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Abstract
Pharmacovigilance is the primary method used to identify 
hazards associated with medicinal products. Using gener-
alized likelihood ratio tests, we examed the adverse reac-
tion signals of the drug class Monoamine oxidase inhibitors 
(MAOIs) from World Health Organization’s Pharmacovigi-
lance Database. The proposed test procedure has the ability 
of detecting adverse reactions of multiple drugs simultane-
ously. Our findings sugggest there are 23 common Adverse 
reaction signals detected within this drug class. And pos-
tural hypotension, high blood pressure, fainting, abnormal 
heart rhythm, dizziness, headache, drowsiness are the most 
strong signals for the MAOIs class. An extensive simulation 
study performed to evaluate the proposed test procedural 
also suggests the proposed test procedure works well in 
practice.
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There are several statistical methods available 
for adverse reactions detection in and other large 
postmarket databases. These methods include the 
reporting odds ratio (ROR, [1]), proportional report-
ing ratio (PRR, [2]), multi-gamma Poisson shrinker 
(MGPS, [3,4]), Bayesian confidence propagation neu-
ral network (BCPNN, [5]), Bayesian method based on 
a new Information Component (IC, [6]), simplified 
Bayes (sB, [7]), among others. A likelihood ratio test 
method ([8]), that assumes the number of adverse 
reactions follows a Poisson distribution, was devel-
oped to identify adverse reactions for a specific drug 
or to identify drugs for a particular adverse event. In 
post-marketing surveillance, the signals of adverse 
reactions within a drug class, or drug signals for a 
group of adverse reactions may be of interest to med-
ical reviewers. In this article, we develop a general-
ized likelihood ratio test to identify adverse reactions 
that have high reporting rates compared to other ad-
verse reactions associated with all the drugs of the 
same class or with similar treatment indications. The 
drug class refers to a set of drugs which have similar 
chemical structure such as the antibiotics drug class 
containing Penicillins, Tetracyclines, Cephalosporins, 
Quinolones, Lincomycins, Macrolides, Sulfonamides, 
Glycopeptides, Aminoglycosides and Carbapenems, 
etc. A group of adverse reactions refers to a set of 
preferred terms such as hepatic failure, alanine ami-
notransferase abnormal, ascites, blood bilirubin ab-
normal, cholestatic liver injury, hepatic atrophy, hep-
atomegaly, Reye’s syndrome, and so on that are all 
related to hepatocellular injury.

This article is organized as followed. In section 2, a 

Introduction
Reporting of drug or medical device related adverse 

reactions (ARs) is usually voluntary. One of the major 
postmarket safety surveillance databases is the World 
Health Organization’s (the “WHO”) global pharmacovig-
ilance database, which contains reports of suspected 
ADRs, so called Individual Case Safety Reports (ICSRs), 
collected by national drug authorities in over 110 coun-
tries and span over more than 100,000 different medic-
inal products. Clinical reviewers evaluate adverse reac-
tions reports to look for new safety concerns that might 
be related to a marketed product, or for a manufactur-
er’s compliance to reporting regulations.
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The maximum likelihoods under both the null and 
the two-sided alternative hypotheses are obtained by 
replacing the parameters with their MLEs in the likeli-
hood functions, leading to the likelihood ratio, for ith AR 
and jth drug as,
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statistic for testing 0 :j i iH p q=  for all ARs in drug j vs. 
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and define MLRi = max(LRij) as the test statistic. For com-
putational convenience, we may sometimes work 
with the log-likelihood ratio log(LRij) which is the 

brief overview of World Health Organization’s global 
pharmacovigilance database is provided. In Section 3, 
we give a brief review of the likelihood ratio test proce-
dure for adverse reactions detection for a single drug, 
then we propose a generalized likelihood ratio test pro-
cedure, namely GLRT, to detect multiple ARs in a drug 
class. The performance of GLRT is evaluated using sim-
ulated datasets in Section 4. In Section 5, both the LRT 
and the GLRT are applied to the 2000-2005 and 2005-
2010 data from WHO’s global database. Section 6 con-
tains some discussion and concluding remarks.

World Health Organization’s Pharmacovigi-
lance Database

The WHO’s global pharmacovigilance database con-
sists of the individual reports with demographical infor-
mation, route of administration, drug/biological infor-
mation, medical history, treatment indication, therapy 
start dates, and end dates. For adverse reaction detec-
tion, Medical Dictionary for terminology of preferred 
terms is often used to identify the adverse events, such 
as Death, Stroke, Myocardial infarction, and so on. 
There are also verbatim drug names in the file for drug/
biologic information. In studying the drug-AE associa-
tion, the generic name of the drug is used, which refers 
to the unique chemical makeup of a drug.

The WHO’s global pharmacovigilance database in-
cludes reports since 1980, however researchers and re-
viewers are more interested in data from recent years. 
In this article we focus on cases reported to WHO be-
tween 2000 and 2010 for more than 6500 drugs and 
14,000 Adverse reactions. For any particular adverse 
event, the investigators consider all suspect and con-
comitant drugs.

Inference Procedure

Test procedure for adverse reactions detection of 
a single drug

After summarizing the data files, the WHO phar-
macovigilance data can be presented in a tabular form 
with, say, adverse reactions (ARs) as the row variable 
and drugs as the column variable (as in Table 1), with 
nij as the cell count for ith AR and jth drug, ni. as the sum 
of counts for ith AR (ith row total) and n.j as the sum of 
counts for jth drug (jth column total).

We collapse the data structure table into multiple 
3 × 3 tables. For a fixed jth drug, we have I such tables 
(Table 2), each associated with an AR (i = 1,…, I). We as-
sume that nij ~ Poisson(ni. × pij), where pij is the reporting 
rate of jth drug for ith AR; and n.j - nij ~ Poisson((n.. - ni.)qij) 
where qij is the reporting rate of jth drug for other ARs 
combined excluding ith AR. We also assume nij and n.j - nij 
are independent. Since drug j is fixed, unless stated oth-
erwise, we suppressed the notational dependence of pij 
and qij and on jth drug. We define the null hypothesis,

Table 1: Data structure.

Drug1 Drug2 … … DrugJ ni.

AR1 n11 n12 … … n1J n1.

AR2 n21 n22 … … n2J n2.

… … … … … … …

… … … … … … …

AR1 nI1 nI2 … … nIJ nI.

n.j n.1 n.2 … … n.J n..

Table 2: 3 × 3 tables for jth drug.

jth Drug Other Drugs Marginal 
Total

ith AR nij ni. - nij ni.

Other ARs n.j - nij (n.. - ni.) - (n.j - nij) n.. - ni.

Marginal Total n.j n.. - n.j n..

https://doi.org/10.23937/2469-5831/1510023
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Where i = 1,…, I and k = 1,… , K, versus
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The maximum likelihood under both the null and 
the two-sided alternative hypotheses are obtained by 
replacing the parameters with their MLEs in the like-
lihood functions, leading to the likelihood ratio for ith 
AR in kth drug as:
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The likelihood ratio test statistic for testing 
0 0: ,k ik ik kH p q p= =  versus, ak ik ikH p q  for at 

least one AR, is the maximum likelihood ratio MLRk 
= maxi(LRik), i = 1,…I. The test statistic for testing 

0 : k i ik ik okH p q p= =   versus :a k i ik ikH p q>   
is

( ) ˆ ˆ( ( ( ))), k k i ik ik ikkMLR max MLR max max LR I p q= >=

Where i = 1,…I and k = 1,… , K.

Because the distribution of MLR under H0 is not 
analytically tractable, we still use a Monte Carlo sim-
ulation to obtain its distribution. For each drug k in 
the drug class under H0 we generate 499 datasets us-
ing 
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and compute 500 values of MLR including the one 
from the real data, for k = 1,…, K. This results into 500 
× K MLR values. The nulll hypothesis is rejected at α = 
0.05 level if the value of MLR from the observed data-
set is greater than the (1 - α)th percentile of the 500 × 
K MLR values Tα. After AR associated with the largest 
LRik is identified as signal (LRik > Tα), we move to the 
AR with the second largest value of LRik, determine if 
it is a signal and so on. This way, the generalized like-
lihood ratio test procedure controls Type-I error. It 
also controls the false discovery rate (FDR) with FDR 
≤ α.

Applications
In the following, we present the results from ap-

plying the likelihood ratio test procedure discussed 

monotone function of LRij.

The distribution of MLR under H0 is not analytically 
tractable and is obtained using Monte Carlo simulation 
as defined below. First, the number of cases for each 
AR, for a given drug j, are simulated under H0. Under H0, 
since n1j,…,nIj, given the margin totals n1.,…,nI. are inde-
pendent Poisson(ni.p0), i = 1,…,I, the joint distribution of 
(n1j,…,nIj) conditioning on n.j and (n1.,…nI.) is 

1. .
. 1. .1 2 .

.. ..

( ) | ; ,..., ( , ( ,..., )), , ,  .I
j j I j I jj

n nn n n multinomial n
n n

n n n… 

A total of 499 datasets under H0 are simulated 
from the multinomial distribution, and 500 MLRs are 
calculated. The null hypothesis is rejected at the α = 
0.05 level if the value of MLR from the observed data-
set is greater than the 95th percentile of the 500 MLR 
values (threshold, Tα). The corresponding p-value is 
then 1-R/500, where R is the rank of the observed 
MLR among all the 500 MLR values. If the p-value of 
the observed MLR is less than α (say, 0.05), then the 
AR associated with this MLR is the strongest signal 
among all ARs for the jth drug under consideration. 
Having found the strongest signal, we can then move 
to the second largest LRij, and so on, and declare 
them as signals if their LRij are greater than Tα or the 
corresponding p-values are less than α.

The likelihood ratio test is shown, analytically and 
through extensive simulation study, to control type-I er-
ror and false discovery rate (FDR) while retaining good 
power and sensitivity ([7,8]). In the next section, we 
generalize the likelihood ratio test procedure to detect 
all AR signals in a drug class. The methods to detect drug 
signals for a set of prespecified ARs can be performed in 
a similar fashion.

Test procedure for adverse reaction detection of 
multiple drugs

In order to develop a test statistic that can identify 
adverse reactions of multiple drugs in a class, we as-
sume that a drug class has K different drugs (usually K 
is a small number), and we assume that for kth drug the 
number of reports for ith AR and all other ARs (excluding 
ith AR) still remains a Poission distribution:

( ).~ik i ikn Poisson n p

( )( ). .. .~k ik i ikn n Poisson n n q− −

Where pik is the reporting rate of kth drug for ith AR, 
and qik is the reporting rate of kth drug for the other ARs. 
The null and alternative hypotheses for detecting AR 
signal in drug k are,

0 0:k ik ik kH p q p= =  for all ARs in drug k versus 

:ak ik ikH p q>  for at least one AR.

The null and alternative hypotheses for detecting AR 
signals among this drug class with k drugs are,

0 0: k i ik ik kH p q p= = 
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tected, respectively. Across the four drugs, the GLRT 
detects less ARs than the LRT. By cross-checking the 
ARs in the four MAOIs drugs, there are 23 common 
ARs detected within this drug class. The top ARs are 
listed in Table 4 and Table 5, and postural hypoten-
sion, high blood pressure, fainting, abnormal heart 
rhythm, dizziness, headache, drowsiness are the 
most strong ARs for this MAOIs class.

A Simulation Study

Data simulation
We then study the performance of the generalized 

likelihood ratio test (GLRT) using simulated datasets. 
We simulate datasets based on the four drugs in the 
monoamine oxidase inhibitors drug class in WHO’s glob-
al pharmacovigilance database.

Under the null hypothesis, the data are simulated 
from multinomial distribution (3). Under the alternative 
hypothesis, data are generated as follow,

1. .
. 1. . . 1 0 1 0

.. .
1

.

( ) | ; ,..., ( , ( ), ,  , , ( ))I
k I k k kk k kk I

n nn n n multinomial n rr r rr rn
n n
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Where k = 1,…5, and rr1k,…, rrIk are the relative re-
porting rates for AE1, …, AEI in K drugs with constraints 

.
0

..

0 i
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ik ki

nrr rr
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∗ ∗ =∑  Relative 

reporting rates rrik are specified as follows: rrik are as-
signed a value; higher than 1 for ARs selected as signals 
and 1 for all other ARs not selected as signals. r0k can 
be regarded as baseline risks for drug k, and r0k can be 
different from one drug to another.

We evaluate how the relative reporting rate (rr), the 
sample size (n.k) and the number of signals affect the 
performance of the GLRT through the following four 

in Section 3 to the “Monoamine oxidase inhibitors” 
(MAOIs). The MAOIs are used to treat several condi-
tions. They include, but are not limited to: Depres-
sion, generalized anxiety disorder, agitation, obses-
sive compulsive disorders (OCD), manic-depressive 
disorders, childhood enuresis (bedwetting), major 
depressive disorder, diabetic peripheral neuropathic 
pain, neuropathic pain, social anxiety disorder, post-
traumatic stress disorder (PTSD) etc. The drug class 
includes Nardil (phenelzine), Parnate (tranylcypro-
mine), Marplan (isocarboxazid), Emsam (selegiline), 
etc. We select four MAOIs labeled as MAOI1, MAOI2, 
MAOI3, MAOI4 and MAOI5 (not in any specific order 
to mask their names) using the WHO 2000-2005 and 
2005-2010 data set. The purpose of this analysis is 
to identify the ARs signals (with high disportionality 
rates) associated with MAOIs drug class. We apply the 
likelihood ratio test (LRT) and generalized likelihood 
ratio test (GLRT) for detecting Adverse Reactions.

The results of MAOIs drug class using both the LRT 
and GLRT are listed in Table 3. By using the likelihood 
ratio test procedure to each of the four drugs in the 
drug class, there are 66, 37, 74, 45 ARs detected for 
the four MAOIs drugs; while using the generalized 
likelihood ratio test, there are 61, 32, 68, 39 ARs de-

Table 3: Number of signals detected by the LRT and GLRT in 
Monoamine oxidase inhibitors (MAOIs) drug class.

Drug 2000-2005 2005-2010
LRT GLRT LRT GLRT

MAOI1 66 61 95 88

MAOI2 37 32 52 45

MAOI3 74 68 90 89

MAOI4 45 39 73 68

Table 4: Total common reactions found for the five drugs in MAOIs class in 2000-2005 data set.

Drug Common Signals
MAOI1 Postural hypotension, fainting, abnormal heart rhythm, dizziness, headache, drowsiness, insomnia, constipation, 

nausea, diarrhea, sexual dysfunction, weight gain or weight loss, seizures, rash, blurred vision, hepatitis

MAOI2 High blood pressure, fainting, abnormal heart rhythm, dizziness, headache, drowsiness, insomnia, anxiety, 
nausea, diarrhea, sexual dysfunction, weight gain or weight loss, blurred vision, hepatitis

MAOI3 Postural hypotension, dizziness, headache, drowsiness, insomnia, anxiety, constipation, nausea, diarrhea, sexual 
dysfunction, weight gain or weight loss, seizures, rash, blurred vision, hepatitis

MAOI4 Fainting, headache, drowsiness, postural hypotension, high blood pressure, insomnia, anxiety, constipation, 
nausea, diarrhea, sexual dysfunction, weight gain o weight loss, hepatitis

Table 5: Total common reactions found for the five drugs in MAOIs class in 2005-2010 data set.

Drug Common Signals
MAOI1 Postural hypotension, dizziness, fainting, abnormal heart rhythm, headache, drowsiness, insomnia, constipation, 

nausea, diarrhea, sexual dysfunction, weight gain or weight loss, seizures, rash, blurred vision, hepatitis

MAOI2 Abnormal heart rhythm, dizziness, high blood pressure, fainting, headache, drowsiness, insomnia, anxiety, 
nausea, diarrhea, sexual dysfunction, weight gain or weight loss, blurred vision, hepatitis

MAOI3 Dizziness, headache, postural hypotension, drowsiness, insomnia, anxiety, diarrhea, sexual dysfunction, 
constipation, nausea, weight gain or weight loss, seizures, rash, blurred vision, hepatitis

MAOI4 Fainting, drowsiness, postural hypotension, headache, high blood pressure, insomnia, nausea, anxiety, 
constipation, diarrhea, sexual dysfunction, weight gain o weight loss, hepatitis

https://doi.org/10.23937/2469-5831/1510023
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across the drug class, but signals are not necessarily 
common between drugs.

• Senario 4: We take a similar process as Scenario 3, 
randomly select 30 signals for each drug independent-
ly, but we use inhomogeneous rr. A rate of 2 × rr is as-
signed to those AR signals for which ni. (the total num-

scenarios:

• Scenario 1: One signal is randomly assigned to one 
drug, and the remaining of other four drugs are free of 
signals. Without loss of generality, we assign one signal 
to the drug with the column total as 12000.

• Scenario 2: We randomly assign 30 common sig-
nals in each drug over the drug class with homogeneous 
relative reporting rate.

• Senario 3: We randomly assign 30 signals in each 
drug using homogeneous relative reporting rates (rr) 

Table 6: Illustration of false discovery rate (FDR).

H0 is true Ha

Positive result V S

Negative result U T

Table 7: Simulation results of GLRT.

Marginal Count n.j rr Power Sensitivity FDR
Scenario 1: Select one signal in one drug with marginal total as 28,216 or 4,362

28216 500 3 0.073 0.13 0.0565

28216 1500 3 0.315 0.278 0.0442

28216 3000 3 0.83 0.753 0.044

28216 5000 3 0.992 0.983 0.0368

28216 8000 3 1 1 0.0257

28216 12000 1 0.061 NA 0.053

28216 12000 2 0.758 0.751 0.043

28216 12000 3 1 1 0.0351

28216 12000 5 1 1 0.0326

28216 12000 7 1 1 0.0316

4362 12000 1 0.077 NA 0.077

4362 12000 2 0.084 0.005 0.090

4362 12000 3 0.152 0.079 0.073

4362 12000 4 0.50 0.364 0.0569

4362 12000 5 1 1 0.0393

4362 12000 7 1 1 0.0397

Scenario 2: Randomly select 30 common signals with homogenerous rr

NA AS 1 0.062 NA 0.064

NA AS 2 0.744 0.02107 0.0381

NA AS 3 1 0.1347 0.0057

NA AS 5 1 0.4794 0.0014

NA AS 7 1 0.7315 0.0011

NA AS 9 1 0.8520 0.0009

Scenario 3: Randomly select 30 signals (not necessarily common) with homogenerous rr

NA AS 1 0.085 NA 0.081

NA AS 2 0.80 0.0163 0.0293

NA AS 3 1 0.1426 0.0050

NA AS 5 1 0.4450 0.0018

NA AS 7 1 0.6829 0.0013

NA AS 9 1 0.8018 0.0010

Scenario 4: Randomly select 30 signals with inhomogenerous rr

NA AS 1 0.056 NA 0

NA AS 3 1 0.93912 0.0009

NA AS 5 1 0.98467 0.006

NA AS 7 1 0.99887 0.018

AS: Actual sample size; NA: Not applicable.

https://doi.org/10.23937/2469-5831/1510023
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nals. FDR is defined as ( )VE
V S+

, the expected propor-

tion of rejected null hypotheses which are erroneously 
rejected. It’s estimated by,

th

th

1 Number of reactions falsely detected in i  simulated data (V)
Total number of  reactions detected in the i  simulated data (V+S)

FDR ∑

All power, ST and FDR have values between 0 and 
1. As we shall see in next section, GLRT have high sen-
sitivity, low FDR, and to control Type-I error α which 
indicates its superiority over the conventional likehood 
ratio test.

Simulation results
The simulation results shown in Table 7 include pow-

er, sensitivity, and false discovery rate for the different 
scenarios described in Section 5.1.

In Scenario 1, one signal was assigned to the ARs 
with the relative large or moderate marginal counts 
(28,216 and 4,362). With fixed rr = 3, ni. = 28216 and 
sample size n.j = 500, the power is 0.073, ST is 0.13 
and FDR is 0.0565. As the sample size n.j increases, 
the power and ST increase to 1, and FDR decreases 
from 0.06 to 0.03. When the sample size of AR is fixed 
at ni. = 28216, with the increase of rr from 1 to 7, the 
power increases from 0.06 to 0.75, and then to 1. The 
same increasing trend is also observed for ST. FDR de-
creases from 0.05 to 0.03, a value much lower than 

ber of reports for the ARs) fall between 35,000 and 
40,000, a rate of 3 × rr to those AR signals for which ni. 
fall between 20,000 and 25,000, a rate of 4 × rr to those 
AR signals for which ni. fall between 15,000 and 20,000, 
and a rate of 5 × rr to those AR signals for which ni. fall 
between 6,000 and 12,000. rr is assigned to 1 for those 
ARs that are not selected as signals.

In each simulation, we generate 1,000 datasets.

Performance characteristics evaluation
The performance of the proposed methods is evalu-

ated by using Power, sensitivity (ST) and false discovery 
rate (FDR). First, power is defined as:

0Number of  times reject ,HPower
L

=

Where L = 1,000 is the total number of simulations. 
H0 will be rejected when at least one AR in any one drug 
(in the drug class) is signal.

The sensitivity of a test is the proportion of positive 
results that are correctly identified. In our case, sensitiv-
ity is defined as: 

th

th

1 Number of reactions correctly detected in i  simulated data
Total number of true reactions in the i  simulated datal

ST
L

= ∑

The definition of FDR can be illustrated by a 2 × 2 
table as in Table 6, where V is the number of falsely de-
teced signals, S is the number of correctly detected sig-

Table 8: The effect of the number of true signals on the performance of the GLRT.

Marginal Count n.j rr Power Sensitivity FDR
Scenario 2.1: Randomly select 10 common signals with homogenerous rr

NA AS 1 0.071 NA 0.068

NA AS 2 0.246 0.076 0.059

NA AS 3 0.996 0.14081 0.021

NA AS 5 1 0.45008 0.006

NA AS 7 1 0.69561 0.0030

NA AS 9 1 0.80329 0.00265

Scenario 2.2: Randomly select 20 common signals with homogenerous rr

NA AS 1 0.059 NA 0.058

NA AS 2 0.535 0.01639 0.005

NA AS 3 1 0.1601 0.0082

NA AS 5 1 0.5631 0.0029

NA AS 7 1 0.72354 0.00145

NA AS 9 1 0.85018 0.00137

Scenario 2.3: Randomly select 30 common signals with homogenerous rr

NA AS 1 0.063 NA 0.063

NA AS 2 0.837 0.01416 0.0449

NA AS 3 1 0.1629 0.0052

NA AS 5 1 0.5048 0.0012

NA AS 7 1 0.7393 0.0009

NA AS 9 1 0.9461 0.0008

AS: Actual sample size; NA: Not applicable. 
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vides a useful tool to identify potential adverse reac-
tions in pharmacovigilance database. However, the final 
discovery of the true adverse reactions should also be 
based on a thorough review of all available medical re-
cords.
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the level of significance. The effect of sample size is 
also evaluated when ni. is fixed at 4362. The trends 
remain similar for the Power, ST and FDR, though the 
change in trends is relatively slower.

In Scenario 2 where 30 common signals are assigned 
to all the four drugs in the drug class, when rr = 1, the 
power and FDR are both 0.06. As rr increases, the power 
increases to 1, the ST increases from 0.01 to 0.85, and 
the FDR decreases from 0.064 to 0.0009. Because multi-
ple signals are assigned randomly, we use actual sample 
size (AS) for n.j. Similar trends of power, sensitivity and 
FDR are also found for Scenarios 3 and 4.

Besides the effect of relative reporting rate (rr), the 
effect of number of selected true signals on the per-
formance of GLRT is also studied. In Scenario 2, if the 
number of signals are changed to 10 and 20, similar 
trends are observed for the power, sensitivity and FDR, 
as in Table 8. As rr increases, both the power and sen-
sitivity increase, and the FDR decreases. If rr is fixed, as 
the number of selected signals increases, the power in-
creases but the FDR decreases.

Discussion and Concluding Remarks
In this paper we generalized the likelihood ratio test 

procedure to detect adverse event for a class of drugs 
and applied it to the WHO’s pharmacovigilance data-
base. The proposed methods can also be used to detect 
drug adverse reactions in a group of pre-specified ad-
verse reactions by renaming the row and column vari-
ables. One of the advantages of the generalized likeli-
hood ratio test presented here is that the methods can 
be used to find multiple adverse reactions with both the 
Type-I error and false discovery rates controlled while 
retaining good power and sensitivity. We note that the 
GLRT tends to detect less adverse reactions than the 
LRT method. This is to be expected, since the threshold 
in the GLRT of the drug class is greater than or equal to 
those from each individual drug using the LRT, thus it is 
more conservative.

The generalized likelihood ratio test procedure pro-
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