictor and aggregate 
them in the hope to obtain a better predictor. The ag-
gregation averages over the versions when predicting 
a numerical outcome and does a plurality vote when 
predicting a class. The multiple versions are formed by 
bootstrap replicates of the original dataset. If perturb-
ing the data set can cause significant changes in the pre-
dictor constructed, then bagging can improve accuracy 
[16].

In our case let ( ),  N z x  be the number of subjects 
with  = zZ  and  = X x  in the database and let ( ),  n z x  be 
the number of those subjects with CIN. For  = 1,..., ,b B  
we draw new random numbers ( )* ,  bn z x  from a bino-
mial distribution with parameters ( ) ( ),  / ,  n z N zx x  and 

( ),  N z x  and obtain the corresponding ITE estimates 
( )*ˆ

bD x . Then let

( ) ( )* *

1

1ˆ ˆ,   =   
B

b
b

P c I D c
B =

 ≤ ∑x x  		           (2)

Where [ ]I ⋅  denotes the indicator function. ( )*
0

ˆ ,  P cx  
is an estimator of the probability that a future subject 
with covariates 0x  will be assigned medium 1 correctly 
given the data from the learning set. A predictor of the 
most appropriate treatment for the subject is

( ) ( )*
0

0

ˆ1,  if P x , 0.5ˆ x ,
0,  otherwise

B
c

cφ
 > =  
  

i.e., the medium the majority of the bootstrap sam-
ples are voting for. For the example the predicted treat-
ment is given by ( )( )0

ˆ ,  log 0.5Bφ x . Besides serving as a 
predictor of the most appropriate treatment, ( )*ˆ ,  P cx  is 
also a measure of prediction accuracy.

In the example, the results from bagging confirm the 
results from the decision rule based on the point esti-
mates (see Table 4). This outcome is contradicting the 
conclusion of the original paper [5] which stated that 
only CKD and CKD + DM are predictors of CIN but not 
DM alone.

To illustrate that bagging will not always support the 
decision derived from the point estimate assume that 
instead of 3 just 2 out of 158 subjects with DM alone 

though the authors explicitly excluded DM from being 
predictive on its own.

Individual treatment effect

The ITE corresponding to model (1) is given by
( ) ( ){ } ( ){ } 1 1 2 2 1 1 2x  = logit 1,    logit 0,   =  +  +  + D p p x x x xδ η− ∈ ∈x x

Note that the ITE does not depend on prognostic ef-
fects and that

( ){ } ( ) ( )
( ) ( ) ( )

1,  1-  0,  
exp    = OR

1-  1,  0,  
p p

D
p p

  =
  

x x
x x

x x

is the odds ratio of the probability to experience CIN 
under medium 1 relative to medium 0 for a subject with 
covariates x. Let δ̂ , î  and η̂  be the Maximum Likeli-
hood (ML) estimators of δ , i  and η , respectively, then

( ) 1 1 2 2 1 1 2
ˆˆ ˆˆ ˆx    +  +  + D x x x xδ η= ∈ ∈

is the ML estimator of ( )xD . A predictor for the 
most appropriate treatment of a future patient with co-
variates 0x  is therefore 

( ) ( )0
0

ˆ1,  if D xˆ x ,
0,  otherwise

D
c

cφ
 ≤= 


For the CIN data we decide that medium 1 should be 
preferred over medium 0 when the observed reduction 
of CIN risk is 50% or more. In other words, medium 0 
should not be given to subjects when the CIN risk over 
medium 1 more than doubles relative to medium 1. A 
predictor for the best treatment is therefore given by 

( )( )0
ˆ x ,  log 0.5Dφ . This rule should be reasonable since 

the overall CIN risks are 3.5% for medium 0 and 1.4% 
for medium 1. According to this decision rule, all sub-
jects with DM or CKD or both should be given contrast 
medium 1.

Table 3: Simulation scenarios: n (x) is the number of subjects 
per treatment and OR(x) the odds ratio of the risk of harm under 
treatment 1 over treatment 0 for subjects with covariates x . 

( )Pr 0,  x  = 1  = 0.05Y    Independently of x. Scenario 2 differs only 
with respect to n ((0, 0)) = 1000 instead of 100 from scenario 1.

Scenario
1x 2x  ( )n x ( )OR x

1 1 1 100 2.0 
1 0 100 1.5
0 1 100 1.2
0 0 100 1.0

2 0 0 1000 1.0

Table 4: Predicted odds ratio and proportions of B = 1000 bootstrap samples leading to a preference of contrast medium 1 for a 
future subject with covariates 0x .

01x 02x  ( )0OR x ( )( )*
0

ˆ ,  log 0.5P x ( )( )0
ˆ ,  log 0.5Dφ x ( )( )0

ˆ ,  log 0.5Bφ x

1 1 0.2 0.977 1 1

1 0 0.46 0.546 1 1

0 1 0.29 0.623 1 1

0 0 0.59 0.342 0 0
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Concluding Remarks

The main motivation for this investigation was to 
extend the concept of personalized medicine to safety 
aspects of interventions. Instead of asking the ques-
tion which subjects experience high efficacy one is 
concerned about which subjects should not be given 
a treatment because of a high risk of harm. Examples 
from the literature have been presented some of which 
leave some open questions. The first one [5] does not 
report all analyses when drawing conclusions and may 
therefore have overlooked the impact of diabetes alone. 
The second [6] is not comparing subgroup results with 
overall results from the same set of studies but from an 
external one with a higher overall SICH rate. Could this 
alter the conclusions of the study, in particular the rele-
vance of diabetes for the occurrence of SICH? The most 
comprehensive and understandable report of a safety 
related subgroup analysis is provided by the third ex-
ample. The latter is selecting the marker by maximizing 
sensitivity and negative predictive value, not by consid-
ering tests and p-values.

One dataset has been discussed in some detail to 
point to the shortcomings of using significance tests 
within subgroups to define subgroups. Instead, a meth-
od based on the individual treatment effect is proposed 
that has some advantages over the testing approach. 
First, it is based on a relevant effect difference. This al-
lows defining what is considered too high a risk. This is 
not directly possible with significance tests which con-
trol the false positive rate but not the power or sensi-
tivity. In fact, as was said earlier, the main requirements 
for a method supposed to identify subjects at risk are 
high sensitivity. In this regard the new proposal is su-
perior at the expense of a somewhat higher false posi-
tive rate. This could result in withholding an otherwise 
safe and efficacious treatment from many subjects who 
could benefit. However, the false-positive rate could be 
reduced by increasing the sample size in the subgroup 
of the learning data where no harm is expected. This 
should be the largest patient group if the treatment is 
well tolerated for the majority of patients.

When bagging cannot reduce the prediction error, one 
would be inclined to follow the advice in [16] not to do it 
at all. However, ( )*

0
ˆ ,  P cx  provides information about the 

would have experienced CIN. This would result in an 
odds ratio of 0.44 which is less than 0.5 for the CIN risk 
of medium 1 vs. medium 0, but bagging would provide 

( ) ( )( )*ˆ 0,  1 ,  log 0.5  = 0.444P .

Simulations to Assess Method Performance

We compare the operating characteristics of the 
subgroup selection method based on statistical tests 
within subgroups with that based on a bagged ITE. To 
this end a simulation study will be performed. Treat-
ment 0 is assumed to have the same effect on subjects 
in all subgroups, namely ( )Pr 0,   = 1  = 0.05Y  x . The odds 
ratios of harm differ for the other subgroups according 
to the forth column of Table 3. We assume a 10% sig-
nificance level for test for difference within subgroups. 
Treatment 1 must not be administered to subjects with 
a predicted 20% or higher increase of the odds ratio rel-
ative to treatment 0, i.e., if ( ) ( )OR   1.2 or  = log 1.2c≥x
. We refrained from using 1 as a threshold since other-
wise the probability to detect an alarming situation if 
the effects of the treatments are equal would be 50%. 
The simulation results are shown in Table 5.

As expected if subgroups are determined based on 
significance tests, one controls the false positive rate, 
but the detection rate is low. This leads to a probabil-
ity of a correct decision of more than 90% in the sub-
group defined by  = 0x . However, this probability is less 
than 32% in all other subgroups allowing administering 
a drug that can be harmful with an unacceptably high 
probability.

The probability of a correct decision is much high-
er for the ITE based method for the subgroups with 

( )OR   1≥x  at the expense of declaring a greater number 
of patients falsely to be at risk. Prediction correctness 
improves when the number of patient data used to cre-
ate the predictor increases. This is shown for the marker 
negative subgroup ( ) = 0, 0x  in the last row of Table 5.

It can also be seen from Table 5 that a prediction 
of the best treatment based on the bagged predictor 
changes the probability of a correct decision only mar-
ginally. This suggests at least for the specific simulation 
that the predictor derived from the point estimate is 
fairly stable. The value of bagging in this case is dis-
cussed in Section 6.

Table 5: Proportion of 5000 simulations with B = 1000 bootstrap draws for each simulation where future subjects with covariates 
0x  are denied treatment 1 for a significant difference within subgroups (column 3), an ITE estimator greater than c (column 4) or 

a probability of at least 0.5 for the ITE estimator to be greater than c (column 5) with c = log (1.2). The last row shows the results 
for a prediction model that is derived from 1000 subjects per treatment with 1x  = 2x  = 0 instead of 100 while all the other settings 
remain unchanged.

01x 02x   [ ]Pr sig diff
 

( )0
ˆPr    D c ≥ x

 
( )*

0
ˆPr ,     0.5P c ≥ x

1 1 0.3184 0.8072 0.8068
1 0 0.1498 0.6340 0.6304
0 1 0.0912 0.4924 0.4894
0 0 0.0692 0.3714 0.3652
0 0 0.0958 0.1864 0.1872
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3.	 A Bharat, F Xie, JW Baddley, T Beukelman, L Chen, et al. 
(2012) Incidence and risk factors for progressive multifocal 
leukoencephalopathy among patients with selected rheu-
matic diseases. Arthritis Care Res 64: 612-615.

4.	 L Kappos, D Bates, G Edan, M Eraksoy, A Garcia-Meri-
noet, et al. (2011) Natalizumab treatment for multiple scle-
rosis: Updated recommendations for patient selection and 
monitoring. Lancet Neurol 10: 745-758.

5.	 PA McCullough, ME Bertraud, JA Brinker, F Stacul (2006) 
A meta-analysis of the renal safety of isomolar iodixanol 
compared with low-osmolar contrast media. J Am Coll Car-
diol 48: 692-699.

6.	 PN Sylaja, W Dong, JC Grotta, MK Miller, K Tomita, et al. 
(2007) Safety outcomes of Alteplase among acute ischemic 
stroke patients with special characteristics. Neurocrit Care 
6: 181-185.

7.	 (1997) Intracerebral hemorrhage after intravenous t-PA 
therapy for ischemic stroke. The NINDS t-PA. Stroke 28: 
2109-2118.

8.	 JB Singer, S Lewitzky, E Leroy, F Yang, X Zhao, et al. (2010) 
A genome-wide study identifies HLA alleles associated with 
lumiracoxib- related liver injury. Nature Genetics 42: 711-714.

9.	 ME Farkouh, H Kirshner, RA Harrington, S Ruland, FWA 
Verheugt, et al. (2004) Comparison of lumiracoxib with 
naproxen and ibuprofen in the therapeutic arthritis research 
and gastrointestinal event trial (target), cardiovascular out-
comes: Randomised controlled trial. Lancet 364: 675-684.

10.	I Lipkovich, A Dmitrienko, RB D’Agostino (2017) Tutorial in 
biostatistics: Data-driven subgroup identification and analy-
sis in clinical trials. Statistics in Medicine 36: 136-196.

11.	SF Assmann, SJ Pocock, LE Enos, LE Kasten (2000) Sub-
group analyses and other (mis)uses of baseline data in clin-
ical trials. Lancet 355: 1064-1069.

12.	ST Brookes, E Whitely, M Egger, GD Smith, PA Mulheran, 
et al. (2004) Subgroup analysis in randomized trials: risks 
of subgroup-specific analyses: Power and sample size of 
interaction test. J Clin Epidemiol 57: 229-236.

13.	T Cai, L Tian, PH Wong, LJ Wei (2011) Analysis of random-
ized comparative clinical trial data for personalized treat-
ment selections. Biostatistics 12: 270-282.

14.	S Chen, L Tian, T Cai, M Yu (2017) A general statistical 
framework for subgroup identification and comparative 
treatment scoring. Biometrics.

15.	PJ Diggle, PJ Heagerty, KY Liang, SL Zeger (2002) Analy-
sis of Longitudinal Data. Oxford University Press, 2nd edn, 
23: 3399-3401.

16.	L Breiman (1996) Bagging predictors. Machine Learning 
24: 123-140.

17.	RJ Tibshirani, J Taylor, R Lockhart, R Tibshirani (2016) 
Exact post-selection inference for sequential regression 
procedures. Journal of the American Statistical Association 
111: 600-620.

18.	JD Wallach, PG Sullivan, JF Trepanowski, KL Sainani, EW 
Steyerberg, et al. (2017) Evaluation of evidence of statis-
tical support and corroboration of subgroup claims in ran-
domized clinical trials. JAMA Intern Med 177: 554-560.

probability that a future subject with x0 will be assigned 
correctly to the best treatment by considering sampling 
variability in the learning dataset of the predictor. In other 
words it provides a measure of prediction accuracy or un-
certainty. To be on the safe side, we have used substantial-
ly more bootstrap samples than the 25 recommended be-
ing sufficient in [16] since this number has been derived for 
situations where bagging improves prediction. The guiding 
principle we followed was to increase B until the results 
start stabilizing.

The example considered in more detail was one with 
two binary covariates which define four subgroups and 
a binary outcome (CIN). However, the approach works 
for continuous outcomes and covariates as well. The 
method also works for single arm studies like the al-
teplase trial. For this let ( )Y x  be the outcome of a sub-
ject with covariates x  and set

( ) ( ){ }x  =  D E Y  xg

An issue can arise when the number of covariates 
becomes large, for example in a genetic study. In this 
situation the prediction accuracy of the ITE will decrease 
because the prediction model contains many variables 
contributing mainly noise but no information. Too many 
covariates are also not helpful in interpreting results. 
Thus variable selection methods should be included in 
the model fitting process requiring methods of selective 
inference for the analysis (see [17]).

Another important question to be addressed is wheth-
er subgroup findings require confirmation in some sense. 
For efficacy an analysis concluded that corroboration is of-
ten not taking place and if so, results are only confirmed 
exceptionally [18]. Eventually, one could consider efficacy 
and safety together and consider prediction of the most 
appropriate treatment under a benefit risk perspective.
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