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Abstract
For two independent random variables ( )   1,  2jY j = , let 

( ) ( )  1   |2   p x P Y Y X x= < = , where X  is some covariate of in-
terest. For m values of the covariate, 1  ,  . . . ,  mx x , the pa-
per deals with the goal of testing ( ) ( )0  :   0.5   1,  . . . ,   jH p x j m= =  
in a manner that controls Family Wise Error Rate (FWE), the 
probability of one or more Type I errors. If m is relatively 
small, extant multiple comparison methods can be used to 
control FWE. But if m is relatively large, the actual level can 
be substantially smaller than the nominal level, raising con-
cerns about relatively poor power. The paper describes a 
method for addressing this issue when ( )p x  is estimated 
via a running interval smoother.
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arguments for focusing on p when comparing groups. 
Indeed, it seems fairly evident that p provides a useful 
perspective.

Certainly the best-known method for making infer-
ences about p is the Wilcoxon-Mann-Whitney (WMW) 
test. It is well known, however, that under general con-
ditions, the WMW method uses an incorrect estimate of 
the standard error. Numerous methods have been de-
rived for dealing with this issue. Wilcox [5] summarizes 
the relevant literature.

This paper is focused on comparing two independent 
groups based on p when there is a covariate, say X. Let 

( )p x  denote the value of p given that X x= . Here, no 
particular parametric model is assumed regarding the na-
ture of ( )p x . Rather, ( )p x  is estimated with a particular 
nonparametric regression estimator, which is described 
in section 3. Let ( ) ( ) ( )1 2  1,  . . .|  ,  k k kp x P Y Y X x k m= < = = , 
where 1,  . . . ,  mx x  are m covariate values to be deter-
mined. The basic goal is to test

( )0 : 0.5k kH p x =                                                             (3)

for each 1,  . . . ,  k m=  such that the family wise er-
ror rate (FWE), meaning the probability of one or more 
Type I errors, is equal to some specified value, α . If the 
number of covariate values, m, is reasonably small, one 
can simply proceed along the lines in Wilcox [5]. A con-
cern, however, is that important differences might be 
missed due to using too few covariate values. A guess is 
that a method in Wilcox [5] is readily adapted to the sit-
uation at hand when dealing with a large number of co-
variate values, but preliminary simulations made it clear 
that this approach is unsatisfactory. The actual FWE can 

Introduction

For two independent groups, let ( )    1,  2jY j =  be some 
random variable associated with the thj  group. As is ev-
ident, one approach to comparing these groups is in 
terms of some measure of location. As is well known, 
there is vast literature regarding how this might be 
done. Another approach is to focus on

( )1 2   p P Y Y= <                                                               (1)

the probability that a randomly sampled observation 
from the first group is less than a randomly sampled 
observation from the second group. In the event tied 
values can occur, (1) is replaced with

( ) ( )1 2 1 2    0.5p P Y Y P Y Y= < + =                                            (2)

Cliff [1], Acion, et al. [2], Kraemer and Kupfer [3], 
and Vargha and Delaney [4], among others, summarize 
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Cliff’s confidence interval for δ  is readily modified 
to give a confidence for p. Letting 

( )3 2
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The Proposed Method

Now let ( ) ( ) ,   1,  . . . ,   ;  1,  2ij ij jY X i n j= =  be a random 
sample with the covariate, X , included. The proposed 
method is based in part on a basic component of the 
running interval smoother, which has been studied 
extensively [5]. Momentarily focus on a single value 
of the covariate x , in which case the goal is to test 

( )0 :  0.5H p x = . The basic strategy is quite simple: Com-
pute a confidence interval for p based on the ijY  values 
such ijX  is close to x .

The precise details are as follows. For the thj  group, 
let jM  be the usual sample median and compute the 
median absolute deviation estimator 

jMAD , which is 
the median based on

1 ,  . . .  .  / 0.6745
jj j n j j j jX M X M Let MADN MAD− − = . Under 

normality, 
jMADN  estimates the standard deviation. Let

( ) { } :      ,j ij jN x i X x f MADN= − ≤ ×

where the constant f, called the span, is to be deter-
mined. That is, for fixed j , ( )jN x  indexes the observed 
covariate values that are close to x. The ijX  values for 
which ( )ji N x∈  are called the nearest neighbors. Let 

( )p̂ x  be the estimate of ( )p x  based on the ijY  values 
for which ( )ji N x∈ . Choices for the span that general-
ly perform well are 0.8  1f or=  (e.g., Wilcox) [5]. Here 

  1f =  is used. As is evident, ( )0 : 0.5H p x =  can be test-
ed simply by applying Cliff’s methods using the ijY  val-
ues for which ( )ji N x∈ .

There remains the problem of choosing the covari-
ate values. In some situations there might be substan-
tive reasons for using particular values. But otherwise it 
is clearly prudent to choose a reasonably wide range of 
covariate values. Here, two approaches are described 
and there relative merits are discussed in section 4.

To describe the first approach, let ( )jN x  denote the 
cardinality of the set ( )jN x . The basic strategy is to focus 
on covariate values where ( )Nj x η≥ , where η is some 
constant to be determined. That is, focus on situations 
where the sample sizes are sufficiently large when apply-
ing Cliff’s method. Given η , let jz



 be the smallest ijX  val-

be substantially smaller than the nominal level.

The goal is this paper is suggesting a modification of 
the method in Wilcox [5] that performs better in simula-
tions. The proposed method is based in part on Cliff’s [1] 
method for testing (1). Cliff’s method was chosen based 
on results in Neuhauser, et al. [6] where several tech-
niques were compared [7]. Particularly important here, 
for reasons made clear in section 2, is that Cliff’s meth-
od has been found to perform relatively well even with 
sample sizes as small as eight.

The paper is organized as follows. Section 2 reviews 
Cliff’s method. Section 3 describes the proposed meth-
od and section 4 reports simulation results. Section 5 
illustrates the method using data from a study dealing 
with the emotional and physical well being of older 
adults.

Cliff’s Method

Momentarily ignoring the covariate, Cliff’s method 
for making inferences about p is applied as follows. Let 

( )  1,  . . . ,  ;    1,  2ij jY i n j= =  be a random sample of jn  
observations from the thj  group. Let

1 2
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squared standard error of δ̂ . Let z be the 1 / 2α−  quan-
tile of a standard normal distribution. Rather than use 
the more obvious confidence interval for δ, Cliff [1] rec-
ommends

( )3 2
2 2 2

2 2 2

ˆ ˆ ˆ ˆˆ 1 
ˆ ˆ1   

z z
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of minp . So for any k , ( )0 :  0.5kH p x =  is rejected when 
kp pα≤ , in which case FWE will be equal to α . So the 

strategy is to use simulations to determine pα  when 
both X  and Y  are independent and both have a stan-
dard normal distribution. Then simulations are used to 
determine the impact on FWE when X  and Y  are de-
pendent and when Y  has a non-normal distribution.

Table 1 shows estimates of pα  when using method 
S, m = 25 and α  = 0.05 and there is a common sample 
size n ranging between 30 and 800. (The same pα  val-
ues are used by method Q). These estimates are based 
on 2000 replications. When n is small, execution time 
is reasonably low, but as n increases, execution time 
becomes an issue. Note that generally the estimates of 
pα  decrease as n increases Overall, the rate of the de-

crease is very small, particularly for 200n ≥ . Here, for 
sample sizes not included in Table 1, Cleveland’s [10] 
smoother is used to estimate pα  based on 1/n and the 
values in Table 1. (The R function l plot. pred in Wilcox, 
2017, is used here) [5] For unequal sample sizes, pα  
is determined for both 1n  and 2n  and the results are 
averaged.

Simulation Results

This section reports simulation results on the ability 
of the methods in the previous section to control FWE 
under non-normality and when there is an association 
between Y  and X .

Data were generated based on

  ,aY X= + ∈                                                                 (6)

where is some random variable having a median of 
zero and 1  2a or= . The distribution for the error term, 
∈ , was taken to be a one of four g-and-h distributions 
[11] one of which is the standard normal distribution. If 
Z  has a standard normal distribution, then by definition

( ) ) ( )

( )

2

2
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has a g-and-h distribution where g  and h  are pa-
rameters that determine the first four moments. The 
four distributions used here were the standard normal 
( )0.0 ,h= =g  a symmetric heavy-tailed distribution 
( )0.2,  0.0h = =g , an asymmetric distribution with rel-

ue such that simultaneously ( ) ( )1 2  .j i j iN X and N Xη η≥ ≥  
In a similar manner, let ujz  be the largest ijX  value 
such that simultaneously ( ) ( )1 2  j i j iN X and N Xη η≥ ≥ . Let 

{ } { }1 2 1 2 ,    ,  u u uz max z z and z min z z= =
  

. The covari-
ate values are taken to be the m values evenly spaced 
between z



 and uz , inclusive, which are labeled 
1  ,  . . . ,  mx x  c. Here, 25m =  is used. Extant results sug-

gest that Cliff’s method performs reasonably well when 
8,   8soη η≥ =  is used henceforth unless stated other-

wise. This approach to choosing the covariate values 
will be called method S  henceforth.

The second approach to choosing the covariate values 
is as follows. Let ˆ jqγ  be an estimate of the thq  quantile of 
the covariate associated with the thj  group, 0.5 . Let 

{ }1 2ˆ ˆ  ,  q qw max γ γ=


 and { }1 1 1 2ˆ ˆ,  uw min q qγ γ= − − . The 
covariate values are taken to be m values evenly spaced 
between w



 and uw . Here, both q = 0.1 and 0.05 are con-
sidered. This alternative approach to choosing the covari-
ate values will be called method Q henceforth. The relative 
merits of methods S and Q are summarized in section 6.

Controlling FWE

There remains the issue of controlling FWE. There 
is a wide range of techniques that might be used (e.g., 
Wilcox [5]). One possibility is to use the sequentially re-
jective technique derived by Hochberg [8], which has 
been found to perform well in simulations when m = 5. 
But as m increases, this approach results in FWE levels 
well below the nominal level. A similar concern arises 
using a critical value based on Studentized maximum 
modulus distribution (with infinite degrees of freedom) 
as well the method derived by Hommel [9]. This is not 
surprising for the following reason. Note that in vari-
ous situations, the set ( ) ( ) ,  j k jN x N x k∩ ≠



 , will not 
be empty, in which case the test statistics correspond-
ing to these two covariate values will be correlated. In 
terms of controlling FWE, what is needed is a method 
that takes this into account. Results in Wilcox [5] sug-
gest how to proceed. The basic idea is to determine a 
critical p-value, pα , when both Y and X have a normal 
distribution and there is no association between Y  and 
X . Then simulations are used to check on the impact 

of non-normality as well as situations where there is an 
association between Y  and X .

To be a bit more precise, let kp  be the p-value when 
testing ( ) ( )0 :  0.5 1,  . . . ,  kH p x k m= = . Let minp  denote 

{ }1 ,  . . . ,  min p pm  and let pα  denote the α  quantile 

Table 1: Estimates of pα , α  = 0.05, when m = 25.

n: 30 50 60 70 80 100 150

0.05 :p 0.008566 0.008385 0.006758 0.006871 0.006157 0.006629 0.006629

n: 200 300 400 500 600 800  

0.05 :p 0.00468 0.004536 0.004953 0.004294 0.004288 0.004148  

N = Sample Size; 0.05 :p  Critical 0.05 p-value.
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and (n1, n2) = (50, 100), not shown in Table 3, again es-
timates exceeded 0.075. Lowering the span to 0.8 and 
even 0.6 does not correct this problem. Using η = 14 was 
found to be unsatisfactory as well. A closer examination 
of the simulation results revealed that when a = 2, in-
ferences based on the more extreme covariate values 
result in FWE values greater than the nominal level. This 
motivated the second approach to choosing the covari-
ate values, method Q in the previous section.

Some additional simulations were run where 
0  xY I X<= + ∈, where the indicator function 0 1  0XI if X> = >

; otherwise 0 0XI > = . The results were very similar to those 
where a = 1. So there are indications that method S can 
perform reasonably well when the regression line is not 
straight. But if there is sufficient curvature for the more 
extreme covariate values, this is no longer the case.

Table 4 shows the simulation results when using 
method Q. As can be seen, now the largest estimate is 
0.066. Note that given the sample sizes, altering the dis-
tribution of the error term has an even smaller impact 
on the estimate of FWE compared to method S. The 
main difficulty is that the estimate drops below 0.025 
in some situations, the lowest estimate being 0.020. For 
a = 2 and (n1, n2) = (600, 600), the estimates are nearly 
identical to those when (n1, n2) = (150, 200). For (n1, n2) 
= (50, 600), 0h= =g  and a = 2 the estimate is 0.050. 
Simulations were also run using q = 0.05. The estimates 
differed from those in Table 4 by at most three units in 
the third decimal place.

An Illustration

Data from the Well Elderly 2 study [13] are used to 
illustrate the proposed method. A general goal in the 
Well Elderly 2 study was to assess the efficacy of an in-
tervention strategy aimed at improving the physical and 
emotional health of older adults. (The data are avail-
able at http://www.icpsr.umich.edu/icpsrweb/landing.

atively light tails ( )0.0,  0.2h = =g , and an asymmetric 
distribution with heavy tails ( )0.2h= =g . Table 2 shows 
the skewness ( )1κ  and kurtosis ( )2κ  for each distri-
bution. Figure 1 shows plots of these distributions. Ad-
ditional properties of the g-and-h distribution are sum-
marized by Hoaglin [11]. The results reported here are 
for situations where the distribution of X  was taken to 
be standard normal. A few simulations were run where 
X  and ∈  have the same g-and-h distribution, no new 
insights were found, so the results are not reported.

It is noted that if there is no covariate, transforming 
to some g-and-h distribution does not alter the results 
based on Cliff’s method because it depends only on the 
ranks of the data. But when there is a covariate and 
there is an association between Y  and X  , this is no 
longer the case. So an issue understands the impact on 
FWE when there is an association.

Table 3 shows the results for a = 1 and 2 and sample 
sizes (n1, n2) = (30, 30), (30, 60) and (150, 200), where 
the covariate values were chosen based on method S. 
Again 2000 replications were used. Although the impor-
tance of a Type I error depends on the situation, Bradley 
[12] suggested that as a general guide, when testing at 
the 0.05 level, the actual level should be between 0.025 
and 0.075. Based on this criterion, the proposed meth-
od is satisfactory for all of the situations considered 
when a = 1. However, when a = 2, this is no longer the 
case. For (n1, n2) = (30, 60) and 0h= =g , the estimate 
is 0.079. For (n1, n2) = (150, 200), estimates are approxi-
mately equal to 0.1. For sample sizes (n1, n2) = (40, 100), 

Table 2: Some properties of the g-and-h distribution.

g h 1κ 2κ

0 0 0 3

0 0.2 0 21.46

0.2 0 0.61 3.68

0.2 0.2 2.81 155.98

1κ  = kappa_1 = skewness; 2κ = kappa_2 = kurtosis.

Table 3: Estimates of FWE when testing at the α = 0.05 and 
using Method S to choose the covariate values.

g h n1 n2 a = 1 a = 2

0 0 30 30 0.048 0.067
0 0.2 30 30 0.042 0.063
0.2 0 30 30 0.047 0.063
0.2 0.2 30 30 0.052 0.061
0 0 30 60 0.048 0.079
0 0.2 30 60 0.051 0.057
0.2 0 30 60 0.053 0.06
0.2 0.2 30 60 0.052 0.047
0 0 150 200 0.065 0.11
0 0.2 150 200 0.062 0.097
0.2 0 150 200 0.065 0.106
0.2 0.2 150 200 0.064 0.099

Table 4: Estimates of FWE when testing at the α = 0.05 and 
using Method Q to choose the covariate values.

g h n1 n2 a = 1 a = 2

0 0 30 30 0.038 0.066
0 0.2 30 30 0.042 0.063
0.2 0 30 30 0.04 0.063
0.2 0.2 30 30 0.039 0.062
0 0 30 60 0.036 0.048
0 0.2 30 60 0.034 0.047
0.2 0 30 60 0.035 0.047
0.2 0.2 30 60 0.034 0.047
0 0 150 200 0.021 0.036
0 0.2 150 200 0.02 0.031
0.2 0 150 200 0.021 0.034
0.2 0.2 150 200 0.021 0.03

g = skewness parameter for the g-and-h distribution; h = kurtosis 
parameter for the g-and-h distribution; n1 = first sample size; n2 = 
second sample size; a = 1 = a straight regression line, a = 2 = a 
quadratic regression line.
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a lower MAPA score than a randomly sampled participant in the experimental group. The dashed lines indicate a confidence 
band having, approximately, simultaneous probability coverage 0.95.
Y-axis = likelihood; X-axis = f(x). f (x) is the probability density function.
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available at Dornsife.usc.edu/cf/labs/wilcox/wilcox-fac-
ulty-display.cfm and are stored in the file Rallfun- v34. 
The function ancdetwmw applies method S and ancde-
twmwQ applies method Q.
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sol Awakening Response (CAR), which is defined as the 
change in cortisol concentration that occurs during the 
first 30-45 minutes after waking from sleep. (CAR is tak-
en to be the cortisol level upon awakening minus the 
level of cortisol after the participants were awake). Ex-
tant studies [14,15] indicate that the CAR is associated 
with various measures of stress. Here, a control group is 
compared to a group that received intervention.

Figure 2 shows the estimate of ( )1 2 |P Y Y X< , where 
1Y  is the MAPA score before intervention, 2Y  is MAPA 

after intervention, and X  is CAR. (Leverage points, out-
liers among the CAR values, were removed). Selecting 
covariate points via method S, significant differences are 
found for CAR ranging between -0.36 and -0.27. Plots 
of the regression lines, using Cleveland’s [10] method, 
suggested that there is little or no curvature, which in 
turn suggests that method S controls FWE reasonably 
well. So there is an indication that when the CAR is suf-
ficiently negative (cortisol increases after awakening), 
MAPA scores tend to be higher for the group receiving 
intervention. The covariate values used by method S 
range between -0.38 and 0.32. In contrast, when using 
method Q with q = 0.1, they range between -0.19 and 
0.15 and no significant results are found. For q = 0.05 
the covariate values range between -0.27 and 0.22 with 
a single significant result when the CAR is equal to -0.24.

Concluding Remarks

In summary, all indications are that method S for 
choosing the covariate values performs reasonably well 
except when there is a sufficient amount of curvature 
near the extreme ends of the covariate. Method Q 
avoids FWE well above the nominal level in situations 
where method S breaks down. But method S has the 
potential of providing comparisons for a wider range of 
covariate values. As was illustrated, this can make prac-
tical difference.

A criticism of method S is that there is no formal 
method for justifying the assumption that curvature 
among the more extreme covariate values is not an is-
sue. For now, the best that can be done is to inspect the 
plot returned by some nonparametric regression esti-
mator. So an argument for using method Q might be 
that it is safer in terms of controlling FWE.

Finally, R functions for applying methods S and Q are 
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