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Abstract
The equivalence test in analytical similarity assessment 
uses a margin of 1.5 times of the standard deviation of a 
reference product. In the current practice, the standard de-
viation, estimated from study data, is considered as a fixed 
constantin the margin [1]. The impact of such a practice 
leads to the inflation of type I error rate and the reduction of 
power as previous studies showed [2]. In order to accom-
modate the fact that the margin is a parameter and improve 
the efficiency when the numbers of lots for both products 
are small. Chen, et al. [3] proposed to use Wald test with 
Constrained Maximum Likelihood Estimate (CMLE) of the 
standard error, resulting in the type I error rate is below the 
nominal value. In this paper, we further improve the Wald 
test with CMLE standard error by replacing the maximum 
likelihood estimate of reference standard deviation in the 
margin with the sample estimate. For small numbers of lots 
for both products, this estimate replacement leads to further 
improvement of type I error rate and power over the tests 
proposed in Chen, et al. [3]. In addition, to satisfy the criteria 
that the power is greater than 85% with the number of prod-
uct lots being ten and equal product variability, we propose 
to use a margin of 1.7 times of the standard deviation of a 
reference product.
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0 :L T R RH fµ µ σ− ≤ −  vs. :aL T R RH fµ µ σ− > − 	

where Tµ  and Rµ  are the population means of the 
test product and the reference product, respective-
ly, Rσ  is the Standard Deviation (SD) of the reference 
product and f  is the pre-specified constant.

Hypotheses in (1) has been proposed in various 
applications. Shen and Xu [5] proposed 0.85f =  in 
designs of method transfer studies for biotechnology 
products to compare means between the sending labo-
ratory and the receiving laboratory. In their study, Tµ  
and Rµ  represent the population mean of the mea-
surements under normality distributions obtained at 
the receiving laboratory and the sending laboratory, 
respectively, and Rσ  represents the population SD of 
the measurements obtained at the sending laboratory. 
For the evaluation of the analytical similarity between 
a test product and the reference product, Tsong, et al. 
[4] proposed to assess the equivalence in means for a 
selected Critical Quality Attribute (CQA) by testing the 
hypotheses in (1) with 1.5f = . The current practice is 
just substituting the sample SD of the Reference Prod-
uct ( )RS  in the margin as if it is a known value although 

Rσ  is unknown and needed to be estimated from the 
study data [1]. Hence, under the normality assumption, 
the current analysis using t statistics results in inflating 
type I error rate and reducing power as pointed out by 
Dong, et al. [2] and Burdick, et al. [6].

To reduce the deficiency, one alternative approach 
is considering Rσ  as a parameter and then applying the 
Wald-type statistic to hypotheses in (1). Chen, et al. [3] 
pointed out that the Wald test led to type I error rate seri-
ously lower than the nominal significance level and power 

Introduction
Two one-sided hypothesis tests with a parameter mar-

gin that is a function of the variability of the reference 
product have been applied to equivalence assessments in 
several pharmaceutical areas [3-5]. The two one-sided hy-
potheses can be written as follows.

0 :U T R RH fµ µ σ− ≥  vs. :aU T R RH fµ µ σ− <   (1)
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and Rn  denote the numbers of test lots and reference 
lots, respectively. 2

Tσ  is the variance of the test prod-
uct. Then, we compare the proposed estimators to the 
other two sets of estimators: The unbiased version of 
the proposed estimators and the CMLEs proposed by 
Chen, et al. [3]. To correct the bias of the proposed 
estimators, we define that 

2
ˆ  ˆL T R RM fkµ µ σ= − +   and 

2
ˆ  ˆU T R RM fkµ µ σ= − −  . As described in Ahn and Fessler 

[8], k is the bias correction factor of the SD of the refer-
ence product such that
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− −Γ = ∫ , y is a positive number. For the CM-

LE-method proposed by Chen, et al. [3], the estimators are 

3
ˆ ˆ  L T R RM fµ µ σ= − +   and 

3
ˆ ˆ  U T R RM fµ µ σ= − −  . 

Rσ  denotes the MLE of the SD of the reference prod-

uct, which is defined as ( )2
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. Under 

either of the null hypotheses in (1), none of the three 
estimators has an exact distribution when we consider 
the unknown Rσ  as a parameter. Therefore, we resort 
to asymptotic standard normal approximation for Wald 
test statistics.

The method of obtaining CMLEs for the variances 
2
Tσ  and 2

Rσ  is detailed in Chen, et al. [3]. We briefly 
describe the approach of calculating CMLEs. Consider-
ing the log-likelihood function under either of the con-
straint in the two null hypotheses in (1), we first derive 
the MLEs for Tµ  , Rµ  and 2

Tσ  under the constraint 
  T R Rfµ µ σ− = −  in 0LH . More specifically, the 

log-likelihood function is given by 
( ) ( )2 2
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Then, the CMLE for 2
Tσ  is given by ( )2
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, and the CMLE ( ),
L LT Rµ µ 

 of ( ),T Rµ µ  is estimated nu-
merically by Gibbs sampling. In the simulation study de-
scribed in next Section, the estimators are obtained using 
R function and the code derived from (2) is attached in the 
Appendix 1. By substituting ( ),

L LT Rµ µ   for ( ),T Rµ µ , the 

CMLE for 2
Rσ  is given by 

2
2   L L

L

T R
R f

µ µ
σ
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 

 . The CMLE 

( )2 2, , ,
U U U UT R T Rµ µ σ σ     of ( )2 2, , ,T R T Rµ µ σ σ  under the constraint 

in 0UH  can be derived in the similar way.

smaller than the target power value when the numbers of 
product lots are small. Chen, et al. [3] proposed a modified 
Wald test by using the Constrained Maximum Likelihood 
Estimate (CMLE)-method. With the Constrained Maximum 
Likelihood Estimate, the standard error was estimated 
using Maximum Likelihood Estimator (MLE) restricted to 
the null hypotheses in (1). Based on simulations, this CM-
LE-method led to slightly increase type I error rate but still 
less than the nominal significance value when the num-
bers of product lots are smaller than 20. Later, Burdick, 
et al. [6] and Dong, et al. [2] proposed to use Generalized 
Pivotal Quantity (GPQ) [7] to better control the type I error 
rate inflation and improve the power performance. Simu-
lations showed that the type I error rate for the GPQ meth-
od is below the nominal significance value except for some 
small-lot-number scenarios in which the simulated type I 
error rate can be inflated to around 5.3%. In this paper, we 
further improve the Wald test with CMLE standard error 
[3] by replacing the MLE of Rσ  in the equivalence margin 
with the sample estimate to further increase type I error 
rate while still below the nominal significance level and in-
crease power when the numbers of product lots are small.

This paper is structured as follows. In Section 2, we con-
sider three methods to construct Wald tests with CMLEs 
for standard error estimation. In Section 3, we describe the 
simulation plan and evaluate type I error rate and power 
performance of these three Wald tests. We provide an ex-
ample to apply our proposed method to a simulated data-
set and compare the proposed method with the current 
practice in Section 4. We present the discussion and con-
clusions in Section 5. For the simplicity of discussion, we 
consider only normally distributed measurements.

Methods
We first derive the proposed improved Wald test 

statistic and the other two estimators and then pro-
pose improved Wald test statistic with size adjustment 
to mitigate the imbalance between the numbers of the 
reference product lots and the test product lots.

Proposed improved Wald test statistic
To achieve at least 85% power when the mean dif-

ference is 1/8 of the reference standard deviation and 
the numbers of the reference product lots and the test 
product lots equal to ten, with equal variability, the cur-
rent practice led f to be 1.5 [1]. More details are de-
scribed in Tsong, et al. [4].

In this paper, we propose 
1

ˆ ˆ  L T R RM fµ µ σ= − +   
and 

1
ˆ ˆ  U T R RM fµ µ σ= − −   for estimating the param-

eters T R Rfµ µ σ− +  and T R Rfµ µ σ− − , respective-
ly. ˆTµ , ˆRµ  and Rσ  denote the MLE for the mean of 
the test product, the MLE for the mean of the reference 
product and the sample estimator for the SD of the ref-
erence product, respectively. When TX  is distributed 
from Normal ( )2,T Tµ σ  and RX  is distributed from Nor-

mal ( )2,R Rµ σ , 1ˆ   
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CMLE-method: 
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Under the null hypothesis, each test follows an as-
ymptotically standard normal distribution. The null hy-
potheses in (1) is rejected if 1tLW Z α−>  and 1tUW Z α−< −  for 
t = 1, 2, 3 at significance level α , where pZ  is the 100pth 
percentile of the standard normal distribution. With this 
criterion, we evaluated type I error rate and power for 
each test in Section 3.

Proposed improved Wald test statistic with size 
adjustment

Because the analytical similarity study is an un-blind-
ed study, the number of reference lots can be much 
larger than the number of test lots. However, we do 
not want the information from the reference product 
to dominate the equivalence testing. Thus, Dong, et al. 
[9] proposed to compute the following confidence in-
terval with the number of the adjusted reference lots 
and adjusted degrees of freedom when the ratio of the 
number of reference lots to the number of test lots is 
great than 1.5.

*

2 2

*1 ,
R T
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R T

S SX t
n nα−

∆ ± × +

Here X∆ , 2
RS  and 2

TS  denote sample mean difference 
between the test and the reference products, sample 
variance of the reference product, and sample variance 
of the test product, respectively. The number of adjust-
ed reference lots, *

Rn  , is equal to min ( )1.5 ,T Rn n×  . Tn  
and Rn  denote the number of test lots and the num-
ber of reference lots, respectively. The *1 ,df

t
α−

 is ( )1 α−  
quantile of the t-distribution with degrees of freedom 

* *.df df  is approximated by the Satterthwaite approxi-
mation as follows.

22 2

*
*

2 22 2

*

  

  
1 1

 

T R

T R

T R

T R

T R

S S
n n

df
S S
n n

n n

 
+ 

 =
   
   
   +

− −

In Dong, et al. [9], the number of reference lots in *df  
is only adjusted for the weight of the reference variance 
estimator 2

RS  but not for the variance itself. Following 
the same logic, we compute the Adjusted MWCMLE for 
imbalanced sample (AMWCMLE).
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With the adjustment, AMWCMLE can be severely 
smaller than the corresponding MWCMLE when the ra-
tio of the numbers of the lots for both products is ex-
tremely large. Thus, the adjusted type I error rate and 
power can be severely smaller than the unadjusted type 
I error rate and power. We evaluate the adjusted type I 
error rate and power in Section 3 as well.

Three Wald tests for testing the null hypothesis 
0 :L T R RH fµ µ σ− ≤ −  is constructed based on three dif-

ferent estimators T R Rfµ µ σ− −  . As described in Ahn 
and Fessler [8], the standard error of Rσ  can be esti-

mated by 
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variance of the chi distribution with ( )1Rn −  degrees 
of freedom. Thus, in our proposed Modified Wald test 
with CMLE (MWCMLE), the standard error 
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1LM  is 
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 can be used for testing 0LH . Plugging 

MLE ( )ˆTµ  for the test product mean, MLE ( )ˆRµ  for the ref-

erence product mean, sample estimator ( )Rσ  for the SD 

of the reference product and CMLE ( )2 2,
L LT Rσ σ  , we have the 

following test statistic.

MWCMLE: 1 2 2
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Following a similar derivation, the test statistic for the 
other two estimators, the unbiased version of the MWCM-
LE and the CMLE-method, can be derived as follows.

Unbiased Modified Wald test with CMLE (UMWCM-

LE): 
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Wald test with CMLE (CMLE-method in Chen, et al. 

2017) [3]: 

( )
3 2 2

2

ˆ
 

1

 
ˆ ˆ

L L

R

T R R
L

T R
n

T R

fW

f V
n n

µ µ σ

σ σ

− +
=

+ +
 

.

Similarly, we derive three Wald tests for testing 
0 :U T R RH fµ µ σ− ≥  based on the corresponding quan-

tity 
1UM , 

2UM , or 
3UM  as follows.
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the number of product lots are considered. When the 
numbers of product lots are equal ( )T Rn n= , the follow-
ing number of test lots is used: ( )10,100Tn = . When the 
numbers of product lots are not equal, the following 
numbers of product lots are used: ( ),T Rn n =  (10, 6) and 
(6, 10). Then, TX  and RX  are generated independently 
from Normal ( )2,T Tµ σ  and from Normal ( )2,R Rµ σ , respec-
tively.

Scenario 2: To compare with the simulation re-
sults of the CMLE-method in Chen, et al. [3], the 
same simulation setups as described in their study 
are used. The following configurations are used: 

( )2 0.25,0.5,1,2,4 , 1, 0 .,= = = = + ×T R R T R Rand ESσ σ µ µ µ σ  
The Effect Size (ES) is set at 1.5 and 0.125 for type I er-
ror rate and power, respectively. Various allocations of 
the number of product lots are considered. When the 
numbers of product lots are equal ( )T Rn n= , the follow-
ing number of test lots is used: ( )6,10,15,25,100,1000Tn =  
where Tn  are chosen to represent from practical small 
sample sizes used in biosimilar and large sample size to 
show the convergence to normal approximation test. 
When the numbers of product lots are not equal, the 
following numbers of product lots are used: ( ),T Rn n  = 
(10, 6), (10, 25), (10, 100), (6, 10), (25, 10), and (100, 10). 

TX  and RX  are generated independently from Normal 
2( ),T Tµ σ  and from Normal 2( ),R Rµ σ , respectively.

Scenario 3: Same simulation setups as Scenario 2 are 
used.

Scenario 4 (f = 1.5) and Scenario 5 (f = 1.7): The fol-
lowing configurations are used: 

2
Tσ  from 0.5 to 2 by 

0.25. 1, 0  R R T R Rand ESσ µ µ µ σ= = = + × . ES is set at 1.5 
or 1.7 and 0.125 for type I error rate and power, respec-
tively. We only consider the case when the numbers of 
product lots are equal from 10 to 15 by 1. Then, TX  and 

RX  are generated independently from Normal 2( ),T Tµ σ  
and from Normal 2( ),R Rµ σ  , respectively.

Throughout the simulations, we fix the test signifi-
cance level at 0.05α =  for each one-sided hypothesis 
test. The results are based on one million independent 
replicates for each simulation setup so that the standard 

error of simulation can be around 0.95*0.05   0.0002
1,000,000

=  .

Simulation results
Figure 1 shows the plots of the simulated power val-

ues against the effect size values for testing the null hy-
potheses in (1). First, as we can see, when the numbers 
of lots increase, the simulated power increases. Second-
ly, when the effect size is from -2.0 to zero or from 2.0 
to zero, the simulated power increases monotonically. 
Thus, MWCMLE has the monotone property, and the 
Wald tests can be performed at the boundary of the null 
hypotheses 0LH  and 0UH .

Table 1 shows the simulated type I error rates for 
three methods at different combination of the variance 

Simulation 
We first describe five simulation scenarios and cor-

responding simulation setups and then show simula-
tion results of type I error rate and power performance 
of three Wald tests: MWCMLE, UMWCMLE and CM-
LE-method.

Four simulation scenarios with f = 1.5
We consider four scenarios to present the perfor-

mance of the proposed MWCMLE in terms of type I 
error control and power improvement. Chen, et al. 
[3] demonstrated through simulation study that the 
Wald type tests were monotone tests, so that power 
increased with T R Rfµ µ σ− +  for testing 0LH  and with 

T R Rfµ µ σ− −  for testing 0UH  . With the monotone 
property, the type I error rate simulated at the bound-
ary of 0LH  and 0UH  is the maximum type I error rates 
of the two one-sided tests. The four scenarios are de-
scribed below.

Scenario 1: Show power function for the MWCMLE 
is monotone.

Scenario 2: Compare type I error rate and power of 
the MWCMLE to type I error rates and powers of the 
CMLE-method and the UMWCMLE with equal and un-
equal numbers of test and reference lots and different 
variance ratios of test product to reference product.

Scenario 3: Compare type I error rate and power of the 
MWCMLE to type I error rate and power of the AMWCMLE 
for unequal samples with different variance ratios.

Scenario 4: Generate type I error rate and power of 
the MWCMLE for small number of equal product lots 
with different variance ratios.

Margin reselection
In Scenario 4, the simulated power for the MWCMLE 

is less than 85% with the number of product lots being 
ten and equal product variability. To satisfy the criteria 
that the power is greater than 85% with the number of 
product lots being ten and equal product variability, we 
increase the margin f from 1.5 to 1.7. Accordingly, the 
hypotheses are changed to

0 : 1.7U T R RH µ µ σ− ≥  vs. : 1.7aU T R RH µ µ σ− <  	          (3)

0 : 1.7L T R RH µ µ σ− ≤ −  vs. : 1.7aL T R RH µ µ σ− > −

Then, we repeat the process in Scenario 4 and de-
noted this scenario as Scenario 5.

Simulation setups
We conduct extensive simulation studies to evaluate 

the MWCMLE by using type I error rate and power per-
formance. The simulation setups for each scenario are 
described as follows.

Scenario 1: Let 2 1, 1, 0,T R R T R Rσ σ µ µ µ σ= = = = +×  
and let λ  from -2.0 to 2.0 by 0.1. Various allocations of 

https://doi.org/10.23937/2469-5831/1510016
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ratio of test product to reference product and equal 
numbers of product lots. The simulated type I error rate 
of MWCMLE is below the nominal significance level ex-
cept for some scenarios when the numbers of product 
lots are six. Compared to the results for the MWCMLE, 
the simulated type I error rate for the CMLE-method is 
more conservative and the simulated type I error rate 
for the UMWCMLE is more liberal and inflated. Com-
mon patterns for all three methods are observed. First, 
when the numbers of lots increase, the simulated type I 
error rate converges to the significance level ( 0.05)α =
. Secondly, when the numbers of product lots are six 
and the variance ratio is large ( )2 2 4T Rσ σ =  , the sim-
ulated type I error rate is less than 4.3%. When compar-
ing three methods, the simulated type I error rates from 
high to low are the UMWCMLE, the MWCMLE, and the 
CMLE-method, respectively.

Table 2 shows the simulated type I error rates for 
three methods at different combination of the variance 
ratio and unequal numbers of product lots. The simu-
lated type I error rate of MWCMLE is below the nomi-
nal significance level, except that the numbers of prod-
uct lots are as follows: ( ),T Rn n  = (10, 25), (10, 100), 
or (6, 10). Compared to the results for the MWCMLE, 
the simulated type I error rate for the CMLE-method is 
more conservative and the simulated type I error rate 
for the UMWCMLE is more liberal and inflated. The CM-
LE-method and the MWCMLE share the following com-
mon patterns. First, when the number of reference lots 
increases, the simulated type I error rate increases at 
each level of the variance ratio. When the number of 
test lots increases, the simulated type I error rate de-
creases at each level of the variance ratio, except the 
large variance ratio ( )2 2 4T Rσ σ = . Secondly, the sim-
ulated type I error rate is less than 4.3% when the vari-
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Figure 1: Power function for the MWCMLE when the effect size is from -2.0 to 2.0.

Table 1: Simulated type I error rates (%) for three Wald Tests 
with different variance ratios when the numbers of product lots 
are equal if f = 1.5.

nT nR

2

2
T

R

σ
σ

Simulated type I error rate
CMLE MWCMLE UMWCMLE

6 6

0.25 3.0726 4.8217 6.0644*

0.5 3.2304 4.9344 6.1406*

1.0 3.3346 5.0310* 6.1845*

2.0 3.0959 4.7161 5.8023*

4.0 2.0638 3.3248 4.2259

10 10

0.25 3.3869 4.7339 5.6029*

0.5 3.5148 4.8141 5.6374*

1.0 3.6749 4.9202 5.6987*

2.0 3.8109 4.9815 5.692*

4.0 3.3862 4.4441 5.0727*

15 15

0.25 3.6021 4.7224 5.3972*

0.5 3.6933 4.7962 5.4385*

1.0 3.8399 4.8715 5.4702*

2.0 4.0088 4.9193 5.4665*

4.0 4.0739 4.8862 5.3507*

25 25

0.25 3.8906 4.7692 5.2811*

0.5 3.9598 4.7986 5.3015*

1.0 4.0532 4.8561 5.3081*

2.0 4.1977 4.9019 5.3156*

4.0 4.3411 4.9602 5.2896*

100 100

0.25 4.3875 4.8562 5.1081*

0.5 4.4226 4.8631 5.106*

1.0 4.4596 4.8796 5.0952*

2.0 4.5135 4.8837 5.0861*

4.0 4.6005 4.8989 5.0584*

1000 1000

0.25 4.7958 4.9526 5.0303*

0.5 4.8103 4.9534 5.0284*

1.0 4.8304 4.963 5.0311*

2.0 4.8586 4.9807 5.0363*

4.0 4.8776 4.9797 5.0328*

*: Simulated type I error rate is inflated.
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Table 5 compare the simulated type I error rate and 
power of the MWCMLE to the simulated type I error 
rate and power of the AMWCMLE with different vari-
ance ratios and unequal numbers of product lots. As 
we expected, the simulated type I error rate and pow-
er of the MWCMLE decrease after adjusting the degree 
of freedom at each level of the variance ratio. In addi-
tion, when the ratio of the numbers of the lots for both 
products is 10, the adjusted type I error rate and power 
can be severely smaller than the unadjusted type I error 
rate and power.

Supplementary Table A.1 and Supplementary Table 
A.2 in the Appendix 3 show that the simulated type I 
error rate and power of the MWCMLE for small equal 
numbers of product lots with different variance ratios 
and f is 1.5. The MWCMLE can control the simulated 
type I error rate well in this specified range of the num-
ber of lots and the variance ratios. In addition, the sim-
ulated power increases when the numbers of lots prod-
uct increase; the simulated power decreases when the 
variance ratio increases.

ance ratio is large ( )2 2 4T Rσ σ =  and the numbers of 
product lots are as follows: ( ),T Rn n  = (10, 6) or (6, 10). 
When comparing three methods, the simulated type 
I error rates from high to low are the UMWCMLE, the 
MWCMLE, and the CMLE-method, respectively.

Table 3 shows the simulated power for three meth-
ods at different combination of the variance ratio and 
equal numbers of product lots. For all three methods, 
when the numbers of lots increase, the simulated pow-
er increases. When comparing three methods, the sim-
ulated powers from high to low are the UMWCMLE, the 
MWCMLE, and the CMLE-method, respectively.

Table 4 shows the simulated power for three meth-
ods at different combination of the variance ratio and 
unequal numbers of product lots. For all three meth-
ods, when the number of reference lots increases or 
the number of test lots increases, the simulated power 
increases. When comparing three methods, the simu-
lated powers from high to low are the UMWCMLE, the 
MWCMLE, and the CMLE-method, respectively.

Table 2: Simulated type I error rates (%) for three Wald Tests 
with different variance ratios when the numbers of product lots 
are unequal if f = 1.5.

nT nR

2

2
T

R

σ
σ

Simulated type I error rate
CMLE MWCMLE UMWCMLE

10 6

0.25 2.97 4.7258 5.9699*

0.5 3.0607 4.7881 5.9839*

1.0 3.1977 4.8313 5.9892*

2.0 3.2077 4.7841 5.8667*

4.0 2.6001 4.0661 5.0568*

10 25

0.25 4.0707 4.9179 5.4112*

0.5 4.2147 5.0159* 5.4703*

1.0 4.3829 5.1207* 5.5264*

2.0 4.5277 5.1431* 5.4942*

4.0 4.2419 4.7668 5.0521*

10 100

0.25 4.7472 5.1223* 5.3247*

0.5 4.8388 5.1581* 5.3271*

1.0 4.8699 5.1273* 5.2587*

2.0 4.8994 5.0872* 5.1927*

4.0 4.6595 4.8087 4.8859*

6 10

0.25 3.5843 4.9327 5.7657*

0.5 3.7697 5.0818* 5.9048*

1.0 3.9773 5.2181* 5.9956*

2.0 3.8526 5.0389* 5.7476*

4.0 2.6982 3.6261 4.2085

25 10

0.25 3.3113 4.6766 5.5578*

0.5 3.3711 4.7027 5.5704*

1.0 3.447 4.7439 5.568*

2.0 3.5432 4.7785 5.5739*

4.0 3.6815 4.8036 5.4995*

100 10

0.25 3.1975 4.5566 5.4537*

0.5 3.232 4.5989 5.484*

1.0 3.2616 4.626 5.4846*

2.0 3.3017 4.6427 5.5023*

4.0 3.3697 4.6508 5.4714*

*: Simulated type I error rate is inflated.

Table 3: Simulated power (%) for three Wald Tests with differ-
ent variance ratios when the numbers of product lots are equal 
if f = 1.5 and 

8
R

T R
σµ µ− = .

nT nR

2

2
T

R

σ
σ

Simulated power
CMLE MWCMLE UMWCMLE

6 6

0.25 68.851 75.1763 78.2522
0.5 56.9287 64.8567 68.816
1.0 38.9725 47.837 52.681
2.0 19.7563 27.1498 31.4647
4.0 6.9084 10.799 13.4001

10 10

0.25 91.8434 93.5407 94.3174
0.5 86.0486 88.771 89.9659
1.0 73.0699 77.5285 79.557
2.0 49.5325 55.5501 58.6029
4.0 21.9434 27.0984 29.9405

15 15

0.25 98.5048 98.8007 98.9615
0.5 96.7669 97.3917 97.6942
1.0 91.4305 92.8779 93.5281
2.0 76.5988 79.6186 81.0726
4.0 47.3085 51.6418 53.8816

25 25

0.25 99.9478 99.9584 99.9661
0.5 99.8275 99.8673 99.8751
1.0 99.176 99.3103 99.3827
2.0 95.5465 96.1386 96.4221
4.0 80.8819 82.6019 83.4914

100 100

0.25 100 100 100
0.5 100 100 100
1.0 100 100 100
2.0 100 100 100
4.0 99.9954 99.9965 99.9964

1000 1000

0.25 100 100 100
0.5 100 100 100
1.0 100 100 100
2.0 100 100 100
4.0 100 100 100
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97, 102, 101, 99, 97, 97, and 103; each individual ob-
servation of the reference product is 96, 104, 102, 102, 
101, 99, 99, 92, 107, and 98. Then, the sample means 
for the test product ( )TX  and the reference product RX  
are 100.2 and 100.0, respectively. In addition, the sam-
ple variances for the test product 2( )TS  and the refer-
ence product 2( )RS  are 18.6 and 17.8, respectively. Fur-
thermore, by using the proposed MWCMLE, the overall 
null hypothesis is rejected by either of the following two 
criteria: first, 1 0.95LW Z>  and 1 0.95UW Z< −  , or second, the 
90% confidence interval ( ),L U  falls within the equiva-
lence margin ( ),R Rf fσ σ−    . The 90% confidence interval 
( , )L U  is derived by converting the above first criterion 
as follows.

2 2
2

1 0.95 0.95 *2 2
2

*

ˆ ˆ 1ˆ ˆ  
1

 
1

1

L R

L

L R

L

T nT R R
L T R R R

T R RT n
R

T R R

f VfW Z Z f
n n nf V

n n n

σµ µ σ µ µ σ σ
σ

σ

 − +
= > ↔ − − + + > −  −   

+ +  − 













2 2
2

1 0.95 0.95 *2 2
2

*

ˆ ˆ 1ˆ ˆ  
11

1

 U R

U

U R

U

T nT R R
U T R R R

T R RT n
R

T R R

f VfW Z Z f
n n nf V

n n n

σµ µ σ µ µ σ σ
σ

σ

 − −
= < − ↔ − + + + <  −   

+ +  − 













Similarly, Supplementary Table A.3 and Supplemen-
tary Table A.4 in the Appendix 3 show that the simulat-
ed type I error rate and power of the MWCMLE for small 
equal numbers of product lots with different variance 
ratios and f is 1.7. The MWCMLE can control the simu-
lated type I error rate well in this specified range of the 
number of lots and the variance ratios. In addition, the 
simulated power increases when the numbers of prod-
uct lots increase, the simulated power decreases when 
the variance ratio increases. Compared to the simulat-
ed power in Supplementary Table A.2 when f is 1.5, the 
simulated power in Supplementary Table A.4 when f is 
1.7 is larger for each combination of the number of lots 
and the variance ratios.

Application
To illustrate the application of the proposed MWCM-

LE, we provide an example in this section. We use the 
same simulated CQA data in Dong, et al. [2] to present 
the results for the current practice [1] and the proposed 
MWCMLE. The numbers of product lots are ten. Each in-
dividual observation of the test product is 94, 109, 103, 

Table 4: Simulated power (%) for three Wald Tests with 
different variance ratios when the numbers of product lots are 

unequal if f = 1.5 and 8
R

T R
σµ µ− = .

nT nR

2

2
T

R

σ
σ

Simulated power
CMLE MWCMLE UMWCMLE

10 6

0.25 74.0438 79.4977 82.0667
0.5 66.4983 73.0883 76.2573
1.0 53.0873 61.1323 65.1864
2.0 33.7136 42.3201 46.9895
4.0 14.5835 20.9865 24.9171

10 25

0.25 99.703 99.7686 99.7886
0.5 98.3803 98.6813 98.7791
1.0 91.5326 92.6733 93.1526
2.0 68.9696 71.6018 72.8204
4.0 32.2718 35.2019 36.5143

10 100

0.25 99.9999 100 100
0.5 99.9492 99.9569 99.9575
1.0 97.8069 97.9137 98
2.0 80.1939 80.8566 81.118
4.0 39.6682 40.469 40.9484

6 10

0.25 87.8472 90.2938 91.4495
0.5 76.5278 80.7979 82.769
1.0 55.0441 61.2033 64.3315
2.0 28.4305 34.1712 37.3351
4.0 9.8076 12.7372 14.7119

25 10

0.25 94.7127 95.8673 96.375
0.5 92.8589 94.3548 95.0161
1.0 88.6234 90.8036 91.8156
2.0 78.9254 82.4727 84.1595
4.0 59.443 64.7772 67.3846

100 10

0.25 95.9611 96.8569 97.2619
0.5 95.5805 96.5291 96.9897
1.0 94.7521 95.8535 96.3767
2.0 92.8916 94.3382 95.0457
4.0 88.7293 90.8661 91.8860

Table 5: Simulated type I error rates (%) and power (%) for 
MWCMLE and AMWCMLE with different variance ratios 
when the numbers of product lots are unequal if f = 1.5 and 

8
R

T R
σµ µ− =  (for power only).

nT nR

2

2
T

R

σ
σ

Simulated type I error 
rate

Simulated power

MWCMLE AMWCMLE MWCMLE AMWCMLE

10 6

0.25 4.7258 4.6639 79.4977 79.1071
0.5 4.7881 4.673 73.0883 72.2606
1.0 4.8313 4.6331 61.1323 59.5617
2.0 4.7841 4.4482 42.3201 39.9395
4.0 4.0661 3.6017 20.9865 18.7454

10 25

0.25 4.9179 3.2928 99.7686 99.6524
0.5 5.0159* 3.5998 98.6813 98.2647
1.0 5.1207* 3.9524 92.6733 91.5193
2.0 5.1431* 4.3185 71.6018 69.714
4.0 4.7668 4.2371 35.2019 33.5624

10 100

0.25 5.1223* 0.5951 100 99.9973
0.5 5.1581* 1.1428 99.9569 99.7783
1.0 5.1273* 1.9812 97.9137 95.9279
2.0 5.0872* 2.9319 80.8566 75.9145
4.0 4.8087 3.4929 40.469 36.2409

6 10

0.25 4.9327 4.5894 90.2938 89.9811
0.5 5.0818* 4.7678 80.7979 80.3026
1.0 5.2181* 4.9573 61.2033 60.6936
2.0 5.0389* 4.8305 34.1712 33.7187
4.0 3.6261 3.5091 12.7372 12.6295

25 10

0.25 4.6766 4.4341 95.8673 95.4431
0.5 4.7027 4.2605 94.3548 93.303
1.0 4.7439 3.9579 90.8036 88.0992
2.0 4.7785 3.5078 82.4727 75.519
4.0 4.8036 2.9553 64.7772 50.2691

100 10

0.25 4.5566 4.0399 96.8569 96.0507
0.5 4.5989 3.6254 96.5291 94.7502
1.0 4.626 2.9201 95.8535 91.5534
2.0 4.6427 1.9884 94.3382 83.3233
4.0 4.6508 1.0428 90.8661 62.7931

*: Simulated type I error rate is inflated.
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is 1.5. To satisfy the criteria that the power is greater 
than 85% with the number of product lots being ten and 
equal product variability, f needs to be increased from 
1.5 to 1.7 as shown in (3).

In conclusion, using the Wald test for equivalence 
testing of the hypothesis setting in (1) can be conserva-
tive when the numbers of product lots are small. Howev-
er, using CMLE for the variance estimation can improve 
the performance of Wald Test as shown in Chen, et al. 
[3]. Our investigation of MWCMLE and UMWCMLE show 
that the proposed MWCMLE can control the type I er-
ror rate well and increase the power over CMLE-method 
while the type I error rate of the UMWCMLE can be over 
liberal and inflated. Further detailed comparisons with 
other methods will be reported in a different paper.
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Thus, the 90% confidence interval ( , )L U  for the pro-
posed MWCMLE derived from the two one-sided tests 
is as follows.
( , )L U = 

22 2 2
2 2

0.95 0.95* *

1 1ˆ ˆ ˆ ˆ,
1 1

UL R R

L U

TT n n
T R R T R R

T R R T R R

f V f V
Z Z

n n n n n n
σσ

µ µ σ µ µ σ
    
 − − + + − + + +       − −    



   

The code is provided in the Appendix 2. Then, the follow-
ing results are calculated. When f is 1.5 and the equiva-
lence margin is (-6.32, 6.32) in the current practice, the 
90% C.I. is (-3.11, 3.51), when f is 1.7 and the equiva-
lence margin is (-7.17, 7.17) in the proposed MWCMLE, 
the 90% C.I. is (-3.83, 4.23). Thus, the data can pass the 
equivalence test by using both methods.

Discussion
We develop asymptotic tests using the Wald test 

statistic, for parallel-arm variance-adjusted equivalence 
trials with normal endpoints. Our results of the MWCM-
LE show that either the type I error rate controls closely 
below to the nominal level when the numbers of prod-
uct lots are equal and greater than or equal to ten or the 
type I error rate can be inflated to around 5.2% when 
the numbers of product lots are unequal. In addition, 
the simulated type I error rate of the CMLE-method is 
more conservative than the one of the MWCMLE; the 
simulated type I error rate of the UMWCMLE is more 
liberal and inflated than the one of the MWCMLE.

In terms of power for three methods, our results 
show that the UMWCMLE outperforms the other two 
methods, especially when the numbers of product lots 
are small. However, as shown in our simulation, the 
simulated type I error rate of the UMWCMLE is inflated, 
indicating higher false positive rate. Thus, the UMWCM-
LE is not a proper estimator choice. In contrast, when 
the numbers of product lots are increasing, the simulat-
ed power of the MWCMLE improves and outperforms 
the CMLE-method. Thus, the MWCMLE can be a proper 
choice among these three methods.

Since the equivalence margin is unknown and esti-
mated from the reference data, the simulated power of 
the MWCMLE is less than 85% with the number of prod-
uct lots being ten and equal product variability when f 
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Appendix
A.1. R code for Type I Error (or power) Simulations

### calculate cmle for variance of test and reference 
formulations

CMLE_equivTest < - function(obsT,obsR,eta)

{nT = length (obsT)

nR = length (obsR)

smplmuT = mean (obsT)

smplmuR = mean (obsR)

sigmaT = sd (obsT)

sigmaR = sd (obsR)

muT = smplmuT

muR = smplmuR

oldPrmtr = c (muT,muR,sigmaT,sigmaR)

dif = 1

iterMax = 200

iter = 1

 while(dif > 1.0e - 4 & iter < iter Max)

 {muT = muR + eta*sigmaR

sigmaT = sqrt ( mean( (obsT - muT) ^ 2 ) )

muR = (nT*(smplmuT-eta*sigmaR)/sigmaT ^ 2 + nR*sm-
plmuR/sigmaR ^ 2) / (nT/sigmaT ^ 2 + nR/sigmaR ^ 2)

poly = polynomial (c(-mean( (obsR-muR) ^ 2), 0, 1,-nT/
nR*eta*(smplmuT-muR)/sigmaT ^ 2, nT/nR*eta ^ 2/sig-
maT ^ 2 ))

pz = solve(poly)

 i = 4

root Found = FALSE

while(i > =1)

{if(Im(pz[i])==0 & Re(pz[i])>0)

{sigmaR = Re(pz[i])

root Found = TRUE break}

 i = i - 1}

if (!rootFound)

print ("Cannot find real root for sigmaR")

newPrmtr = c(muT, muR, sigmaT, sigmaR)

if (mean( abs(oldPrmtr - new Prmtr)) < 1.0e-4)break

old Prmtr = new Prmtr

iter = iter + 1}

list (muT = muT, muR = muR, sigmaT = sigmaT, sigmaR 
= sigmaR )}

### construct test statistics

equiv Test Wald RMLE < - function(obsT, obsR, eta, al-
pha)

{nT = length (obsT)

nR = length (obsR)

smplmuT = mean (obsT)

smplmuR = mean (obsR)

smplSigmaT = sd (obsT) 

smplSigmaR = sd (obsR)

Vn = 2* ( (nR-1)/2 - exp( 2*(lgamma(nR/2) - lgam-
ma((nR-1)/2)) ) )

nRnew < - ifelse(nR > 1.5*nT, 1.5*nT, nR)

nTnew < - ifelse(nT > 1.5*nR, 1.5*nR, nT)

est = CMLE_equivTest (obsT, obsR, -eta)

tstatL = (smplmuT - smplmuR + eta*smplSigmaR)/sqrt 
(est$sigmaT ^ 2/nTnew + (1.0/nRnew + eta ^ 2*Vn/
(nR1))*est $sigmaR ^ 2)

est = CMLE_equivTest(obsT,obsR,eta)

tstatU = (smplmuT - smplmuR - eta*smplSigmaR)/
sqrt(est $sigmaT ^ 2/nTnew + (1.0/nRnew + eta ^ 2*Vn/
(nR1))*est $sigmaR ^ 2)

qntl = qnorm (alpha,lower.tail = F)

rslt = ifelse (tstatL > qntl&tstatU < -qntl,1,0) # the ex-
pression is changed in Section 6.2

rslt}

### main function 

effsize < - 1.5 ### Type I Error

#effsize < - 0.125 ### power

eta < - 1.5

muR < - 0 

sigmaT < - 1

sigmaR < - 1

alpha < - 0.05 # significance level 

### equal number of lots for both product

nT < - 10

nR < - 10

nrep < - 10 ^ 6 # simulation replicates 

muT < - muR + effsize*sigma_R

simEquivTestRep < - function(i){obsT = rnorm 
(nT,muT,sigmaT) obsR = rnorm (nR,muR,sigmaR) testRslt 
= equivTestWaldRMLE(obsT,obsR,abs(eta),alpha)}

### simulated type I error (or power) in percentage

rslt = lapply (1:nRep,simEquivTestRep)

T_typeIerr = mean (unlist(rslt))*100
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print (T1_typeIerr)

A.2. R code for the application in Section 4

alpha = 0.05

eta = 1.7

obsT = c(94, 109, 103, 97, 102, 101, 99, 97, 97, 103)

obsR = c(96, 104, 102, 102, 101, 99, 99, 92, 107, 98)

testRslt = equiv Test Wald RMLE (obsT,obsR,abs(eta),al-
pha)

print (testRslt)

# change the expression of the variable rslt in the func-
tion equivTestWaldMLE in 6.1 to calculate the confi-
dence interval instead

rslt = c(smplmuT - smplmuR - qntl*sqrt (est$sigmaT ^ 2/
nTnew + (1.0/nRnew + eta ^ 2*Vn/(nR-1))*est$sigmaR ^ 
2), smplmuT - smplmuR + qntl*sqrt(est$sigmaT ^ 2/nT-
new + (1.0/nRnew + eta ^ 2*Vn/(nR-1))*est$sigmaR ^ 2))

A.3. Supplementary Table A.1, Supplementary Table 
A.2, Supplementary Table A.3 and Supplementary Table 
A.4 in Section 3.

Supplementary Table A.1: Simulated type I error (%) of 
MWCMLE for small numbers of lots with different variance ra-
tios if f = 1.5.

f = 1.5 T Rn n=

2

2
T

R

σ
σ 10 11 12 13 14 15

0.5 4.8141 4.779 4.7652 4.791 4.8138 4.7962
0.75 4.8705 4.8388 4.8195 4.8205 4.8669 4.8312
1 4.9202 4.8795 4.8502 4.8651 4.9156 4.8715
1.25 4.9568 4.9171 4.8959 4.8933 4.9337 4.8855
1.5 4.9713 4.9466 4.9229 4.9069 4.9496 4.9062
1.75 4.9813 4.956 4.9348 4.9189 4.9629 4.9067
2 4.9815 4.9635 4.9471 4.9296 4.9688 4.9193

Supplementary Table A.2: Simulated power (%) of MWCMLE 
for small numbers of lots with different variance ratios if f = 1.5 
and 8

R
T R

σµ µ− = .

F = 
1.5 T Rn n=

2

2
T

R

σ
σ 10 11 12 13 14 15

0.5 88.7347 91.591 93.7238 95.3343 96.5033 97.4131
0.75 83.2441 87.0385 89.9825 92.2921 94.0517 95.3956
1 77.4522 82.0568 85.7254 88.6778 91.0387 92.8733
1.25 71.6571 76.8777 81.1591 84.7034 87.6039 89.9219
1.5 65.9847 71.6597 76.4885 80.5246 83.8766 86.656
1.75 60.6115 66.5518 71.7641 76.215 80.0221 83.2018
2 55.5706 61.6356 67.1128 71.8774 76.0763 79.6336

Supplementary Table A.3: Simulated type I error (%) of MWCM-
LE for small numbers of lots with different variance ratios if f = 1.7.

f = 1.7 T Rn n=

2

2
T

R

σ
σ 10 11 12 13 14 15

0.5 4.7844 4.7505 4.7416 4.7725 4.779 4.7584
0.75 4.8409 4.7984 4.7814 4.8061 4.8301 4.8004
1 4.8921 4.8445 4.8239 4.8339 4.8684 4.8348
1.25 4.9278 4.8847 4.8687 4.8706 4.8937 4.8583
1.5 4.9579 4.9155 4.902 4.8901 4.9141 4.8798
1.75 4.9764 4.9361 4.9205 4.9025 4.934 4.8977
2 4.9968 4.9477 4.9342 4.9191 4.9487 4.908

Supplementary Table A.4: Simulated power (%) of MWCMLE 
for small numbers of lots with different variance ratios if f = 1.7 
and 8

R
T R

σµ µ− = .

f = 1.7 T Rn n=
2

2
T

R

σ
σ 10 11 12 13 14 15

0.5 93.7916 95.6515 96.9497 97.8712 98.5132 98.972
0.75 90.1553 92.7962 94.7675 96.2016 97.2224 97.9862
1 86.0391 89.4587 92.0614 94.0563 95.5519 96.6499
1.25 81.6338 85.7563 88.9856 91.5209 93.4698 94.9606
1.5 77.1378 81.8413 85.6255 88.6544 91.0912 92.9705
1.75 72.5993 77.8304 82.0648 85.5963 88.448 90.7082
2 68.1688 73.7671 78.4559 82.3834 85.6029 88.2306
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