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Abstract
We propose and study a method for partial covariates selec-
tion, which only select the covariates with values fall in their 
effective ranges. The coefficients estimates based on the re-
sulting data is more interpretable based on the effective covari-
ates. This is in contrast to the existing method of variable se-
lection, in which some variables are selected/deleted in whole. 
To test the validity of the partial variable selection, we extend-
ed the Wilks theorem to handle this case. Simulation studies 
are conducted to evaluate the performance of the proposed 
method, and it is applied to a real data analysis as illustration.
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addressed variable selection in artificial neural network 
models, Mehmood, et al. [8] gave a review for variable 
selection with partial least squares model. Wang, et al. 
[9] addressed variable selection in generalized additive 
partial linear models. Liu, et al. [10] addressed variable 
selection in semiparametric additive partial linear mod-
els. The Lasso [6,11] and its variation [12,13] are used to 
select some few significant variables in the presence of 
a large number of covariates.

However, existing methods only select the whole 
variable(s) to enter the model, which may not the most 
desirable in some bio-medical practice. For example, in 
two heart disease studies [14,15] there are more than 
ten risk factors identified by medical researchers in their 
long time investigations, with the existing variable se-
lection methods, some of the risk factors will be deleted 
wholly from the investigation, this is not desirable, since 
risk factors will be really risky only when they fall into 
some risk ranges. Thus deleting the whole variable(s) in 
this case seems not reasonable, while a more reason-
able way is to find the risk ranges of these variables, 
and delete the variable values in the un-risky ranges. In 
some other studies, some of the covariates values may 
just random errors which do not contribute to the influ-
ence of the responses, and remove these covariates val-
ues will make the model interpretation more accurate. 
In this sense we select the variables when their value 
falls within some range. To our knowledge, method for 
this kind of partial variable selection hasn’t been seen in 

Introduction
Variables selection is a common practice in biosta-

tistics and there is vast literature on this topic. Com-
monly used methods include the likelihood ratio test 
[1], Akaike information criterion, AIC [2] Bayesian in-
formation criterion, BIC [3], the minimum description 
length [4,5] stepwise regression and Lasso [6], etc. The 
principal components model linear combinations of the 
original covariates, reduces large number of covariates 
to a handful of major principal components, but the 
result is not easy to interpret in terms of the original 
covariates. The stepwise regression starts from the full 
model and deletes the covariate one by one according 
to some statistical significance measure. May, et al. [7] 
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ter(s). For simple of discussion we assume there are no 
unknown parameters. Then the log-likelihood is

( ) ( )'

1

log y .
=

= −∑ x
n

n i i
i

fβ β

Let β̂  be the Maximum Likelihood Estimate (MLE) 
of β (when ( )f ⋅

 
is the standard normal density, β̂ is 

just the least squares estimate). If we delete ( )k d≤  
col-

umns of nX  and the corresponding components of β, 
denote the remaining covariate matrix as n

−X  and the 
resulting β as -β , and the corresponding MLE as ˆ -β . 
Then under the hypothesis 0H : the deleted columns of 

nX  has no effects, or equivalently the deleted compo-
nents of β are all zeros, then asymptotically [1].

( ) ( ) 2ˆ ˆ2  − → 
-

D

n n kβ β  χ  ,

where 2
kχ  is the chi-squared distribution with k  

-degrees of freedom. For a given nominal level α , let 
( )2 1dχ α−  be the ( )1 α− -th upper quantile of the 2

kχ  
distribution, if ( ) ( ) ( )2ˆ ˆ2 1− − ≥ − n n dβ β  χ α , then 0H  

is rejected at significance level α , and its not good to 
delete these columns of nX ; otherwise we accept 0H  
and delete these columns of nX .

There are some other methods to select columns of 
nX , such as AIC, BIC and their variants, as in the model 

selection field. In these methods, the optimal deletion 
of columns of nX  corresponds to the best model selec-
tion, which maximize the AIC or BIC. These methods are 
not as solid as the above one, as may sometimes de-
pending on eye inspection to choose the model which 
maximize the AIC or BIC.

All the above methods require the models under 
consideration be nested within each other, i.e., one is 
a sub-model of the other. Another more general model 
selection criterion is the Minimum Description Length 
(MDL) criterion, a measure of complexity, developed by 
Kolmogorov [4], Wallace and Boulton (1968) [16], etc. 
The Kolmogorov complexity has close relationship with 
the entropy, it is the output of a Markov information 
source, normalized by the length of the output. It con-
verges almost surely (as the length of the output goes 
to infinity) to the entropy of the source. Let ( ){ },g= ⋅ ⋅  be a finite set of candidate models under consideration, 
and { }: 1, ,= = …Θ j j hθ  be the set of parameters of in-
terest. iθ  may or may not be nested within some other 

jθ , or iθ  and 
jθ  both in Θ may have the same dimen-

sion but with different parametrization. Next consid-
er a fixed density (. | )jf θ , with parameter 

jθ  running 
through a subset Γ ⊂ k

j R , to emphasize the index of 
the parameter, we denote the MLE of jθ  under model 

( | )⋅ ⋅  by ˆ
jθ  (instead of by ˆ

nθ  to emphasize the depen-
dence on the sample size), ( )jI θ  the Fisher informa-
tion for jθ  under ( | )f ⋅ ⋅ , ( )jI θ

 
its determinant, and jk  

the dimension of jθ . Then the MDL criterion (for exam-
ple, Rissanen [17] and the review paper by Hansen and 
Yu [5], and references there) chooses jθ  

to minimize

the literature, which is the goal of our study here. Note 
that in existing method of variable selection, some vari-
ables are selected/deleted, while in our method, some 
variable(s) are partially selected/deleted, i.e., only some 
proportions of some variable observations are select-
ed/deleted. The latter is very different from the exist-
ing methods. In summary, traditional variable selection 
methods, such as stepwise or Lasso, some covariate(s) 
will be removed either wholly or none from the anal-
ysis. This is not very reasonable, since some of the re-
moved covariates may be partially effective, removing 
all their values may yield miss-leading results, or at least 
cost information loss; while for the variables remaining 
in the model, not all their values are necessarily effec-
tive for the analysis. With the proposed method, only 
the non-effective values of the covariates are removed, 
and the effective values of the covariates are kept in 
the analysis. This is more reasonable than the existing 
methods of removing all or nothing.

In the existing method of deleting whole variable(s), 
the validity of such selection can be justified using the 
Wilks result, under the null hypothesis of no effect of 
the deleted variable(s), the resulting two times log-like-
lihood ratio will be asymptotically chi-squared distrib-
uted. We extended the Wilks theorem to the case for 
the proposed partial variable deletion, and use it to jus-
tify the partial deletion procedure. Simulation studies 
are conducted to evaluate the performance of the pro-
posed method, and it is applied to analyze a real data 
set as illustration.

The Proposed Method
The observed data is ( )( ), 1,...,i iy i n=x , where iy  is 

the response and d
i R∈x  is the covariates, of the i -th 

subject. Denote ( )1, , 'n ny y= …y  
and ( )'

1 nx , , x ' 'n = …X . 
Consider the linear model

n ,= +n ny X εβ                                                                     (1)

where ( )1, , 'dβ β β= …  
is the vector of regression pa-

rameter, ( )1  , , '= …nε nε ε  is the vector of random errors, 
or residual departure from the linear model assumption. 
Without loss of generality we consider the case the iε ’s are 
independently identically distributed (iid), i.e. with vari-
ance matrix ( ) 2= nVar Iε σ , where   nI  is the n -dimensional 
identity matrix. When the iε ’s are not iid, often it is assumed 

( ) Ω=Var ε  for some known positive-definite Ω, then make 
the transformation 1/2Ω−=y yn n, 1/2Ω−=X X

n n and 1/2Ω−= εε
, then we get the model n = +Xy εnβ , and the εi ’s are iid 
with ( ) =ε nVar I . When Ω is unknown, it can be estimated 
by various ways. So below we only need to discuss the case 
the iε  ’s are iid.

Summary of existing work:
We first give a brief review of the existing meth-

od of variable selection. Assume the model residual 
= − ′xy β  has some known density function ( )f ⋅  

(such as normal), with possibly some unknown parame-

https://doi.org/10.23937/2469-5831/1510017


ISSN: 2469-5831DOI: 10.23937/2469-5831/1510017

• Page 3 of 10 •Gu et al. Int J Clin Biostat Biom 2018, 4:017

lel to the log-likelihood ratio statistic for (whole) vari-
able deletion, let, for our case,

( ) ( )ˆ ˆΛ 2 − = − n n n
-β β  .

Let ( )1,..., kj j  be the columns with partial dele-
tions, ,{ :

r rj j iC i x=  is deleted 1 }i n≤ ≤  be the index 
set for the deleted covariates in the rj  -th column 

( )1,...,r k= ; 
rj

C  be the cardinality of 
rj

C , thus 

( )/ 1,...,
rr jC n r kγ = = . For different rj  and sj , 

rj
C  

and 
sj

C  may or may not have some common compo-
nents. We first give the following Proposition, in the 
simple case in which the index sets 

rj
C  

’s are mutually 
exclusive. Then in Corollary 1 we give the result in more 
general case in which the index sets 

sj
C  

’s are not need 
to be mutually exclusive.

For given nX , there are many different ways of par-
tial column deletions, we may use Theorem 1 to test 
each of these deletions. Given a significance level α , 
a deletion is valid at level α  if ( )2Λ 1< −n χ α , where 

( )2 1χ α−  is the ( )1 α− - th upper quantile of the 
2

1

k
j jj γ χ=∑  distribution, which can be computed by sim-

ulation for given ( )1,..., kγ γ .

The following Theorem is a generalization of the 
Wilks Theorem [1]. Deleting some whole columns in 

nX  corresponds to 1jγ =  ( )1,...,j k=  in the theo-
rem, and then we get the existing Wilks’ Theorem.

Theorem 1: Under 0H , suppose 
r sj jC C φ∩ = , the 

empty set, for all 1 r s k≤ ≠ ≤ , then we have 

2

1

Λ   .
=

→∑
kD

n j j
j

γ χ

where 2 2
1 ,..., kχ χ  are iid chi-squared random vari-

able with 1-degree of freedom.

Note that in Wilks problem the null hypothesis is 
that, the coefficients corresponding to some variables 
are zero. The null hypothesis is nested within the alter-
native; while the null hypothesis in our problem is: The 
coefficients correspond to some partial variables, and 
the null hypothesis is not nested within the alternative. 
So the results of the two methods are not really com-
parable.

The case the 
rj

C  
’s are not mutually exclusive is a 

bit more complicated. We first re-write the sets 
rj

C  
’s 

such that

1 11 1 ,..., ,...,r r r

k k
r j r j j j jC D= =∪ = ∪ ∪ ,

where the 
1 ,..., rj jD  

’s are mutually exclusive, 

1
,...,

kj jD D  are index sets for one column of nX  only; 
the 

1 2,j jD  
’s are index sets common for columns 1j  

and 2j  only; the 
1 2 3, ,j j jD  

’s are index sets common 
for columns 1 2,j j  and 3j  only,.... Generally some of 
the 

1 ,..., rj jD  
’s are empty sets. Let 

1 1,..., ,...,r rj j j jDγ =  

( ) ( ) ( )
1

ˆlog |   log  log ,  1, , .  
2 2 Γ

=

− + + ∫ = …∑ j

n
j

i j j j
i

k nf Y I d j hθ θ θ
π   (3)

This method does not require the models be nested, 
but still require select/delete some whole columns. The 
other existing methods for variable selection, such as 
stepwise regression and Lasso, etc., are all for deleting/
keeping some whole variables, and does not apply to 
our problem.

The proposed work
Now come to our question, which is non-standard 

and we are not aware of a formal method to address 
this problem. However, we think the following ques-
tion is of practical meaning. Consider deleting some 
of the components within fixed k  ( )k d≤  columns 
of nX , the deleted proportions for these columns are 

1,..., (0 1)k jγ γ γ< < . Denote nX −  for the remaining co-
variate matrix, which is nX  with some entries replaced 
by 0’s, corresponding to the deleted elements. Before 
the partial deletion, the model is

= +y X εn n nβ .

After the partial deletion of covariates, the model 
becomes

− −= +y εXn n nβ .

Note that here β and -β  have the same dimen-
sion, as no covariate is completely deleted. β is the 
effects of the original covariates, -β  is the effects of 
the covariates after some possible partial deletion. 
It is the effects of the effective covariates. As an over 
simplified example, we have  individuals, with 
five responses ( )1 2 3 4 5, , , ,n y y y y y=y   and covari-
ate vectors ( )1 1.3, 0.2, 1.5 '= −x , ( )2 0.1, 0.9, 1.3 '= − −x , 

( )'
3 1.1,1 .4, 0.3= −x , ( )4 0.8,1 .2, 1.7 '= −x , ( )5 1.0, 2.1, 1.1 '= −x  

and ( )1 2 3 4 5, , , ,n =X x x x x x   . Then β is the effects of 
the regression of  on 

nX . If we remove some 
seemingly insignificant covariate components, for 
example, let ( )1 1.3, 0, 1.5 ',− = −x

 ( )2 1.1,1 .4, 0 ',− =x  ( )3 1.1,1 .4, 0 ',− =x  ( )4 0.8,1 .2, 1.7 '− = −x , ( )'
5 1.0, 2.1, 1.1− = −x  and 

( )1 2 3 4 5, , , ,n
− − − − − −=X x x x x x   . In this case -β  is the effects of ny  

regressing on nX . Thus, though β and -β  have the same 
structure, they have different interpretations. The prob-
lem can be formulated as testing the hypothesis:

0 1:  : − −= ≠H vs Hβ β β β
If 0H  is accepted, the partial deletion is valid.

Note that different from the standard null hypothe-
sis that some components of the parameters be zeros, 
the above null hypothesis is not a nested hypothesis, or 

-β  is not a subset of β, so the existing Wilks’ theorem 
for likelihood ratio statistic does not directly apply here.

Denote ( )−
n β

 be the corresponding log-likelihood 
based on data ( ),  n n

−y X , and the corresponding MLE 
as ˆ -β . Since after the partial deletion, ˆ -β  is the MLE of β 
under a constrained log-likelihood, while  β̂ is the MLE 
under the full likelihood, we have ( ) ( )ˆ ˆ− ≤n n

-β β  . Paral-
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al case, we need the following more notations. Let 

( )1 ,..., kj jx  be an i.i.d. copy of data in the set 
1 ,..., kj jD . 

Let 
1 , , rj j

− −
…=x x  with probability ( )

1 ,..., 0,1,...,
rj j r kγ =

, where 
1 , , rj j

−
…x  is an i.i.d. copy of the 

1, ,..., ri j jx−

 
’s, whose 

components with index in 
1 ,..., rj jC .

Corollary 2: Under conditions of Corollary 1, results 
of Theorem 2 hold with −x  given above.

Computationally ( )( ) '− − − − − − x xE μ μ  is well 
approximated by

( )( )
( )

( )( )1

1 1

, ,11

', ,
, , , , , ,

0 ,, ,

1 ˆ ˆ' ,
…

…− − − − − − − −
… …

= ∈…

 − − ≈ − −  ∑ ∑x x x xr

r r

j jrr

k
j j

i j j j i j j j
r i j Dj j

D
E

n D
μ μ μ μ

where the notation 
,...,( , ) j ji j D∈  

means summation 

over those ,i j
−x

 
’s with deletion index in 

1 ,..., rj jD , and 

( 1 ,...,1

1

, , ( , ) ,
, ,

1ˆ )
r j jr

r

j j i j D i j
j j

x
D

µ − −
… ∈

…

Σ= .

Simulation Study and Application

Simulation study
We illustrate the proposed method with two exam-

ples, Examples 3 and 4 below. The former rejects the 
null hypothesis 0H  while the latter accepts. In each case 
we simulate  1000n =  i.i.d. data with response iy  and 
with covariates ( )( )1 2 3 4 5, , , ,  1,...,i i i i i ix x x x x i n= =x . 
We first generate the covariates, sample the ix  ’s from 
the 5-dimensional normal distribution with mean vector 

( )3.1,1.8, 0.5,0.7,1.5 '= −μ
 
and a given covariance matrix 

Γ.

Then we generate the response data, which, given 
the covariates. The iy  ’s are generated as

( )0 , 1, ,= + = …ixi iy i n' β 

( )0 0.42,0.11,0.65,0.83,0.72 '=β , the i∈  ’s are i.i.d. 

( )0,1N .

Hypothesis test is conducted to examine if the par-
tial deletion is valid or not. Significant level is set as 

0.05α = . The experiment repeated 1000 times, Prop  
represents the proportion ( )1n Q αΛ > − , where ( )1Q α−  
is the ( )1 α−

 
-th upper quantile of the distribution 

2
1

k
j j jγ χ=∑

 
given in Theorem 1, computed via simula-

tion.

Example 3: In this example, five data sets are gener-
ated according to the mentioned method, with five dif-
ferent values of 0β . We are interested to know wheth-
er covariates with 

1
10ijx <  can be deleted. Five data set 

with different 0β  values are simulated. The proportion 
( )1, ,= … kγ γ γ  of ijx  

’s with 1
10ijx <  are shown for each 

data set, the results are shown in Table 1. The five rows 
in Table 1 are the results for the five data sets. For each 
data, the parameter β is estimated, a and test is con-
ducted using the given γ, the Λn is computed, ( )1Q α−  is given, and the corresponding p-value is provided. 
Note that for our problem, a p-value smaller than α  

be the cardinality of 
1 ,..., rj jD  and 1 1,..., ,..., /

r rj j j jD nγ =  
( )1,...,r k=

.

By examining the proof of Theorem 1, we get the 
following corollary which gives the result in the more 
general case.

Corollary 1: Under 0H , we have 

( ) ( ) 1 1

1

2
, , , ,

1 , ,

ˆ ˆΛ 2 −
… …

= …

 = − →  ∑ ∑ r r

r

kD

n n n j j j j
r j j

-β β  γ χ ,

where the 
1

2
,..., rj jχ ’s are all independent chi-squared 

random variables with r-degrees of freedom ( )1,...,r k= .

Below we give two examples to illustrate the usage 
of Proposition.

Example 1: 1000n = , 5d = , 3k = . Columns ( )1,2,4  
has some partial deletions with { }1 201,202,...., 299,300C = , 

{ }2 351,352,...,549,550C = , { }3 601,602,...,849,850C = , the jC  
’s have no overlap; 1 1/10γ = , 2 1/ 5γ = , 3 1/ 4γ = . So by the 
Proposition, under 0H  we have

( ) ( ) 2 2 2
1 2 3

1 1 12
10 5

ˆ
4

ˆ D

n n χβ β χ χ− − − → + +   ,

where all the chi-squared random variables are inde-
pendent, each has 1 degree of freedom.

Example 2: 1000n = , 5d = , 3k = . Col-
umns ( )1,2,4  

has some partial deletions with 
{ }1 101,102,...., 299,300;651,652,...,749,750 ,C =  { }2 201,202,...,349,350 ,C =  
{ }3 251,252,..., 299,300;701,702,...,799,800C = . In this case the jC

 
’s 

have overlaps, the Proposition can not be used direct-
ly, so we use the Corollary. Then { }1 101,102,...,199,200 ,D =  

{ }2 301,302,...,349,350 ,D =  { }3 701,702,...,799,800 ,D =  { }1,2 201,202,..., 249,250 ,  
{ }1,3 701,702,...,749,750D = , 2,3D φ= , { }1,2,3 251,252,..., 299,300D = ; 1 1/ 5γ = , 

2 1/ 20γ = , 
3 1/10γ = , 1,2 1/ 20γ = , 1,3 1/ 20γ = , 2,3 0γ = , 

1,2,3 1/ 20γ = . 
So by the Corollary, under 0H  we have

( ) ( ) 2 2 2 2 2 2
1 2 3 1, 2 1,3 1,2,3

1 1 1 1 1 1ˆ ˆ2
5 20 10 20 20 20

− − → + + + + + 
D

n n
-β β  χ χ χ χ χ χ ,

where all the chi-squared random variables are in-
dependent, with 2

1χ , 2
2χ  and 2

3χ  are each of 1 degree 
of freedom, 2

1, 2χ
 
and 2

1,3χ  are each of 2-degrees of free-
dom, and 2

1,2,3χ  is of 3-degrees of freedom.

Next, we discuss the consistency of estimation of ˆ -β  
under the null hypothesis 0H . Let r

− −=x x  with proba-
bility ( )0,1,...,r r kγ = , where rx−

 is an i.i.d. copy of the 
,i rx−

 
’s, whose components with index in jrC , in partic-

ular 0jC  is the index set for those covariates without 
partial deletion.

Theorem 2: Under conditions of Theorem 1,

( )ˆ . . .→ a s-
0β β

( ) ( )0
ˆ 0,Ω− − →

D
n Nβ β ,

where

( ) ( ) ( )( ) ( )
( )0

2

Ω E  ' ' .− − − −  = = − − ∫   x x
f

E d
fβ 0 0β β μ μ


 

 

∈
∈



To extend the results of Theorem 2 to the gener-
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(stage I or II) for less than five years and met other eligi-
ble criteria. They were randomly assigned according to 
a two-by-two factorial design to one of four treatment 
groups: 1) Placebo 2) Active tocopherol 3) Active depre-
nyl 4) Active deprenyl and tocopherol. The observation 
continued for 14 6±  months and reevaluated every 3 
months. At each visit, Unified Parkinson’s Disease Rating 
Scale (UPDRS) including its motor, mental and activities 
of daily living components were evaluated. Statistical 
analysis result was based on 800 subjects. The result re-
vealed that no beneficial effect of tocopherol. Deprenyl 
effect was found significantly prolong the time requiring 
levodopa therapy which reduced the risk of disability by 
50 percent according to the measurement of UPDRS.

Our goal is to examine whether some of the covari-
ates can be partially deleted. If traditional variable se-
lection methods are used, such as stepwise or Lasso, it 
will end up with some covariate(s) been removed whol-
ly from the analysis. This is not very reasonable, since 
some of the removed covariates may be partially effec-
tive, removing all their values may yield miss-leading re-
sults, or at least cost information loss. We use the pro-
posed method to examine three of the response vari-
ables, PDRS, TREMOR and PIGD, and three covariates, 
Age, Motor and ADL for all these responses. The deleted 
covariates are the ones with values below the γ -th data 
quantile, with 0.01,0.02,0.03γ =  and 0.05 . We examine 
each response and covariate one by one. The results are 
shown in Table 3, Table 4 and Table 5 below.

In Table 3, response TREMOR is examined. For co-
variable Age, the likelihood ratio Λn is larger than the 
cut-off point ( )1Q α−  

at all the deletion proportions, it 
suggests that for Age, no partial deletions with these 
proportions should be removed. For covariable Motor, 
Λn is smaller than the cutoff point ( )1Q α−  at the 0.01 
proportion, this covariable can be partially deleted at 
this proportion. In other words, the covariate Motor 
with values smaller than 1%-th of its quantile have no 
impact on the analysis, or can be treated as noise and 

means a significant value of Λn, or significant difference 
between the regression coefficients of original covari-
ates and those of the covariates after partial deletion, 
which implies in turn that the null hypothesis should be 
rejected, or the partial deletion should not be conduct-
ed (Table 1).

We see that the p-values of rejecting 0H , are all 
smaller than 0.05 in the five set of 0β . This suggests that 
covariates with 1

10ijx <
 
should not be deleted at signifi-

cance level 0.05α = .

Example 4: In this example, the original X  as in 
Example 3, but now we replace the entries in first 

100 rows and first three columns by noise ∈ , where 
10,
9

 
 
 

N  . The delete proportion ( )0.1,0.1,0.1=γ  is fixed 

with ijx  
’s having absolute values smaller than the low-

er 0.1 percent being deleted. We are interested to see 
in this case whether these noises can be deleted, i.e. 

0H  can be rejected or not. The results are shown in the 
following (Table 2).

We see that the p-values of rejecting 0H  are all 
greater than 0.95 for the five sets of 0β . It suggests that 
the data provided strong evidence to conclude that the 
deleted values are noises and they are not necessary to 
the data set at 0.05 significance level.

Application to real data problem.
We analyze a data set from the Deprenyl and To-

copherol Antioxidative Therapy of Parkinsonism, which 
is obtained from The National Institutes of Health (NIH). 
(For detailed description and data link, https://www.
ncbi.nlm.nih.gov/pubmed/2515723). It is a multi-cen-
ter, placebo-controlled clinical trial that aimed to deter-
mine a treatment for early Parkinson’s disease patient 
to prolong their time requiring levodopa therapy. The 
number of patients enrolled was 800. The selected ob-
ject were untreated patients with Parkinson’s disease 

Table 1: The simulation result of γ , Λn, ( )1Q α−  and p-value according to 0β .

No.
0β γ Λn ( )1Q α− p-value

1 (0.42, 0.11, 0.65, 0.83, 0.72) (0.008, 0.022, 0.043, 0.037, 0.030) 14492.91 4.5767 0.006
2 (0.12, 0.85, 0.44, 0.73, 0.62) (0.004, 0.020, 0.041, 0.040, 0.020) 13010.97 4.5748 0.016
3 (0.59, 0.27, 0.73, 0.35, 0.66) (0.008, 0.032, 0.031, 0.048, 0.025) 13505.90 4.5786 0.000
4 (0.21, 0.45, 0.78, 0.56, 0.63) (0.007, 0.022, 0.039, 0.053, 0.033) 12487.58 4.5281 0.005
5 (0.77, 0.51, 0.48, 0.89, 0.32) (0.01, 0.022, 0.042, 0.045, 0.026) 15437.66 4.5317 0.000

Table 2: The simulation result of γ , Λn, ( )1Q α−  and p-value according to 0β .

No.
0β γ Λn ( )1Q α− p-value

1 (0.42, 0.11, 0.65, 0.83, 0.72) (0.1, 0.1, 0.1) 1.0146 4.6034 0.998
2 (0.12, 0.85, 0.44, 0.73, 0.62) (0.1, 0.1, 0.1) 0.3576 4.6414 0.977
3 (0.59, 0.27, 0.73, 0.35, 0.66) (0.1, 0.1, 0.1) 3.2480 4.6756 0.965
4 (0.21, 0.45, 0.78, 0.56, 0.63) (0.1, 0.1, 0.1) 3.3003 4.6306 0.972
5 (0.77, 0.51, 0.48, 0.89, 0.32) (0.1, 0.1, 0.1) 3.3531 4.6326 0.955

https://doi.org/10.23937/2469-5831/1510017
https://www.ncbi.nlm.nih.gov/pubmed/2515723
https://www.ncbi.nlm.nih.gov/pubmed/2515723


ISSN: 2469-5831DOI: 10.23937/2469-5831/1510017

• Page 6 of 10 •Gu et al. Int J Clin Biostat Biom 2018, 4:017

mates are more meaning full since the on-effective val-
ues of covariate Motor are removed from the analysis.

In Table 5, the response is PDRS. The likelihood ratios 
Λn of Age, Motor and ADL all are larger than ( )2 1χ α−

 at the deletion proportions of 0.01, 0.02, 0.03 and 0.05. 
Thus the null hypothesis are rejected at all these pro-
portions, or no deletion is valid at these proportions, 
and the analysis should be based on the original full 
data, with the parameter estimates shown in the Table 
(Table 3, Table 4, and Table 5).

Note that the coefficient for Age is insignificant, and 
hence the corresponding Λn values with deleted pro-
portions are senseless.

Concluding Remarks
We proposed a method for partial variable deletion, in 

which only some proportion(s) of covariate(s) values are to 
be deleted. This is in contrast to the existing methods either 
select or delete the entire variable(s). Thus this method is 
new and is a generalization of the existing variable selec-
tion. The question is motivated from practical problems. 
It can used to find the effective ranges of the covariates, 
or to remove possible noises in the covariates, and thus 
the corresponding estimated effects are more interpreta-
ble. The proposed test statistic is a generalization of the 
Wilks likelihood ratio statistic, the asymptotic distribution 
of the proposed statistic is generally a chi-squared mixture 
distribution, the corresponding cut-off point can be com-
puted by simulation. Simulation studies are conducted to 

should be removed from the analysis. For covariable 
ADL, with deletion proportions 0.01-0.1 , the likelihood 
ratio Λn is smaller than ( )1Q α−  

which suggest that the 
lower percentage of 1% -10%  of this covariate have 
no impact on the analysis and should be deleted. After 
removing the corresponding proportions of Motor and 
ADL, the model is re-fitted to get the parameter esti-
mates shown there. These estimates have better mean-
ing than the ones based on the whole covariates data, 
since now the noise values of covariates are removed, 
and only the effective covariates entered the analysis. 
However, if traditional variable methods are used, such 
as stepwise regression or Lasso, it may end up with the 
whole covariate Motor, ADL, or both to be removed, 
and leads loss of information or even miss-leading re-
sults.

In Table 4, response PIGD is investigated. For covari-
able age, Λn is larger than the cut-off point ( )1Q α−  at the 0.02, 0.03 and 0.05 proportions, suggests that 
partial deletion with these proportions are not appro-
priate. For covariate Motor, Λn is smaller than cut-off 
point ( )1Q α−  

at the deletion proportions 0.02 and 0.03, 
suggests that the lower percentage of 2 - 3%  should be 
deleted from the analysis. For the variable ADL, Λn is 
larger than the cut-off point ( )1Q α−  

at the delete pro-
portions 0.02, 0.03 and 0.05, hence partial deletion at 
these proportions are not valid. After deleting 3% of the 
smallest values of Motor, the model is re-fit to get the 
parameter estimates shown in the Table. The new esti-

Table 5: Response PDRS:  Λn values and estimated regression coefficients.

Age Motor ADL
Estimated coefficient 1.563389 0.0476914 -1.139864
Delete proportion Λn ( )1Q α− Λn ( )1Q α− Λn ( )1Q α−

0.01 1.0073 0.0497 80.7411 0.0944 6.3392 0.0453
0.02 1.0475 0.0669 142.3528 0.0841 57.5051 0.2216
0.03 0.8609 0.1486 321.5332 0.1906 57.5051 0.2111
0.05 0.8650 0.2379 397.6481 0.2227 57.5051 0.2199

Table 3: Response TREMOR:  Λn values and estimated regression coefficients.

Age Motor ADL
Estimated coefficient 0.0240456 0.1801616 0.00451205
Delete proportion Λn ( )1Q α− Λn ( ) Λn ( )1Q α−

0.01 11.5171 0.0593 0.35929 0.8787 0.00425 0.1897
0.03 20.0485 0.1245 6.2598 0.6924 0.00425 0.1861
0.05 14.0114 0.2937 8.7075 0.9034 0.00425 0.1496
0.1 0.0238 0.3841

Table 4: Response PIGD: Λn values and estimated regression coefficients.

Age Motor ADL
Estimated coefficient -0.0049032 0.02467423 0.2084862
Delete proportion Λn ( )1Q α− Λn ( )1Q α− Λn ( )1Q α−

0.02 0.4956 0.0849 0.0031 0.0972 3.5607 0.2210
0.03 1.3908 0.1306 0.0166 0.1513 3.5607 0.2256
0.05 0.4816 0.2596 1.2607 0.2188 3.6607 0.1925
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regression. Chemometrics and Intelligent Laboratory Sys-
tems 118: 62-69. 
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models. Annals of Statistics 39: 1827-1851.

10.	Liu X, Wang L, Liang H (2011) Estimation and variable se-
lection for semiparametric additive partial linear models. 
Stat Sin 21: 1225-1248.  

11.	Tibshirani R (1997) The lasso method for variable selection 
in the Cox model. Statistics in Medicine 16: 385-395. 

12.	Fan J, Li R (2001) Variable selection via non-concave pe-
nalized likelihood and its oracle properties. Journal of the 
American Statistical Association 96: 1348-1360. 

13.	Fan J, Li R (2002) Variable selection for Cox’s proportional 
hazards model and frailty model. Annals of Statistics 30: 
74-99. 

14.	Wang HX, Leineweber C, Kirkeeide R, Svane B, Schenck-Gus-
tafsson K, et al. (2007) Psychosocial stress and atherosclero-
sis: family and work stress accelerate progression of coronary 
disease in women. The Stockholm Female Coronary Angiog-
raphy Study. J Intern Med 261: 245-254. 

15.	Shara NM, Wang H, Valaitis E, Pehlivanova M, Carter EA, 
et al. (2011) Comparison of estimated glomerular filtration 
rates and albuminuria in predicting risk of coronary heart 
disease in a population with high prevalence of diabetes 
mellitus and renal disease. Am J Cardiol 107: 399-405.  

16.	Wallace CS, Boulton DM (1968) An information measure 
for classification. Computer Journal 11: 185-194.

17.	Rissanen J (1996) Fisher information and stochastic complex-
ity. IEEE Transactions on Information Theory 42: 40-47.  

18.	Stat 701 (2002) Proof of Wilks’ Theorem on LRT.

19.	Bickel PJ, Klaassen CA, Ritov Y, Wellner JA (1993) Effi-
cient and Adaptive Estimation for Semiparametric Models. 
The Indian Journal of Statistics 62: 157-160.

evaluate the performance of the method, and it is applied 
to analyze a real Parkinson disease data as illustration. A 
drawback of the current version of the method is that it 
needs to specify the proportions of possible deletions for 
the variables, this makes the optimal proportions are not 
easy to find. In our next step research we will try to im-
plement an algorithm which finds the optimal proportions 
automatically, and more easy to use. As suggested from 
a reviewer, simulation studies should be performed for 
statistical significance test between the proposed method 
and existing variable selection method(s) to address the 
contribution of the proposed method. This will be poten-
tial for our future research work (Appendix).
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Appendix

Proof of Theorem 1: Let 0β  be the true parameter value generating the observed data, ( ) ( ) /= ∂ ∂ 



n nβ β β and  

( ) ( ) [ ]2 /= ∂ ∂ ∂ 



n nβ β β β' . Since β̂ is the MLE, ( ) 0=

 n β , so we have

( ) ( ) ( ) ( )( )0 0 0
ˆ ˆ− = − = −  

  



 

n n n n nβ β β β β β ,

where nβ  lies between β̂ and 0β . Since 0
ˆ →β β  (a.s.), we have 0→nβ β  (a.s.). We get

( ) ( )( ) ( )
11 1

0 0
ˆ −− −− = − 





n nn n n nβ β β β

Note that ( ) ( )1
0

−− →





P

nn Iβ β , and that ( )0
1=

=∑



n

n i
i

vβ , ( )0
0/

  
= ∂ − −  ∂  

x xi
i i i iv f y f yβ β

β
. The iv  ’s are iid 

with  ( ) 0iE v =  and  ( ) ( ) ( )0= =T
i i iVar v E v v I β , consequently,

( ) ( )( )1
0 0

ˆ 0, .−− →
D

n N Iβ β β  (A.1)

To simplify notation, assume the columns with partial deletions are ( )1,..., k . Denote ( )1,..., kn n  be the numbers of ijx
 
’s 

deleted from columns ( )1,..., k  of nX , so ( ) ( )1 1,..., / ,...,k kn n n γ γ= , denote ( )0 1 kn n n n= − + +  and 0 0 /n nγ =

. Let ( )0
−
n β  

be the likelihood with proportions ( )1,..., kγ γ , be deleted from columns ( )1,..., k
 
in nX  and denote ( )−



 n β  

and ( )−


 n β  be the partial derivatives accordingly. Write

( ) ( ) ( )
00, ,

1
,−

−
=

= +∑ j

k

n n j n
j

β β β  

where ( )
00,n β  is the part of log-likelihood for the 0n  data without covariate deletion, and ( ),− jj n β

 is that for all the jn  

data with the j  -th covariate deleted. Denote ( ) ( ) ( )
00, ,1=

= +∑  

 





j

k
n n j nj
β β β  accordingly.

For the log-likelihood without data deletion we make the similar decomposition as

( ) ( ) ( )
00, ,

1=

= +∑ j

k

n n j n
j

β β β  

,

where ( ), jj n β

 is the part of log-likelihood using data from the same individuals as those in ( )n β

, but without covariate 

deletion, and denote ( ) ( ) ( )
00, ,1=

= +∑  

 





j

k
n n j nj
β β β  accordingly.

Note that the same term ( )
00,n β  appears in both the decompositions of ( )n β

 and ( )−
n β

, the same term ( )
00,



 n β  

appears in both the decompositions of ( )

 n β  and ( )−


 n β , and that for 1,...,=j k, ( ), jj n β

 is different from ( ),− jj n β

 

in that there is no deletion in ( ), jj n β

, although both partial log-likelihoods use data from the same set.

We have

( ) ( ) ( )( ) ( ) ( )( )'

0 0 0 0
1ˆ ˆ ˆ ˆ ˆ 
2

= − − − − − 

 

 n n n n nβ β β β β β β β β β

( ) ( ) ( )( ) ( ) ( )( )0

'

0 0 0, 0 0 , 0
1

1 ˆ ˆ ˆ ˆ'
2 =

 
= − − − + − − 

 
∑ 

  

j

k

n n n j n n
j

β β β β β β β β β β β .
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Also, let Z = (Z1,...,Zd) with jZ
 
’s iid ( )0,1N , and note ( ) ( )1

, 0
−− →



j

P

j j n nn Iβ β  for ( )0,...,j k= , so we have

( ) ( )( ) ( ) ( ) ( )'
1

0 , 0 0 , 0
ˆ ˆ ˆ ˆ−− − − = − − − 

 

j jj n n j j j n nn n nβ β β β β β β β β βγ

'
D

jZ Zγ→ .

So we get

( ) ( ) ( )0
0

1ˆ ' 1 .
2 =

= + +∑
k

n n j p
j

Z Z oβ β  γ

Similarly to (A.1) we have, with ˆ −
nβ   lies between ˆ −β  and β̂,

( ) ( )( ) ( )
1

1 1
0 0

ˆ ˆ .
−

− − − − − −− = − 

 



n n nn n n nβ β β β

Consequently,

( ) ( )( )1
0 0

ˆ 0,− −
−− →

D
n N Iβ β β

       (A.2)

Where ( ) ( )
00 '− −

− = H i iI E v vβ , and 'iv−  is iv  with the j  -th covariate being removed with probability ( )1,...,j j kγ = .

Also

( ) ( ) ( ) ( )( ) ( ) ( )( )0

' '

0 0 0, 0 0 , 0
1

1ˆ ˆ ˆ ˆ ˆ
2

− − − − − − − − −
−

=

 
= − − − + − − 

 
∑ 

   



j

k

n n n n j n n
j

β β β β β β β β β β β β

and we have

( ) ( )( ) ( ) ( ) ( )0 0

' '
1

0 0, 0 0 0 0 0, 0
ˆ ˆ ˆ ˆ− − − − − − −− − − = − − −

 



 

n n n nn n nβ β β β β β β β β βγ

0 '
D

Z Zγ→

Note that ( ),
−

−


jj n nβ  is a d d×  matrix with the j  -th row and j  -th column be zeros, so

( ) ( )( ) ( ) ( )( )' '

0 , 0 0, , 0,
ˆ ˆ ˆ ˆ− − − −

− − − − − −− − = − −



 



j jj n n j j j n n j jβ β β β β β β β β β

where ˆ
jβ−  

is the ( )1d −
 
-dimensional vector with the j  -th element removed from ˆ −β , 0,− jβ  is the ( )1d −

 
-dimensional 

vector with the j  -th element removed from 0β , and ( ),
−

−






jj n nβ  is the ( ) ( )1 1d d− × −   matrix with the j  -th column and 

j  -th row removed from ( ),−






jj n nβ .

Since under 0H , 0 0( ) ( ),−=n nl lβ β  now we have, under 0H ,

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( )( )'
1 1

0 , 0 0, 0 , 0
0

ˆ ˆ ˆ ˆ ˆ ˆ2 − − − − −
− − −

=

 − = − − − − − − −  ∑ 



   



j j

k T

n n j j j n n j j j n n
j

n n n n n nβ β β β β β β β β β β βγ

( ) ( )( ) ( ) ( ) ( )( ) ( )( ) ( )
k '

1 1
0 , 0 0, 0 , 0,

j 1

ˆ ˆ ˆ ˆ 1 ,− − −
− − − − −

=

= − − − − − − − +∑ 













j j

T

j j j n n j j j n n j pn n n n n n ojβ β β β β β β β β βγ
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note that the first term in the above bracket is asymptotically a 2χ  random variable with d  -degrees of freedom, while the 

second term is asymptotically a 2χ  random variable with ( 1)d −  -degrees of freedom. As in the proof of Wilks’ Theorem (or 

some more recent proofs, such as in Stat701, 2002 [18]), for each j  we have

( ) ( )( ) ( ) ( ) ( )( ) ( )'
1 1 2

0 , 0 0, 0 , 0,
ˆ ˆ ˆ ˆ− − −

− − − − −− − − − − − − →



 



j j

DT

j j n n j j j n n j jn n n n n n jβ β β β β β β β β β χ

where 2
jχ

 
is a chi-squared distribution with 1-degree of freedom, and the 2

jχ
 
’s are independent for different j , hence we get

( ) ( ) 2

1

2 .ˆ ˆ− −

=

 − →  ∑
kD

n n j j
j

β β  γ χ  

Proof of Theorem 2: i) Is from standard argument for the consistency of MLE. 
ii) After deleting the irrelevant covariates, the model is

( ),    . ,−= + ∼xi i iiy fβ ε ε

where the i
−x  are i.i.d. −x , and r

− −=x x  with probability ( )0,1,...,r r kγ = , where r
−x  is an i.i.d. copy of the ,i rx−

 
’s, 

whose components with index in jrC , in particular 0jC  is the index set for those covariates without partial deletion. The log-
likelihood is

( ) ( )
1

log .−

=

= −∑ x
n

n i i
i

f yβ β  

By the standard result on regression parameter estimation (eg; Proposition 4.3.1 D and Example 4.3.1 in Bickel, et al.) [19], the 

efficient score for β based on ( )− β

 is

( ) ( ) ( )
( ) ( )log

− −
− −

−

− −
= ∂ = −

∂ −

x x
x

x







f y f y

f y

β β
β μ

β β
Where ( )− −= xj Eμ . Under the common assumption that 0

−= − xy β  is independent of −x  (or just conditioning on −x ), 
it follows that

( ) ( )0
ˆ 0,Ω ,− − →

D
n Nβ β

Where

( ) ( )( ) ( )
( )0

2
''

0 0
ˆΩ ( ) .− − − −  = = − − ∫    

x x




 

f
E E d

fβ β β μ μ
ε

ε
ε
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