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Abstract
Over the past decade, there has been a rising interest 
in the use of carboranes as a potential pharmacophoric 
moiety in the development of new drugs for the treatment of 
various types of cancer. The unique physical and chemical 
properties of carboranes make their use attractive in 
drug development. In several instances, the inclusion of 
carboranes into a drug structure has increased the agent’s 
binding affinity, potency, or bioavailability. The purpose of 
this review is to highlight applications of carboranes to the 
medicinal chemistry of cancer.

erwise rapidly metabolize [5]. Furthermore, selective 
chemical substitution of each carbon or boron atom 
in these clusters allows for their use as rigid, three di-
mensional scaffolds upon which to construct new drug 
molecules.

Nearly all past biomedical research involving carbo-
ranes has focused on their use in the design of boron de-
livery agents for boron neutron capture therapy (BNCT) 
[2]. This binary radiation therapy depends on the selec-
tive delivery of a high concentration of boron-10 atoms 
to targeted tissues. It is generally accepted that a min-
imum concentration of 30 ppm is required for success-
ful BNCT therapy and this concentration is equivalent to 
the delivery of approximately 109 boron atoms to each 
targeted cell. As BNCT human clinical trials have been 
attempted nearly continuously for the past five de-
cades, there is a large body of literature associated with 
the use of carboranes for the development of BNCT bo-
ron agents. There are several good reviews and books 
covering that work [6-13]. While BNCT requires the de-
livery of large quantities of boron to diseased tissue, 
(requiring concentrations of boron in the low millimolar 
range) there is an increasing interest to use carboranes 
to synthesize new and highly potent drugs which oper-
ate at the opposite extreme of the concentration range, 
namely nanomolar, to picomolar. 

Ortho-carborane and its carbon-functionalized 
derivatives may be prepared by reacting acetylene 
(or functionalized acetylene) with the decaborane 
derivative B10H12L2, where L is a weak Lewis base [3,14]. 
The acetylenes used in these reactions include a wide 
range of functional groups such as esters, halides, 
carbamates, ethers, and nitro groups; however, 
such reactions are not successful in the presence of 

Introduction
Cancer is the second leading cause of death in the 

United States, exceeded only by heart disease. It is 
estimated that 1,685,210 new diagnosis and 595,690 
American deaths will be due to cancer this year [1]. The 
fight against cancer involving early detection and new 
methods of treatment are crucial. Since their initial dis-
covery during the 1960’s, researchers have utilized car-
boranes in the search for new and effective treatments 
for cancer [2,3]. Formally named dicarba-closo-dodeca-
boranes, carboranes containing two carbon atoms are 
icosahedral clusters containing carbon, boron, and hy-
drogen and exist as ortho 1, meta 2, and para 3 isomers, 
depending on the relative position of the two carbon 
atoms (Figure 1). Carboranes have a general formula 
of C2B10H12 and possess unique chemical and physical 
properties that suggest their potential use as a moiety 
for the design of new drug molecules with enhanced 
activities and/or target selectivies [3]. Some of these 
properties include high oxidative and thermal stability, 
hydrophobicity, and low toxicity [4]. Owing to their sta-
bility, carboranes also may increase the in vivo stability 
and bioavailability of pharmaceuticals that might oth-
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the boron carrier approach of carboranes for BNCT to 
be used as frameworks in developing newly improved 
pharmacophores. Compared to aryl rings, the superior 
synthetic flexibility of carboranes allow them to be ex-
tremely useful in fine tuning the pharmacokinetics of 
newly developed drug candidates [5]. They are optimal 
for chemical modification by functionalizing the weakly 
acidic CH groups and boron atoms, and have the ability 
to employ various isomers (1-3) to optimize the binding 
affinity with other substituents [26]. The closo-carbo-
rane is air and moisture stable and is known to possess 
“superhydrophobicity”. Their high partition coefficient 
values are known to surpass common bioisosteres such 
as aryl, cycloalkyl, and adamantyl groups [5]. Moreover, 
their high stability and low toxicity towards cells make 
them interesting compounds for therapeutic applica-
tions [2]. 

Estrogen receptor
It has been apparent for close to a century that the 

steroid estrogen has played a major role in breast cancer 
[27]. When molecules, such as estrogen hormones, bind 
to the ligand binding domain of the estrogen receptor 
the protein forms a dimer. The dimerized form of the 
estrogen receptor binds to DNA promotor elements 
which results in the initiation of gene transcription [2,5]. 
Antagonism of the estrogen receptor is a mechanism 
used for the treatment of hormone responsive cancers 
[28-32]. The molecules depicted in Figure 2 represent 

nucleophilic species such as alcohols, acids, or amines. 
Under an inert atmosphere, ortho-carborane will 
thermally isomerize to meta-carborane at temperatures 
ranging from 400-500 °C and to para-carborane at 600-
700 °C [2]. The CH groups in the carboranes are weakly 
acidic and can be deprotonated using a strong base to 
produce nucleophiles [5]. The pKa values for ortho-, 
meta-, and para-carborane are 22.0, 25.6, and 26.8 
respectively [15,16]. Separately, the boron vertices 
may be functionalized by reactive electrophiles. In 
turn, a wide range of carborane derivatives may be 
synthesized regioselectively without the need for 
complex protecting groups. Bases, such as pyrrolidine 
or fluoride, may be used to generate nido-carboranes 
4, 5, and 6 (Figure 1) [17-21]. Such reactions convert 
the extremely hydrophobic closo-carboranes to the 
hydrophilic nido-carboranes [22-24].

Carboranes as Pharmacophores 
Pharmacophore approaches involving various li-

gand-based and structure-based methods have evolved 
to be one of the most successful concepts in medicinal 
chemistry. A pharmacophore was defined in 1909 by 
Ehrlich as a molecular framework that carries the essen-
tial features responsible for a drug’s biological activity 
[25]. Considerable progress has been made on phar-
macophore technology in the past two decades and 
has made pharmacophore approaches a major tool in 
drug discovery. Recent developments have expanded 

 

Figure 1: Ortho-(1), meta-(2), para-carborane (3), and nido-carboranes (4-6) [3].
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concentrations of 1 × 10-9 M. The binding affinity for the 
ERα receptor for 7, 11, and 12 were 0.1 nM, 1.0 nM, 
and 60 nM respectively [28]. The most potent inhibition 
of the transcriptional response to 17β-estradiol was 
exhibited by 12, thus the authors noted that the 
antagonistic response does not directly correlate with 
the drugs binding affinity. They also noted that while 
inducing an agonistic effect on the estrogen receptor in 
the bone tissue of the mice, 11 exhibited antagonistic 
effects on the estrogen receptor in the uterine tissue. 
This observation supports the potential of using 
similar carborane-based compounds for the long term 
prevention of estrogen dependent malignancy without 
inducing negative anti-estrogenic responses such as 
bone loss [28].

Dihydrofolate reductase
Folate metabolism is involved in processes critical 

in cell proliferation and DNA synthesis. The enzyme 

the hormone 17β-estradiol 7 and the estrogen 
receptor alpha (ERα) antagonists tamoxifen 8 and 
4-hydroxytamoxifen 9. Endo and coworkers synthesized 
a number of carborane containing estrogen receptor 
agonists 10a-g and antagonists 11-12 depicted in Figure 
2 [28,29]. The activities of the estrogen agonists 10a-g 
were analyzed; the carborane derivative 10c exhibited 
at least 10-fold greater potency than 17β-estradiol 7 
both in vitro and in vivo [29]. Remarkably, in comparison 
with the natural molecule, these carborane containing 
agonists are quite simple in both structure and 
synthesis, containing no carbon steriocenters. Based on 
the inhibition of ERα, derivative 12 demonstrated the 
greatest antiestrogen response, exhibiting an activity 
that was comparable to tamoxifen [28].

The estrogenic response of these compounds in 
the uterine and bone tissues of ovariectomized mice 
was measured. The assays measured the inhibition 
of 17β-estradiol binding to the ERα receptor at 

 

Figure 2: Hormone and ERα antagonists (7-9), estrogen receptor agonist carborane derivatives (10a-g), and estrogen 
receptor antagonist carborane derivatives (11-12) [28].
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pressed in tumor cells, making this an intriguing target 
for selective therapeutic and diagnostic applications 
[36]. Normally, TSPO actively opens and closes the pore 
in the mitochondria membrane. However, if the pore 
remains open for prolonged periods of time apoptot-
ic factors can escape the mitochondria and enter the 
cytosol. This can lead to swelling of the mitochondrial 
matrix, interference with both ATP synthesis and oxida-
tive phosphorylation, leading to apoptosis and necrosis 
of the cell [36,37].

Although this protein is a potential target for 
therapeutic agents, a majority of the work described 
in the literature focuses on targeting applications of 
the TPSO. Derivatives of the TPSO binding ligands have 
been synthesized and their IC50 concentrations were 
reported by Cappelli and coworkers [38]. The molecules 
depicted in Figure 4 represent PK11195 TPSO receptor 
ligand 16, isoquinolinecarboxamide derivative 17, and 
the carborane containing derivative 18. The binding 
constants and IC50 values for these ligands were 2.5 nM, 
0.11 nM, and 73 nM for 16, 17, and 18 respectively. 
Although the TPSO binding strength and IC50 values were 
lower for the carborane derivative of 18, the carborane 
cage has the potential for incorporation of additional 
diagnostic and therapeutic moieties [38].

dihydrofolate reductase (DHFR) regulates cellular levels 
of tetrahydrofolate [3]. The dysregulation of the folate 
metabolic process reduces the metabolism of purine 
and pyrimidine, as well as the methylation of DNA, each 
of which are crucial processes in the cells [33]. Thus, the 
inhibition of the dihydrofolate reductase enzyme is an 
area of much interest for cancer therapy [34]. 

Known inhibitors of this enzyme include the anti-
cancer agent methotrexate (MXT) 13 and the antimi-
crobial agent trimethoprim (TMP) 14 (Figure 3) [33,35]. 
Also depicted in Figure 3 is the carborane containing 
inhibitor 15 [35]. The DHFR inhibition activity of these 
compounds was measured on various cancer cell lines 
and their half maximal inhibitory concentrations (IC50) 
were reported by Reynolds and colleagues [35]. The clo-
so-carborane derivative 15 demonstrated up to 10-fold 
and 100-fold greater activity in comparison with MXT 13 
and TMP 14 respectively, for several of the cancer cell 
lines [35].

Translocator protein

The translocator protein, (TSPO) also referred to as 
the peripheral benzodiazepine receptor regulates the 
transmembrane functions of the mitochondria. The 
translocator protein has been shown to be overex-

 

Figure 3: MXT (13), TMP (14), and carborane DHFR inhibitor (15) [33,35].
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in a decrease of tumor growth. It is believed that this 
is perhaps the result of many processes including, 
reduced angiogenesis, increases in apoptosis, and 
decreases in cell proliferation [39,40]. The comparative 
dose response and PKC binding constants for 19 and 
its carborane derivative 20a-c were analyzed using 
bioassays of HL-60 cells. The median effective dose 
(ED50) values for 19 and 20 were 5 × 10-9 M and 7 × 10-9 
M respectively. The binding constants for 19 and 20a-c 
reported as Ki = 1.8 nM and Ki = 2.0 nM, 1.4 nM, and 1.8 
nM [40]. The ED50 concentrations and binding constants 
illustrate the potency of these carborane derivatives 
as PKC inhibitors, further demonstrating the potential 
use of carboranes in the medicinal chemistry of new 
molecules for the treatment of cancer.

Protein kinase C
Protein kinase C (PKC) is a signal transduction 

protein involved in tumor promotion activity when 
bound to phorbol esters; potent modulators of PKC 
are thus appealing anticancer targets [2,3,39]. PKC 
has been shown to modulate proliferation of cancer 
cells, either increasing or decreasing, dependent on 
the type of cancer [39]. Many studies have shown that 
PKC acts as a promoter of cancer cell proliferation and 
a suppressor of apoptosis [39]. PKC inhibitors such as 
benzolactam-V8-310 (BL-V8-310) 19, depicted in Figure 
5, have been studied both in vivo and in vitro and their 
effects on various cancer cell lines have been reported 
[40]. In many types of cancers, inhibition of PKC resulted 

 

Figure 4: PK11195 TPSO receptor ligand (16), isoquinolinecarboxamide derivative (17), and carborane derivative (18) [38].

 

Figure 5: PKC inhibitor BL-V8-310 (19) and carborane derivative (20a-c) [40].
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cancer progresses to a hormone refractory state capa-
ble of transcriptional activity. Clinical evidence suggests 
the advancement of prostate cancer through several 
processes. These include mutations of AR that enable 
it to become transcriptionally active in response to li-
gands, alterations in expression of AR coregulators, and 
alterations of normal androgen axis by dysregulation of 
AR activity. Therefore, inhibition of AR activity and re-
duction of DHT concentrations (androgen ablation) may 
delay cancer progression [44-46].

Potential drugs that could be used to treat AR 
disorders include novel biologically active nonsteroidal 
AR ligands containing closo-carboranes [3,32]. Goto 
and coworkers investigated para-carborane containing 
ligands in developing potent AR antagonists as depicted 
in Figure 7 [47]. Compounds 27 and 28 exhibited lower 
IC50 concentrations of 3.8 × 10-7 M and 4.2 × 10-7 M, 
respectively, against LNCaP cells in comparison to the 
clinically used AR full antagonist (R)-bicalutamide 26 
with an IC50 of 8.7 × 10-7 M [47].

Fujii and colleagues developed compounds 
demonstrating anti-androgenic activity through novel 
derivatives of ten-vertex and twelve-vertex para-
carborane [43]. These were tested against androgen-
dependent SC-3 cells. One of the most potent ten-vertex 
derivatives 29a (Figure 7) bearing a 3-cyano group 
exhibited a higher potency than hydroxyflutamide 25 
with an IC50 of 7.6 × 10-7 M [43]. Derivative 29b bearing 
a 4-cyano group exhibited lower affinity with an IC50 of 
1.6 × 10-5 M. With regard to cyclohexanone derivatives, 
30 exhibited an IC50 concentration of 6.1 × 10-6 M. The 
twelve-vertex derivatives 31a, 31b, and 32 exhibited IC50 
concentrations of 1.9 × 10-6 M, 1.0 × 10-5 M, and 9.7 × 10-6 

M, respectively. The study was a further demonstration 
of the potential use of carboranes as a hydrophobic core 
structure of biologically active molecules [43].

Prostate specific membrane antigen

A membrane bound glycoprotein known as prostate 
specific membrane antigen (PSMA) is overexpressed 
in prostate cancer as well as newly formed vascular 
networks of most tumors. This cell surface protein is a 
target for imaging and therapy because it is expressed 
at levels 1,000-fold greater than in other tissues [41]. 
Through immune-fluorescence analysis, it has been 
shown biochemically that PSMA or a PSMA-antibody 
complex internalizes by receptor mediated endocytosis 
through clathrin coated pits [41]. 

Much work has been done in developing potent 
ligands for PSMA through the use of carboranes; El-
Zaria and colleagues compared closo-,nido-, and iodo-
carborane conjugates in vitro against known PSMA 
inhibitor 2-(phosphonomethyl)-pentanedioic acid 
(PMPA) [42]. The water soluble iodinated carborane 
cluster 21 (Figure 6) exhibited the highest affinity with 
an IC50 concentration of 73.2 nM which was comparable 
to PMPA with a value of 63.9 nM. However, in vivo 
studies exhibited lower than desired selectivity due 
to off target binding to areas such as the liver and gall 
bladder [42].

The initial diagnosis of prostate cancer is dependent 
on androgen levels through the androgen receptor 
(AR). Androgen induced transcriptional activity involves 
binding of testosterone 22 and 5α-dihydrotestosterone 
(DHT) 23 to AR. The interaction of AR with coregulators 
and phosphorylation of AR results in the modulation 
of AR transcriptional activity. Inhibition of AR and the 
resultant reduction of serum androgens is the basis of 
endocrine therapy for the treatment of prostate cancer. 
This has been achieved clinically using the antagonists 
flutamide 24 and (R)-bicalutamide 26 [43]. However, 
androgen ablation therapy ultimately fails and prostate 

 

Figure 6: Water soluble iodinated carborane cluster [42].
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apoptosis of the cell [48,50].

The P2X7 receptor has been implicated in ATP 
mediated cell death, regulation of receptor trafficking, 
and inflammation; it is a potential target for cancer 
therapies. An agonistic response of the receptor is 
required to facilitate apoptosis. BzATP is one such 
molecule that has a larger binding constant than that 
of ATP to the binding site of the P2X7 receptor and 
has been used in assays determining the state of the 
transmembrane pore associated with P2X7 activation 
[48,51]. Adenosine 33 and 2’-deoxyadenosine 34 are 
known agonists of the P2X7 receptor. Olejniczak and 
colleagues prepared the carborane derivatives 35-37 
shown in Figure 8 [52]. The carborane derivatives 35-47 

Purinergic receptors
Purinergic receptors are signaling receptors involved 

in the process of neurotransmission. Activation of a 
specific subtype of the purinergic receptor results in the 
influx of Na+ and Ca2+ across the cell membrane and the 
release of K+ ions. The P2Y and P2X receptor subtypes 
have been linked to processes such as cell proliferation, 
differentiation, and apoptosis [48]. When exposed to 
high concentrations of ATP for a sufficient period of 
time, the cation channel of the P2X7 receptor can be 
converted to a nonspecific transmembrane pore that 
allows the passage of small molecules as large as 900 
daltons [49]. This process along with the involvement 
of the caspase enzyme system has been associated with 

 

Figure 7: Testosterone (22), DHT (23), flutamide (24), hydroxyflutamide (25), 
(R)-bicalutamide (26), pure AR antagonists with para-carborane cage as hydrophobic pharmacophore (27-28), ten-vertex 
carborane derivatives (29-30), and twelve-vertex carborane derivatives (31-32) [43,47].
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phosphorylation, NAD+ is consumed as a substrate 
by more than 300 known NAD-dependent enzymes. 
Mammals possess a unique NAD+ recycling pathway, 
which converts nicotinamide to NAD+. The first and rate-
limiting step in this pathway is catalyzed by the enzyme 
Nicotinamide phosphoribosyltransferase (Nampt). 

each had a greater agonistic effect than 33 or 34 [53].

Nicotinamide phosphoribosyltransferase
NAD+ is a vital cofactor used throughout cellular 

respiration. In addition to its role in glycolysis, the TCA 
cycle, and the reaction linking this cycle with oxidative 

 

Figure 8: Purinergic receptor agonists adenosine (33) and 2’-deoxyadenosine (34), and carborane containing P2X7 agonist 
derivatives (35-37) [52,53].
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increase in potency with respect to FK866 in several 
human cancer cell lines in vitro.

The carborane-based inhibitor 39 demonstrated 
low, to sub-nanomolar potencies against human lung, 
colon, and breast cancers in vitro and the hydrophobic 
carborane moiety was shown to significantly increase 
agent potency over other, similarly sized organic 
moieties [66,67]. Recently, the synthesis of a new 
derivative of 39, bearing a hydroxymethyl group 
attached to the carborane cluster was reported, 
allowing for the covalent attachment of the drug to 
various targeting groups through the use of facile click 
chemistry reactions [66,67] (Figure 9).

Nampt has been shown to be upregulated in many/
most cancers [54-61] and its overexpression is highest in 
aggressive and refractory cancers, making it a promising 
target for the treatment of various cancers [62,63].

FK866 38 is the first known small molecule inhibitor 
of Nampt and has been investigated in several Phase I/
II clinical trials against several cancers [64,65]. Recently, 
we reported the synthesis and anticancer activity of 
several carborane-containing derivatives, where the 
benzoylpiperazine of 38 was replaced by a number of 
different moieties, including adamantyl, ortho-, meta-, 
or para-carborane [66,67]. Of the new agents reported, 
a derivative containing a meta-carborane 39 exhibited 
a 100-fold greater inhibition of Nampt and a 10-fold 

 

Figure 9: FK866 (38) and meta-carborane derivative of FK866 (39) [66,67].

 

Figure 10: Hypoxia inducible factor HIF-1α inhibitor LW6 (40) and carborane derivative GN26361 (41) [70].
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41 exhibited a 10-fold increase in activity compared 
with LW6 40. The results of this study support the use 
of carborane derivatives for the design of inhibitors of 
this protein. In principle, molecules such as these could 
be used to combat the angiogenesis of growing tumors 
[71,72].

Tumor necrosis factor α
The Tumor Necrosis Factor α (TNF-α) is a protein 

involved in the early steps of a complex pathway 
that has been linked to inflammatory responses and 
cell survival including apoptosis. There are multiple 
ways in which the TNF-α protein can promote tumor 
growth. The TNF-α interacts with adjacent cells in an 
autocrine manner. Autocrine processes have been 
linked to increased damage of genetic material in 
malignant cells or cells with malignant potential, as 
well as the improved survivability of malignant cells. 
The expression of TNF-α leads to the production of 
cytokines and chemokines which when combined, can 
lead to an angiogenic response [2,73]. The inhibition 
of this protein and the resulting effects on cancer cell 

Hypoxia inducible factors
The relationship between hypoxia inducible factors 

HIF-1α and HIF-2α has been an area of much interest. 
The levels of these proteins are closely related to the 
oxygen content of the cells [68]. These proteins are 
expressed in low oxygen environments and have been 
linked to angiogenesis [69]. Due to the higher metabol-
ic rates of cancer cells, tumors typically have a lower 
oxygen content than normal tissues, resulting in in-
creased levels of HIF-1α and HIF-2α in cancerous tissues 
[68]. Others have probed the relationship between tu-
mor growth and metastasis and many of these studies 
suggest that these proteins have a profound effect on 
the survival and growth of cancerous tissues [69]. This 
protein has therefore been a target of interest for the 
treatment of various types of cancer. Nakamura and 
colleagues developed carboranyl derivatives of the LW6 
drug molecule 40 depicted in Figure 10 for HIF-1 inhi-
bition [70]. Activity of these molecules was measured 
in HeLa cells and growth inhibition IC50 concentrations 
were reported [70]. The carborane derivative GN26361 

 

Figure 11: Phthalimide compounds used in TNF-α regulation (42-43) and carborane derivatives of phthalimides (44-45) [76].

https://doi.org/10.23937/2378-3419/1410110


ISSN: 2378-3419DOI: 10.23937/2378-3419/1410110

Zargham et al. Int J Cancer Clin Res 2019, 6:110 • Page 11 of 14 •

compounds, depicted in Figure 11, were prepared 
and TNF-α inhibition was measured [76]. The N-(1,2-
dicarba-closo-dodecaboran-1-yl-methyl) phthalimide 
44 and the N-(1,2-dicarba-closo-dodecaboran-1-yl)-
4,5,6,7-tetra-fluorophthalimide 45 were analyzed to 
determine their relative potency for TNF-α inhibition 
[76]. The carborane derivative 45 demonstrated a 100-
fold greater inhibitory response when compared with 

growth have been explored [74,75]. Phthalimides 
are regulators of the TNF-α protein, under specific 
conditions these molecules have been shown to 
inhibit the production of TNF-α and therefore have 
been explored to treat a variety of diseases including 
cancers [73]. The N-phenylphthalimides 42a-c and 
adamantyl substituted phthalimide 43 drug molecules 
along with carborane derivatives of these phthalimide 

 

Figure 12: RAR binding ligand all-trans-retinoic acid (46), RAR agonist Am80 (47), RXR agonist PA024 (48), RXR binding 
ligand 9-cis-retinoic acid (49), RXR antagonists PA452 (50), carborane derivatives of RAR agonists (51a-f), and carborane 
derivatives of RXR antagonists (52a-e) [78].
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42a-c and 43 [76].

Retinoic acid receptor and retinoid X receptor
The retinoic acid receptor (RAR) and retinoid X re-

ceptor (RXR) have recently been implicated in the reg-
ulation of gene networks involved in the control of cell 
growth, differentiation, survival, and death. These two 
receptor proteins, when bound to their corresponding 
ligands, form the RAR-RXR heterodimer [3,77]. The RAR 
and RXR binding ligands include all-trans-retinoic acid 
46 and 9-cis-retinoic acid 49 respectively. The RAR-RXR 
heterodimer can be activated by an RAR agonist, such as 
AM80 47, but not by an RXR agonist. The presence of an 
RXR agonist, such as PA024 48, can increase activity of 
an RAR agonist and thus promote transcriptional activi-
ty of the RAR-RXR heterodimer, even when RAR agonist 
concentrations are low [77,78]. The retinoid X receptor 
can form heterodimers with other nuclear receptors; 
some of these heterodimers can become transcription-
ally active in the presence of RXR ligands alone [79].

The amount of cell differentiation and the half 
maximal effective concentrations (EC50) of the carborane 
containing agonist derivatives 51a-f were reported [78]. 
The EC50 for the carborane derivative 51d shown in 
Figure 12 was 1.5 × 10-9 M, which is comparable to the 
activity of the all-trans-retinoic acid [78]. The activities 
of carborane RXR antagonists 52a-e were measured in 
HL-60 cancer cells in the presence of the RXR and RAR 
binding ligands Am80 and PA024, both at concentrations 
of 1 × 10-10 M. The inhibition of cell differentiation was 
measured and EC50 concentrations were reported. The 
carborane derivative 52b exhibited higher potency than 
the RXR antagonist PA452 50 by almost an order of 
magnitude [78].

Conclusions
Recent work has clearly demonstrated the immense 

potential that carboranes have as pharmacophores 
in the development of new, small molecules for the 
treatment of various types of cancers. The synthetic 
flexibility of carboranes, along with their rigid structure 
and chemical stability, make them appealing moieties 
for use in cancer drug discovery.
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