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interpretations may be misleading if scientific findings 
fails to be reproduced.

Recently, a discussion in the AMSTAT News Publica-
tion (AMSTAT News, 2016 Issue 3) issued a statement 
on the P-value and statistical significance to draw vigor-
ous attention to changing research practices that have 
contributed to a reproducibility crisis in science. "Wide-
spread use of 'statistical significance' (generally inter-
preted as 'p < 0.05') as a license for making a claim of a 
scientific finding (or implied truth) leads to considerable 
distortion of the scientific process…".

To address this matter, we propose an approach 
for reduction of extra variability in Monte Carlo exper-
iments. Although our approach presents potentials for 
Monte Carlo studies, but it can, in principle, be applica-
ble to other replicated (bootstrap) studies. The paper 
is organized as follows. In Section 2, we describe the is-
sues related to reproducibility in simulation studies. A 
theoretical approach to reduce variability is introduced 
in Section 3. In Section 4, we present some results which 
make a comparison among our approach and the t-tests 
that are directly applied to the original data. Some con-
cluding remarks are presented in Section 5.

Variability

Statistical measures such as P-value, point estimate 
and confidence interval in replicate studies are not some-
times reliable. The reliability depends on the amount of 
variability between replicates. To understand the issue, 
we summarize the results displayed in (Figure 1) from 
Halsey, et al. [1] in (Table 1). In this simulation study, 
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Introduction

Reproducibility of scientific discovery is an important 
issue in science, medicine, engineering and other fields, 
which can provide essential validation [2-6]. Despite the 
importance of reproducibility, there exists the lack of 
reproducibility for many scientific findings [7-10]. Fail-
ure to reproduce results has been a major concern from 
journal editorial boards [11-14]. Risks with a multiplicity 
and misinterpretation of the P-values are widespread 
[15-17]. Extra variability in the P-value may lead to irre-
producible results [1]. Thus, the lack of reproducibility 
presents a fundamental problem in statistical inference. 
Although inference based on the P-value continues to 
occupy a prominent place in research, any reports or 
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monly represented by α), is the probability of the criti-
cal region when the null hypothesis is true. The power, 
(commonly represented by 1-β), is the probability of the 
critical region when the alternative hypothesis is true.

We expand this example further to study the effect 
of reproducibility. First, we examine reliability of sample 
values between replicates. The populations A and B have 
a common variance of 1 but with different means of 0.5 
and 0.0, respectively. From each of the populations A 
and B, we randomly draw 6 sets of samples of sizes 20, 
50 and 80, respectively. Note in this setting (n1 = 20, n2 = 
20; n1 = 50, n2 = 50; or n1 = 80, n2 = 80), the power within 
these settings is 33.8%, 69.7% or 88.2%, respectively, at 
the significant level alpha = 0.05 for comparing means 
using a two-sample two-sided t-test.

Figure 2 reports the sample values against 6 repli-
cates for each of the sample sizes from each of the pop-
ulations. As shown in Figure 2, the sample values mark-
edly vary across replicates, especially for small samples. 
The values of a large sample drawn from a population 
might tend to represent that population because the 
sample is less subject to random variation, while the 
values of a small sample drawn from a population might 

underlying true means significantly differs. However, in 
4 simulations the P-values vary from highly significant to 
highly not-significant. Furthermore, the P-value repro-
ducibility is affected by the potential outliers and small 
sample sizes in normally distributed population A (n1) 
and population B (n2) with (n1 = n2 = 10).

To draw statistical inference, we construct hypoth-
eses. Usually the null hypothesis (H0) states that the 
means in two populations A and B are the same, where-
as the alternative hypothesis (H1) states that the means 
in two populations A and B are different. Using the 
sample data, we validate these claims. To test these hy-
potheses, we construct the critical region (range of the 
mean) and calculate the probability of the critical region 
under two hypotheses. The significance level, (com-
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Figure 1: The scatter plot of the P-values, estimated differences in means and ranges of confidence intervals against replicates.

Table 1: Summary of simulation characteristics in Halsey, et al. 
[1] with 1η  = 10 and 2η  = 10.

Characteristics
Simulation settings
1 2 3 4

Effect size 1.46 -0.08 0.08 0.74
P-value 0.005 0.82 0.85 0.09
Potential outlier in group A 0 0 1 2
Potential outlier in group B 2 1 0 0
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are 34.2%, 68.0% and 88.9%, and are in agreement with 
the theoretical power. From Figure 1 and Figure 3 we 
further see that the simulated results tend to be more 
reliable as the sample sizes increase.

In Figure 1 of Halsey, et al. [1] shows contradicting 
P-values for smaller sample sizes (n1 = 10 and n2 = 10). 
Therefore, there is a need for robust replications irre-
spective of the sample sizes. In the following section, we 
develop a systematic approach to reduce the variability 
in replications.

Two-Stage Approach for Variability Reduction

In replicate studies some of the replication may be 
over dispersed and discarding those should lead to bet-
ter inference. We develop a systematic approach, in two 
stages, to evaluate quality of simulations before any 
estimation. The first stage of our approach, we reduce 
variability. In the second stage, we apply the commonly 
used statistical methods such as point estimation, con-
fidence interval and testing-hypothesis on the reduced 
replicates. In the following, we consider two scenarios: 
one-sample and two-sample inferences.

One-sample setting

Let ( )2,iY N µ σ  and let Y  and S  be the sample mean 
and standard deviation, respectively, i.e., 

1

1 n
ii
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= ∑  and 
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 . Therefore, 

not tend to represent that population because in this 
case, the sample is subject to a random variation. How-
ever, whether the sample size is small or large, there 
exists the variability, with possibility of extra variability, 
of sample values.

Next, we examine the variability in P-value, estimat-
ed difference and range of confidence interval. Figure 
1 reports these statistical measures against replicates 
with each of the sample sizes. Although the P-values 
tend to be reliable as the corresponding sample sizes 
increase, there still exists variability. Similarly, the es-
timated differences in means vary considerably across 
replicates even for large samples. The ranges of confi-
dence intervals vary across replicates for small samples 
as well. These replicate variabilities result variability in 
the P-values; this issue is discussed at length in the re-
cently published paper in Nature Methods [1].

Further, we examine the effect of sample size on 
the variability of statistical measures. From each of the 
populations A and B, we generate 1000 samples of sizes 
20, 50 and 80. Figure 3 reports the distributions of the 
P-values for a two-sided test of the null hypothesis (no 
difference in means) and the distributions of the point 
estimates of mean difference along with 95% confi-
dence intervals. We calculate an empirical power, which 
is defined as the percentage of the replicates where the 
difference between population means, is declared as 
a significant effect if the P-value is less than 0.05. The 
empirical power corresponding to three sample sizes 
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Figure 2: The scatter plot of sample values against replicates, where blue colors represent sample mean.
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 Figure 3: Frequencies of the P-values, estimated differences and ranges for the sample sizes of 20, 50 and 80.
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vations within a sample but discard the entire sample.

0 0          Type I error Prob whendata generated unY der Hµ =∝ = ≥   
and 0 1 1      ]Power Prob whendata generated underY Hβ µ= − = ≥  
are estimated and compared in the entire replicates and 
the reduced replicates.

Two sample-setting

In the two sample setting let *
,
b

i jY  be the ,thi  from 

the thj  population ( )2,j jN µ σ  in the thb  bootstrap sam-
ple, *

.,
b
jY  and *

.,
b
jS  be the sample mean and standard de-

viation from the thj  population in the thb  bootstrap 
sample, respectively, b = 1, , ; 1, 2; 1, , jB j i n= =  . We 
compare the quality of each replica,

( )*
., 1

b
j j j jY c nµ σ− ≥  or ( )* 2 2 2

., 2( )  b
j j j jS c nσ σ− ≥ ,         (3)

to declare extra-variate pair of samples and to re-
move from further inference.

As before, we estimate parameters jµ  and 2
jσ  with 

* *

1

1 B
b

j j
b

Y Y
B =

= ∑  and ( ) ( )2 2* *
., .,

1

1 
B

b
j j

b

S S
B =

= ∑ , respectively.

Statistical analyses are performed on the reduced 
replicates to compare means in one-sample and 
two-sample settings, which we call it second stage of 
the entire analysis. This increases the reproducibility in 

expressions in Equation (1) provide a tool to measure 
the quality of replicated samples.

Now, we define settings and quantitative measures 
in replicated studies which are generated using para-
metric bootstrap samples [18]. Let *b

iY  be thi  observa-
tion from the population ( )2,N µ σ  in the thb  bootstrap 
sample, *bY  and *bS  be the sample mean and standard 
deviation of the thb  bootstrap sample, respectively, b 
= 1, , ; 1, ,B i n=  . The two-stage approach to reduce 
variability is described as follow. If the thb  replicated 
sample, * *

1( ,..., ),b b
nY Y  satisfies at least one condition in 

equation (2), which is 

( )*
1  bY c nµ σ− ≥  or (* ) 2 2 2

2| ( ) |  ( )bS c nσ σ− ≥                                              (2) 

then the sample is called extra-variant and it is re-
moved from further statistical inference.

To estimate the parameters µ  or 2 ,σ  we use the 
grand sample mean, * *

1

1 B b
b

Y Y
B =

= ∑ , and the grand sam-

ple variance, ( ) ( )2 2* *
1

1 B b
b

S S
B =

= ∑ . Thus, in the first stage, 
we remove all the possible extra-variation samples and 
then perform statistical inference. Even though the 
number of replicate studies (bootstrap size) is prede-
termined, the resulting bootstrap size will be a random 
variable. Note that we do not discard individual obser-
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Figure 4: Frequencies of the P-values, sample means and ranges using the original data and using the reduced data. 
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replicates. Also, we gain in power properties using this 
reduction approach as expected. Furthermore, from an 
inference point of view, the point estimates and confi-
dence intervals using the reduced replicates are more 
precise than without reduction. To compare a the P-val-
ues for a one-sample t-test using the original data and 
using the reduced data where the null hypothesis 0H  is 
true, we generate 1000 data sets in which each data set 
includes 20, 40 and 60 observations from a normal pop-
ulation with mean 0 and variance 1, respectively. Figure 
5 reports the P-values using the original data and us-
ing the reduced data where the null distribution is true. 
This figure shows that the P-values using the reduced 
data are approximately greater than 0.4, which means 
our approach significantly reduces the type I error (the 
significant level is 0.05). To compare a the P-values for 
a one-sample t-test using the original data and using 
the reduced data where the alternative hypothesis 1H  
is true, we generate 1000 data sets in which each data 
set includes 20, 40 and 60 observations from a normal 
population with mean 0.5 and variance 1, respectively. 
Figure 6 reports the P-values using the original data and 
using the reduced data where the alternative hypoth-

simulation studies. Like in one-sample settings, we esti-
mate and compare

0         B A B AType I Error Prob Y whendata generated underY Hµ µ = − ≥ −   and 
1       B A B APower Prob Y Y whendata generated under Hµ µ = − ≥ −   in the 

entire replicates and the reduced replicates.

Simulation Study

First, the advantage of our two-stage approach can 
be explicitly visualized in simulation studies. To com-
pare statistical inference for P-value, point estimate 
or confidence interval using the original replicates and 
using the reduced replicates, we generated 1000 data 
sets and each data set includes 20 observations from 

( )20.5, 1N µ σ= = . We also calculate the P-values for a 
one-sample t-test where the null hypothesis 0H  is that 
the population mean is zero and the alternative hypoth-
esis 1H  is that the population mean is not zero. Figure 4 
reports the distributions of the P-values along with the 
distributions of the point estimates and ranges of 95% 
confidence intervals for the population means using 
the original replicates and using the reduced replicates. 
As shown in this figure, the P-values using the reduced 
replicates are less variable than those with the original 
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Figure 5: P-values across replicates in the original and reduced null data where the null hypothesis is true.
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the reduced data, we generate 1000 data sets where 
the alternative hypothesis 1H  is true and in which each 
data set comes from a normal population and the set-
tings of population parameters and sample sizes are 
given in (Table 2). The results about type I errors and 
powers are summarized in (Table 2), which shows that 
our approach reduces drastically type I error because 
it removes all the abnormal samples prior to perform 
a t-test and that the powers for the t-test using the re-
duced data are larger than the ones using the original 
data. Now we generate 1000 data sets for each of two 
normal populations A and B with a common standard 
deviation where the sample sizes from two populations 
in each data set are the same and the settings of pop-
ulation parameters and sample sizes are given in (Ta-
ble 3). A similar conclusion is summarized in (Table 3). 
The powers for the two-sample t-test using the reduced 
data are larger than the ones using the original data in 
most cases except when sample size is small (e.g., sam-
ple size is 40) or when difference in population means is 
small (e.g., mean of A is 0.8 and mean of B is 0.6).

esis is true. This figure shows that the P-values for the 
t-test using the reduced data are approximately smaller 
than 0.2 for a sample size of 20 and are around 0 for 
a higher sample size, which means our approach might 
significantly improve the power, especially for big sam-
ples (e.g., sample size = 40 or 60) since power may be 
calculated as the proportion of p value less than the 
significance level alpha = 0.05 for data sets where the 
alternative hypothesis is true. This advantage in power 
can numerically be confirmed by the results in (Table 2).

Next the advantage of our two-stage approach can 
numerically be shown in simulation studies. To compare 
a type I error for one-sample t-test using the original 
data and using the reduced data, we generate 1000 
data sets where the null hypothesis 0H  is true and in 
which each data set includes 20, 40 and 60 observations 
from a normal population with mean 0 and variance 1, 
respectively. The type I error is calculated as the pro-
portion of P-values less than the significance level alpha 
= 0.05 for all the 1000 data sets. To compare a power 
for one-sample t-test using the original data and using 
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 Figure 6: P-values across replicates in the original and reduced null data where the alternative hypothesis is true.
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Table 3: Comparisons of type I error and power between two-sample t-test.

Standard deviation Mean (A) Mean (B) Size Type I error Type I error* Power Power*

0.8 0.0 0.3 40 0.056 0.000 0.401 0.277
60 0.051 0.000 0.512 0.614
80 0.051 0.000 0.638 0.816

0.5 40 0.056 0.000 0.792 0.947
60 0.051 0.000 0.919 1.000
80 0.051 0.000 0.972 1.000

0.8 0.4 40 0.056 0.000 0.580 0.713
60 0.051 0.000 0.785 0.977
80 0.051 0.000 0.874 1.000

0.6 40 0.056 0.000 0.189 0.011
60 0.051 0.000 0.290 0.080
80 0.051 0.000 0.356 0.224

0.5 0.0 0.3 40 0.056 0.000 0.758 0.904
60 0.051 0.000 0.892 1.000
80 0.051 0.000 0.964 1.000

0.5 40 0.056 0.000 0.997 1.000
60 0.051 0.000 1.000 1.000
80 0.051 0.000 1.000 1.000

0.8 0.4 40 0.056 0.000 0.940 1.000
60 0.051 0.000 0.995 1.000
80 0.051 0.000 0.997 1.000

0.6 40 0.056 0.000 0.406 0.330
60 0.051 0.000 0.581 0.648
80 0.051 0.000 0.696 0.895

*: 0         B A B AType I Error Prob Y whendata generated underY Hµ µ = − ≥ −   and 

1       B A B APower Prob Y Y whendata generated under Hµ µ = − ≥ −  .

Table 2: Comparisons of type I error and power between the 
one-sample t-test, where Type I error* and Power* represent 
type I error and power for reduced data, respectively.

Standard 
deviation

Mean Size Type I 
error

Type I 
error*

Power Power*

1 0.5 20 0.047 0.000 0.564 0.643
40 0.050 0.000 0.881 1.000
60 0.051 0.000 0.974 1.000

1 20 0.047 0.000 0.995 1.000
40 0.050 0.000 1.000 1.000
60 0.051 0.000 1.000 1.000

0.7 0.5 20 0.047 0.000 0.863 1.000
40 0.050 0.000 0.997 1.000
60 0.051 0.000 1.000 1.000

1 20 0.047 0.000 1.000 1.000
40 0.050 0.000 1.000 1.000
60 0.051 0.000 1.000 1.000

*: 0 0          Type I error Prob whendata generated unY der Hµ =∝= ≥   and 

0 1 1      ].Power Prob whendata generated under HYβ µ= − = ≥

ing. The estimators and confidence intervals of popula-
tion parameters from one and two populations become 
more precise after reduction of variability. The repro-
ducibility can be controlled by introducing another pa-
rameter, ω , in equation (2); i.e.  

( )1   iY c nµ ω σ− ≥  or ( )2 2 2
2 –  iS c nσ ω σ≥          (4)

in a one-sample case (a similar representation in 
two-sample case). In equation (4) different values of 
will lead to a different degree of reproducibility, which 
needs to be studied further. As we know the type I and 
II errors cannot be simultaneously minimized if param-
eters are fixed, including bootstrap size. However for a 
fixed type I error, we can select the optimal reproduc-
ibility parameter to minize the type II error. Altogether, 
we discuss practical issues about variability reduction 
here, it is important to explore the methodology of our 
approach when studying properties of estimators using 
bootstrap simulations in a real data.

There are some limitations of the proposed method, 
an ‘out of box’ solution for increasing reproducibility. First, 
the bootstrap size becomes a random variable; how does 
it compare when using methods based on trimmed data 
(deleting outliers) for inference is another issue that can be 
studied further. Also, when the distributional assumptions 
(normal distribution/Gaussian distribution), are not valid, 
the method may still work with symmetric and unimodal 
such as student t-distribution. However, to generalize to a 
very skewed and/or multimodal distribution requires addi-
tional work that one may consider.

Discussion

To improve the reproducibility of the results in rep-
licate studies, we propose a two-stage approach to re-
duce variability. Our simulation studies reveal that the 
variability of statistical measures such as P value, point 
estimator and confidence interval has considerably re-
duced. When compared to one- and two-sample t-test 
using original data, our approach markedly improve the 
power and meanwhile reducing potential type I error. 
Also, the results from statistical inference are interest-
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