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evidence that arginine supplementation is not only beneficial in 
severe sepsis, but can be safely provided to patients with critical 
illness.

Arginine in health

As a non-essential amino acid, arginine can be synthesized from 
3 primary sources. 1) Diet contributes 25-30% of total daily arginine, 
2) endogenous arginine can be synthesized in the urea cycle by 
conversion of citrulline in the kidney, and 3) from protein turnover/
breakdown. Circulating arginine levels are kept in balance by 
arginase-1, which serve as constitutive and inducible enzymes tasked 
with hydrolyzing arginine to ornithine and urea [5]. It should also 
be mentioned that circulating arginine differs from tissue arginine, 
which is tightly controlled by cationic amino acid transporter (CAT) 
[6]. These transporters can serve as constitutive, pH independent 
transporters (CAT1) or inducible, pH dependent transporter 
(CAT2). Although CAT1 could function during acidosis (sepsis) it 
functions as an exchange transporter, which is set up by intracellular 
gradient. CAT 2 looses 50% of its transport capabilities at lower pH 
[6-8].

Another physiologic component of arginine is a counter balance 
with asymmetric dimethyl arginine (ADMA), which will be discussed 
later in the manuscript. ADMA has vasoconstriction properties, and 
can block the iNOS enzymatic production of NO. The regulation of 
arginine: ADMA ratio is elaborate, but in brief, arginine bound to 
protein carriers can be methylated by protein arginine methylarginase 
(PRMT) to form methylagrinines (mono- and di-methylarginines). 
ADMA in turn, can be metabolized by dimethylarginine 
dimethylaminohydrolase (DDAH) to generate citrulline, which 
can be converted back to arginine via argininosuccinate synthetase 
(ASS), argininosuccinate lyase (ASL) [9-11].

Citrulline can be a byproduct of the pathway described above 
or can be produced in the intestines from glutamine, and then 
converted to arginine with the same enzymes ASS/ASL in the urea 
cycle. Ultimately, the final outcome is endogenous arginine. One 
of arginine’s fates is to serves as a substrate for nitric oxide (NO) 
production, which has local vasodilatory properties. This reaction 
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Introduction
When Ernst Schultze, a Swiss chemist, first isolated arginine from 

lupin seedling extract in 1886 he probably did not anticipate its wide 
use in nutritional supplementation for medical purposes. Arginine is 
a conditional amino acid meaning its requirement is dependent the 
person’s health status. Normally, a non-essential amino acid during 
periods of good health, arginine becomes an essential amino acid 
during periods of metabolic or traumatic stress as the endogenous 
supply is inadequate to meet physiologic demand [1-4]. Arginine 
supplementation has a wide breadth of applications ranging from 
better outcomes for plastic surgery free flap reconstruction and 
wound healing to treatment of preterm labor and pulmonary 
hypertension, with relatively low side effects (GI upset being the most 
common). Arginine, however, in the septic, critically ill patient has 
been a controversial supplement because of the theoretical adverse 
vasodilatory properties.

Therefore the purpose of this article is to discuss a) the role 
of arginine in health, b) arginine depletion in critical illness, c) 
the ramifications of arginine depletion, and d) the controversy 
surrounding arginine and sepsis. We intend to provide convincing 
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et al. in the 1990’s demonstrated that arginine supplementation 
increased wound healing by allowing the host to make more collagen 
[12,42,43]. The role of arginine supplementation in wound healing 
isn’t just amplified collagen production by providing proline 
substrate, but can also provide local vasodilation through nitric oxide. 
The resultant vasodilation allows for locally increased blood flow and 
nutrients to cells undergoing repair. Thus post-operative patients and 
critically ill patients with large wounds with inadequate arginine heal 
slower with less tensile strength.

The ultimate end point, and arguably the most important 
ramification of arginine depletion, is an immunosuppressed state as 
arginine deficiency leads to T-lymphocyte suppression and lack of 
proliferation [15-17]. Lack of T-lymphocyte expansion secondary to 
arginine depletion leads to reduced circulating CD-4 cells to help fight 
infection. Not only is there decreased proliferation, but even the T 
cells that remain in circulation have loss of function secondary to loss 
of the zeta chain peptide in the T cell receptor (TCR) [16,41,44,45]. 
Arginine serves as the backbone for the zeta chain which is essential 
for the TCR. Furthermore, limited arginine coupled with loss of 
T-cell expansion and its receptor function results in a complex, multi-
level impaired immune response and incompetence contributing to 
an increased risk of nosocomial infections in the critically ill patients 
[16].

Controversy surrounding arginine and sepsis

Of all the pharmaconutrients currently being prescribed, arginine 
has prompted the most debate which revolves around the safety of 
its use in hemodynamically unstable severe sepsis patients. This form 
of shock is based off uncontrolled, decompensated vasodilation. 
Therefore, some propose that adding an agent that could shunt 
toward more NO production through the iNOS pathway could 
promote worsening hypotension, possibly refractory hypotension 
[2,46,47]. The theoretical increase in NO production in sepsis has been 
attributed to stimulation of NOS-2 by pro-inflammatory cytokines 
[15,48], was based on increases in plasma nitrate levels and increased 
NOS gene expression (not actual measurements of NO) [49-53].

This concern promulgated by Heyland et al. based on the results 
of their meta-analysis. Consistent with three other contemporary 
meta-analyses, it showed that enteral diets (containing a cocktail 
of immune modulating nutrients including arginine) compared to 
standard enteral diets decreased infections and length of hospital 
stay [54]. While none of the meta-analyses (including Heyland’s) 
demonstrated a difference in mortality. Heyland et al. then performed 
a subgroup analysis in which medical ICU patients receiving arginine 
had increased mortality. The authors concluded that this increased 
mortality was due to the use of arginine in patients with severe sepsis. 
We have several concerns with their conclusions.

First, it is a subgroup analysis of a meta-analysis. Most experts 
would agree this subgroup analysis should only have been used to 
generate a hypothesis, not condemn arginine’s use in ICU patients. 
Second, the observation was statistically driven by two studies that 
did not specifically include severe sepsis patients. One was by Dent 
et al. that remains unpublished and the second was by Bertolini et al. 
that was an interim analysis of only 39 patients (this study was not 
blinded, was actually a subgroup of larger multicenter trial designed 
to see if EN vs PN was better for critically ill none septic patients, 
and was poorly powered to truly see significant mortality differences) 
[55]. Third, the only study that specifically included patients with 
severe sepsis by Galban et al. demonstrated improved outcomes with 
no increased mortality [56]. In this study, “one hundred seventy-six 
(89 Impact patients, 87 control subjects) were eligible for intention-
to-treat analysis. The mortality rate was reduced for the treatment 
group compared with the control group (17 of 89 vs. 28 of 87; p < 
0.05). Bacteremia was reduced in the treatment group (7 of 89 vs. 19 
of 87; p = 0.01) as well as the number of patients with more than 
one nosocomial infection (5 of 89 vs. 17 of 87; p = 0.01). The benefit 
in mortality rate for the treatment group was more pronounced for 
patients with APACHE II scores between 10 and 15 (1 of 26 vs. 8 

is carried out by three isoforms of nitric oxide synthase (endothelial 
Nitric Oxide Synthase, inducible Nitric Oxide Synthase, neuronal 
Nitric Oxide Synthase). Arginine also serves as an intermediate amino 
acid during proline synthesis, which is required for wound healing 
and collagen synthesis [12-14]. Finally, arginine’s role in immune-
competence is that it serves as an intra-cellular substrate for NO 
production in macrophages to improve bactericidal activity, as well 
as, improves T cell function, proliferation, and maturation [15-21].

Arginine depletion in critical illness

Arginine intake from a typical diet is between 5 and 7 g/d, while 
endogenous production of arginine is estimated at 15 to 20 g. These 
values quickly deteriorate during critical illness such as trauma, 
sepsis, or other acute stress such as surgery. In fact, not only is de 
novo synthesis of arginine reduced to one third of the normal level 
(either by a decrease in citrulline conversion or preferential use 
in gluconeogenesis, etc.) but arginase, an enzyme responsible for 
arginine catabolism to urea and ornithine is up-regulated 4-fold 
[22-24]. Arginase exists in two isofroms and has a broad tissue 
distribution. A cytosolic form, arginase I (AI), is expressed in the 
liver and thought to be involved in ureagenesis. Arginase II (AII) has 
been thought to be more involved in the biosynthesis of polyamines, 
the amino acids ornithine, proline, and glutamate and in the 
inflammatory process [25]. Thus, the ramifications of withholding 
arginine supplementation from critically ill patients, especially at the 
height of their inflammatory process would be deleterious and will be 
discussed in the next section “Ramifications of arginine depletion”.

During critical illness the expansion of immature myeloid derived 
suppressor cells (MDSCs which are immature granulocytes and 
monocytes) play an integral role in the “emergency myelopoietic” 
response that is aimed at preserving innate immunity. The body 
sacrifices lymphocyte production (i.e., adaptive immunity) to 
produce MDSCs (i.e., innate immunity) [26]. Acutely, their expansion 
is believed to be protective, but fight infections poorly. However, 
long term they cause persistent inflammation (via nitric oxide, 
myeloperoxidase and reactive oxygen species), have poor antigen 
presentation, elaborate pro-inflammatory cytokines, potentiate 
an acute cachexia-like state, and cause immunosuppression (via 
decreased T-cell proliferation through secretion of arginase-1 and 
inflammatory cytokines) [27-37].

Arginase, as discussed earlier, is an enzyme that reduces the 
circulating arginine levels thus making severe stress and critical 
illness an “arginine deficient” state [15,22,30,38-41]. While the 
endogenous supply of arginine is drastically decreased and even 
consumed by arginase, the cellular demand for arginine is increased 
because it is needed for T cell proliferation and activity required 
by an inflammatory condition. As stated above, during critical 
illness arginine becomes an essential amino acid that would benefit 
from supplementation, yet the fear of theoretical, (not clinically 
proven) catastrophic vasodilation with resultant hypotension and 
organ malperfusion in the setting of sepsis deters physicians from 
prescribing this essential amino acid to patients.

Ramifications of arginine depletion

Arginine deficiency is clinically relevant and phenotypically seen 
as the patient post severe stress (surgery, sepsis, trauma) has recurrent 
nosocomial infections, poor wound healing, deranged laboratory 
markers for inflammation, and been nil per os. During critical illness 
enzymes in the urea cycle can be bidirectional depending on the 
body’s need for arginine, but at a high cost to an already catabolic 
patient: 2 molecules of adenosine triphosphate for every one arginine 
replenished. Therefore, the first ramification of arginine depletion in 
critical illness is a perpetual taxing energy drain that could be reversed 
with nutritional supplementation, and allow the body to conserve its 
energy for other vital needs.

Arginine is also used as a substrate for hydroxyproline synthesis 
that is necessary for collagen production and wound healing [12-14]. 
Perhaps one of the most influential researchers of arginine, Barbul 
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of 29; p = 0.02)” [56]. Montejo and Galban followed this study up 
in 2003 with another report concluding, “Considering the beneficial 
effects and the absence of detrimental ones, the use of diets enriched 
with pharmaconutrients could be recommended in ICU patients 
requiring enteral feeding”, but this was not included in Heyland’s 
meta-analysis [57].

Heyland’s contention has generated a lot of “expert opinion” 
concern and editorial chatter; because it is theoretically possible 
arginine supplementation could increase mortality in severe sepsis. 
This was even observed in a canine model of sepsis by Kalil et al. [58]. 
They provided parenteral arginine and observed that, “supplemental 
parenteral L-arginine, at doses above standard dietary practices, 
should be avoided in critically ill patients with septic shock,” as there 
was increased mortality in the supplemented cohort. The doses used 
in the canine study (10 or 100 mg/kg/hr) in parenteral nutrition is 
equivalent to a supraphysiological dose of 200-300 mg/day for a 
human. This is well above the current nutritional recommendation of 
15-30 mg/day and thus the clinical relevance of this a canine model is 
highly questionable.

In exposing the study flaws in the negative trails we can now 
accept that the conclusion derived from their observation likely 
should not reflect arginine’s use in critical care and sepsis. In fact, 
there have even been rebuttals to these trials. Recently, in an attempt 
to quell the controversy raised by Kalil’s canine study, Luiking 
et al. took 8 critically ill patients with a diagnosis of septic shock 
and infused varying doses of L-Arginine-HCl in three stepwise-
increasing doses (33, 66 and 99 μmol/kg/h). She reported “septic 
patients demonstrated elevated protein breakdown at baseline 
(P < 0.001 compared with healthy controls), whereas protein 
breakdown decreased during arginine infusion (P < 0.0001). Mean 
arterial pressure, mean pulmonary pressure and regional gastric 
mucosal carbon dioxide (PrCO2- measured by tonometry) did 
not change during arginine infusion (P > 0.05), whereas stroke 
volume (SV) increased (P < 0.05) and arterial lactate decreased (P 
< 0.05)” [59]. Thus Luiking showed that supraphysiologic arginine 
supplementation (give the comparative dose provided in these 
patients) not only decreased endogenous protein catabolism, but 
also reversed septic shock (as reflected by increased SV and lactate 
clearance) without compromising systemic hemodynamics or gut 
mucosal perfusion [59].  Though the power of this study is not very 
large, it seriously questions the validity of the Kalil’s canine model 
and their conclusions, as there was no hypotension noted in humans.

Luiking suggests that arginine supplementation may increase 
NO, but it is not clinically detrimental as no refractory hypotension 
incurs after supplementation. In fact, on a cellular and microvascular 
level arginine supplementation in the septic, arginine-deplete state 
could be paramount for adequate end organ perfusion. The difference 
between local and systemic vascular tone can be described by varying 
concentrations of ADMA. ADMA also serves not only a potent 
vasoconstrictor, but also blocks the enzymatic production of NO. 
During times of septic shock the systemic results of ADMA may be to 
block NO production, but locally NO causes controlled vasodilation 
in an attempt to mitigate the increasing oxygen debt and modulate 
perfusion. This hypothesis of controlled, local microvasculature 
vasodilation being beneficial in critical illness and sepsis was tested in 
several animal and human studies as described below.

In 1979, Freund et al. suggested that decreasing arginine levels 
can be used as a predictor of severity and outcome of sepsis [60]. 
Reinforcing this original concept, in 2011, Gough et al. published 
that out of 109 septic patients and 50 controls, a ratio of arginine: 
ADMA was predictive of in hospital and 6 month mortality. “A 
declining arginine-to-dimethylarginine ratio was independently 
associated with hospital mortality (odds ratio, 1.63 per quartile; 95% 
confidence interval, 1.00-2.65; p = 0.048) and risk of death over the 
course of 6 months (hazard ratio, 1.41 per quartile; 95% confidence 
interval, 1.01-1.98; p = 0.043)” [61]. They concluded that this ratio is 
indicative of severe sepsis and clinical outcomes, as well as, provides 
the rationale for arginine supplementation for this patient group.

Finally, Visser et al. had two reports (2012 and 2014) that tested 
the above hypothesis and demonstrated that elevated arginine and 
lower ADMA resulted in improved mortality in septic patients. A 
lower ratio of arginine to ADMA resulted in poor organ perfusion 
and decreased cardiac output [62,63]. The 2012 report demonstrated 
that the “arginine: ADMA ratio showed an association (OR 0.976, 
95% CI 0.963, 0.997, P = 0·025) and a diagnostic accuracy (area under 
the curve 0.721, 95% CI 0.560, 0.882, P = 0·016) for hospital mortality, 
whereas the arginine or ADMA concentration alone or APACHE II-
predicted mortality failed to do so” [63]. The conclusion was that the 
imbalance of arginine and ADMA is directly related to circulatory 
failure, organ failure, disease severity, and predicts mortality. The 
mechanism that Visser proposes is that the imbalance of “arginine: 
ADMA ratio contributes to endothelial and cardiac dysfunction 
resulting in poor organ perfusion and organ failure, thereby 
increasing the risk of death” [63]. The research is profound and the 
possible implications of supplementing arginine could restore the 
arginine: ADMA ratio, therefore, provide mortality benefit in septic 
patients. Further research, however, must continue to determine if 
there is a direct correlation, not just theoretical, with correcting the 
arginine: ADMA ratio, and at what dose or plasma concentration. 
Perhaps arginine supplementation should not be just a set number 
of grams a day, but be a part of goal directed therapy to restore the 
arginine: ADMA ratio to a pre-determined set point.

Paralleling the human studies above, Arora et al. in 2012, 
published a study using rodents as a 40% hemorrhagic shock model 
and demonstrated that arginine supplementation improved global 
perfusion. They also suggested that overriding ADMA seemed to be 
the primary mechanism [64]. Whether this model is clinically relevant 
to sepsis in humans as a way to improve perfusion is arguable as the 
mechanism for shock is drastically different, but what it does suggest 
is that the potent vasoconstriction of ADMA without the counter 
balance effects of arginine can be deleterious.

Ultimately, it is difficult to determine if single supplemental 
arginine correlates with direct outcomes for septic patients. Most 
studies evaluating outcomes with single agent use of arginine are 
animal studies, whereas, in humans arginine is typically provided 
along with other diverse immunomodulatory formulas. Six years 
ago, Luiking et al. took 33 patients (10 septic shock patients, 7 
critically ill, and 16 healthy elderly patients) and studied citrulline 
and arginine metabolism after a 2 hour stable isotope infusion of 
phenylalanine, tyrosine, arginine, citrulline, and urea was then 
started for simultaneous measurement of protein and arginine 
metabolism. NO production was calculated as the conversion rate of 
arginine to citrulline; de novo arginine production was calculated as 
the conversion rate of citrulline to arginine.

In this intricate tracer study of septic patients compared to 
controls, Luiking et al. in 2009, demonstrated that not only is 
arginine production and availability (as a measure of the isotope 
conversion) greatly reduced, but so was NO production (as evidenced 
by decreased citrulline production from NO synthase conversion 
of arginine) [65]. In another investigation, using a similar purified 
strategy to determine if arginine supplementation equates to increase 
NO production, Kao et al. used tracer technology to again evaluated 
arginine in sepsis. They concluded “whole-body arginine production 
and NO synthesis were similar in patients with sepsis/septic shock 
and healthy controls. Despite increased proteolysis in sepsis, there is 
a decreased arginine plasma concentration, suggesting inadequate de 
novo synthesis secondary to decreased citrulline production” [47]. 
Additionally, as revealed earlier, Luiking in 2015 went on to study 
supraphysiologic dose of intravenous arginine supplementation in 
septic patient, and noted that there were no untoward hypotensive 
alterations in hemodynamics [59]. These three studies represent the 
future direction of arginine supplementation, and reflect that arginine 
supplementation is safe in critical illness and septic shock.

In conclusion, arginine plays an intricate role in wound healing, NO 
production, and T-lymphocyte function, proliferation, and maturation. 
All three of these physiologic roles are important to a critically ill patient, 
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and especially to septic patients. The complex metabolic alterations noted 
in sepsis that contribute to reduced citrulline and arginine availability 
would suggest that supplemental arginine may, in fact, be beneficial in 
the highly stress, septic population. Ultimately, just because arginine can 
be a substrate for NO production (which can be a significant vasoactive 
agent) doesn’t necessarily mean it will affect the systemic circulatory 
system. In fact, based off the last three studies discussed in this article, 
supplemental arginine and citrulline 1) does not alter NO production, 
2) confirms that sepsis is an arginine deficient state, 3) does not cause 
hemodynamic changes (even when supraphysiologic doses are used), 
and 4) can improve morbidity and mortality in the critically ill. A 
prospective trial of arginine supplementation with a targeted arginine: 
ADMA is needed.
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