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Abstract
Steroid immunosuppression has maintained a long-lasting 
relevance in renal transplantation. In addition to its role in 
preserving allograft survival, it is often the first line agent in the 
rescue treatment of acute rejection events. Its major drawbacks 
include metabolic adverse effects and long-term cardiovascular 
morbidities. Motivated by the need to avoid growth impairment, 
pediatric renal transplant community provided a template for 
steroid minimization strategy. Steroid sparing regimens are often 
successful in the context of induction therapy with lymphocyte 
depleting agents. Because most randomized controlled trials are 
conducted for duration of 1 to 5 years, it is unclear if steroid-based 
protocol confers a longer renal allograft life span. By avoiding early-
onset rejection, steroid prevents exposure of immunogenic epitopes 
and therefore reduces the development of late-onset antibody-
mediated allograft injury. In contrast to the calcineurin inhibitors, 
steroid promotes allograft tolerance by enhancing preservation 
of the regulatory T cells. It suppresses inflammatory response to 
ischemic reperfusion events as produced by transplant surgery. Its 
anti-inflammatory effects are most beneficial in patients with high 
immunologic risk profiles. Finally, future therapeutic approach may 
embrace careful selection of most suitable drug regimen for an 
individual by using bio-molecular resources for risk categorization.

analysis of the role of other classes of ISA, readers are referred to 
previous excellent reviews by other authors [1,2].

Steroids: historical context

Steroid was a pioneering ISA for the first cohort of kidney 
transplant recipients (KTR) in the early 1960s [3]. Its combination with 
azathioprine (AZA) produced a very modest one-year graft survival rate, 
barely reaching 40 to 50% [3]. Subsequent introduction of calcineurin 
inhibitors (CNI), mycophenolate mofetil (MMF), rapamycin (RAP) 
and lymphocyte depleting agents led to one-year graft survival rate in 
excess of 90% [4,5]. This extra-ordinary feat was, in part, due to the vast 
improvement in both surgical and organ preservation technologies. 
However in the last two decades, the steady increase in life span of renal 
transplant has been driven principally by the attrition rate in the first 
year. Due to inadequate immunosuppression and/or drug-induced 
nephrotoxicity, long-term allograft survival has been less satisfactory [4]. 
Thus rate of deceased donor graft loss in the first year dropped from 20% 
in 1989 to 7% in 2008, but it remained steadily constant at 5-7% over the 
same period for those that survived beyond one year [6].

Steroids Minimization Strategies
United States registry data showed that more than 25% of the 

patients who are discharged from hospital after the transplant surgery 
have had a successful discontinuation of steroids treatment [6]. 
Although there is no consensus on the nomenclature for minimization 
strategies, for simplicity we shall use the following definitions: i) Steroid 
free: A strict definition of a complete elimination would imply there is no 
steroid use for induction, maintenance or as a rescue therapy for acute 
rejection (AR). Such approach will result in over-reliance on lymphocyte 
depleting antibodies and thereby expose patients to avoidable side effects. 
For this reason, most patients with AR are often treated with pulse 
doses of steroids. ii) Steroid avoidance is defined as discontinuation of 
glucocorticoids (GC) within 7 days of transplant surgery. Duration of 
steroid treatment for less than 3 days produces more frequent delayed 
graft function [7]. iii) Steroid withdrawal: Early withdrawal refers to 
discontinuation of steroids use between 7 and 14 days. Late withdrawals 
are achieved at various time points after 14 days of treatment. Up to 3, 
6 and 12 months of GC use have been reported. It is associated with 
greater risk of graft rejection [8].

Adjunctive Steroid Use during Induction Therapy
To enhance immunosuppression, renal allograft recipients placed 

on steroid minimization protocols are often treated with induction 

Introduction
In the last six decades, we’ve witnessed a revolutionary success 

in short- and medium-term survival rates of renal allograft. Greater 
understanding of transplant immunology has led to an innovative use 
of immunosuppressive agents (ISA). However, recent data suggest 
the inadequacy of current ISA (rather than drug-induced toxicity) is 
the major culprit for late-onset allograft loss [1]. This is reflected by 
the association of the latter event with de novo development of donor 
specific antibody. This observation calls for cautious interpretation of 
data from short-term clinical trials on steroid minimization strategies. 
Indeed decision on the modality of steroid use must be supported by 
adequate knowledge of its pharmacology in multiple clinical settings. 
Given the long history of its use, there are available excellent data 
sources that are suitable for such inferential deduction. Hence, this 
article will examine the biological basis of steroid effectiveness, the 
mechanisms for its common adverse effects and the scientific merit 
for its combination with other ISA. The goal is to provide readers with 
theoretical background to enable him / her appreciate the desirability 
of steroid use [or non-use] in renal transplantation. For an in-depth 
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agents [4-8]. Due to superior efficacy, anti-thymocyte globulin (ATG) 
is often preferred in high risk patients. Compared with alemtuzumab, 
it is associated with lower rate of AR, and a longer duration of allograft 
survival [9,10]. Non-depleting monoclonal antibody (basiliximab, an 
IL-2 receptor agonist) has a wider therapeutic window and is therefore 
the treatment of choice in low risk recipients [11,12]. Adjunct 
treatment with methyl prednisolone (5-10mg/kg) during surgery 
may produce crucial non-immunologic benefits [13]. It suppresses 
the release of pro-inflammatory cytokines (interleukin-6 (IL-6), IL-
8, TNF-α) in response to ischemic reperfusion injury. Furthermore, 
partly due to the anti-inflammatory effect, peri-transplant steroid 
use has been associated with a shorter duration of post-surgery 
hospitalization [13].

Clinical Trials on Steroid Minimization Protocol
Comparison of studies on steroid sparing regimen is often 

confounded by variation in induction strategy, steroid doses, drug 
combination, co-morbidity pattern, and the choice of clinical 
endpoints [8,14-16]. Although similar rate of long-term allograft 
survival is observed in meta-analysis data, patients treated with 
steroid sparing protocols often showed higher rate of ARE but a less 
frequent metabolic side-effect [8,14-16]. The first RCT was performed 
in Canada in the early 1980s. Patients were randomized to receive 
either CsA only or in a combination with prednisolone. There was 
a greater need for steroid rescue and a lower rate of graft survival 
in the (CsA arm) former [15]. Similarly, CsA and mycophenolate 
sodium were utilized as maintenance agents in FREEDOM trial 
[16]. Greater proportion (41%) of the group treated with steroid-free 
protocol required rescue therapy compared with those (29%) on the 
early-withdrawal regimen [16]. Consequently, standard maintenance 
immunosuppression comprises of two or more classes of drug. This 
approach permits the use of minimum effective dose of these agents 
while curtailing their serious side effects [4,17].

Combination Therapy with Steroids
Calcineurin inhibitor is widely considered as the most effective 

ISA used for the prevention of allograft rejection. Attempts to avoid 
these agents often result in greater rejection episodes and lower graft 
survival [4]. Hence tacrolimus and MMF with [and without] steroids 
are the initial drug combination in most patients [17].

Calcineurin inhibitor allows the preservation of essential immune 
function by producing a selective de-activation of specific lymphocyte 
function. Its major drawback is a dose-dependent renal toxicity 
[4,18].Compared with CsA, tacrolimus (TAC) produces a more 
favorable cardiovascular profile [18,19]. In a meta-analysis,  ARE 
was avoided in 12 recipients and graft losses were prevented in 2 out 
of every 100 patients after 1 year of using TAC instead of CsA [20]. 
Concurrent steroid use may potentiate the metabolic complications 
[21]. Although lower doses of CNI may minimize adverse effects 
in high risk patients, there may be need for larger doses of steroids 
to prevent rejection episodes [22]. On the other hand, steroid use 
may attenuate CNI toxicity by decreasing its tubular accumulation 
via the activation of P-glycoprotein, a multi-drug efflux system 
[23]. Similarly, proximal tubular expression of (steroid-inducible) 
cytochrome P450-3A5 enzyme correlated inversely with the histology 
markers of cyclosporine injury [24] (Table 1).

Sirolimus

Because of its anti-proliferative effect, there was initial enthusiasm 
that sirolimus (SRL) use might prolong allograft survival. However, 
in SYMPHONY trial, treatment with SRL was associated with 
the highest rate of ARE [25]. In addition, it failed to improve graft 
survival when used as a late substitute for CNI [4,25,26]. Everolimus, 
a derivative of SRL, has a similar immunosuppressive efficacy in renal 
transplantation. Both are associated with side effects that include 
new onset proteinuria, pneumonitis, hepatotoxicity, thrombotic 
microangiopathy, hyperlipidemia and delayed wound healing 
[27,28]. The last two events may be exacerbated by concurrent use of 
high dose steroids [4,25-28].

Mycophenolatemofetil

A RCT of steroid minimization strategy in which there was 
exclusion of MMF showed a higher rate of ARE and a double-fold 
increase in the short-term graft losses [29]. Similarly, patients with 
single nucleotide polymorphism [SNP] for uridine diphosphate 
glucuronosyl-transferase (UGT2B7), the metabolizing enzyme 
for MMF, experienced higher rate of ARE [30]. Demonstrating its 
superior efficacy over AZA, patients placed on MMF had lower 
events of graft losses [29]. However, such advantage was abrogated 
in a protocol that combined CNI, steroids and AZA after induction 
therapy with ATG [31].In addition, AZA may be more cost effective 
than MMF. Theoretically, steroid combination with either MMF or 
AZA may attenuate their suppressive effects on the bone marrow. 
However, unlike steroid up-regulation of Foxp3 (+) regulatory T cells, 
MMF reduced the functional capacity for post-ischemic tissue repair 
[32]. Finally, a combined use of TAC and MMF may promote BK 
virus replication by aggravating functional impairment of cytotoxic 
CD8 (+) T-cell [33].

Belatacept

Belatacept, recently approved by United States Food and Drug 
Administration (FDA), is a CTLA4Ig fusion protein that blocks co-
stimulatory activation of the CD28 receptors on T cells. It produces 
higher rate of early-onset ARE, greater preservation of 12-month 
graft function but a similar rate of 5-year survival [34]. Due to a 
favorable cardiovascular profile, it may be more suitable than CNI 
for a combined treatment with steroids [35]. Although phase III trial 
had initially suggested there is a higher incidence of post-transplant 
lymph proliferative disorder, subsequent meta-analysis of multiple 
studies disproved this conclusion [34-36].

High Immunologic Risk Patients
In a given individual, categorization of the risk profiles may 

determine the appropriate selection of ISA. In majority of the 
studies, beneficial effects of steroids are most pronounced in high 
immunologic risk patients [37,38]. These patients are particularly 
susceptible to late-onset chronic graft rejection. On the other hand, 
minimization of steroids and CNI may be more suitable for those at 
higher risk for cardiovascular morbidity [36-38]. A prospective study 
of early steroid withdrawal showed greater events of acute rejection 
in African-American recipients of kidneys from poorly matched 
donors [39]. Similarly, there is a four-fold greater risk of developing 
recurrent glomerulonephritis in steroid free recipients. Finally, a 
second episode of rejection is more likely to occur in the absence of 
GC maintenance after a rescue steroid treatment of ARE [40].

Theoretically, treatment with steroid may also reduce the 
development of late-onset antibody-mediated graft injury. The latter 
may be elicited by an inadvertent (prior) exposure to immunogenic 
epitopes [1,41]. The functional cooperation between the T- and 
B-lymphocytes may in part explain this phenomenon. In this regard, 
alloantigen internalized by B-cells is degraded into smaller peptides 
which are then expressed on the cell surfaces by MHC class II 
molecules [42]. Consequently, the antigen-presenting B lymphocyte 
forms an immunological synapse with the cognate receptor of 
CD4+ T-helper cells. The T-lymphocyte in turn stimulates antibody 
production from the B cells while there is a parallel activation of CD8 
cytotoxicity. By enhancing apoptosis of both T- and B- lymphocytes, 
steroids reduce the opportunity for this immunological interaction 
[42]. Furthermore, it promotes hypo responsive state by reducing 
the exposure of allo-antigen to B cells and by inducing a selective 
preservation of the regulatory T-cells [43].

Steroids Metabolism and Cytochrome P450
Prednisone is metabolized to the active agent, prednisolone in the 

liver. Its metabolic clearance depends on both hepatic cytochrome P450 
and intestinal P-glycoprotein systems. Drug interaction, old age and 
ethnicity may account for the random variation in the bio-availability of 
steroids in transplant recipients [44-51]. Furthermore, due to increased 
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metabolic clearance from large fat mass and higher hepatic blood flow, 
unadjusted dosing of steroids may result in sub-therapeutic exposure in 
obese patients. For these reasons, the traditional use of one-size-fits-all 
steroid treatment may contribute to a sub-optimal efficacy.

In the future, in addition to demographic risk categorization, genetic, 
metabolic and immunologic profiles may identify individuals that are 
best suited for a class of ISA. Although validation studies are needed, 
higher expression of RC isoform of CD45 molecule (CD45RC) on the 
surfaces of CD8 T cells in pre-transplant patients was predictive of ARE 
[45]. Similarly, measurement of lymphocyte proliferation in response to 
(a given amount of) endogenous cortisol identified those who are likely 
to fail steroid withdrawal [46]. In addition, pre-transplant serum levels 
of soluble CD30 correlate with the greater incidence of early onset AR 
events [47]. However, due to the confounding effect of single nucleotide 
polymorphisms, there are inconsistent findings on the relationship 
between cytochrome P450 genotype and CNI pharmacokinetics [48]. 
Finally, a development of auto-antibody to cytochrome P450 may lower 
the metabolic clearance of susceptible drugs [49]. This scenario is more 
likely in transplant recipients with auto-immune disorders and should be 
suspected if there is a sudden [unexplained] decline in CNI trough levels. 
Further studies are warranted to determine if there is a modulatory role 
of steroids in this circumstance.

Steroid-Drug Interaction
Due to utilization of a common metabolic pathway, steroid 

increases the clearance of both calcineurin inhibitors and sirolimus. 
To a lesser degree it enhances enzymatic clearance of MMF by 
activation of uridinediphosphate-glucuronosyltransferase and the 
multidrug resistance-associated protein 2 [50]. Hence adverse clinical 
outcome must be monitored anytime there is a change in the drug 
combination [50,51]. For example, rapid tapering of steroids may 
increase tacrolimus exposure in fast drug metabolizers (homozygous 
cytochrome P450 3A5 genotype) while there is slower rate of 
metabolism in those with obesity and/ or hepatitis C infection [51].

Mechanisms of Glucocorticoid Efficacy
Non-genomic mechanism

Cellular activity of steroid is mediated by both genomic and non-

genomic mechanisms [52]. The latter is less robust but has a rapid 
onset of action. It is mediated by membrane bound receptors. Its 
effect is blocked by mifepristone [a receptor antagonist] but it is not 
affected by actinomycin D, a transcription inhibitor [53]. Activation 
of receptors on the surface of T-cell (TCR) is ineffective in the absence 
of multi-protein complex of membrane-bound GC receptor (GCR), 
heat-shock proteins (HSP), lymphocyte-specific protein tyrosine 
kinase (LCK) and FYN oncogene. Glucocorticoid binding of TCR 
causes dissociation of the cytosolic LCK-FYN-HSP-GCR complex 
and therefore prevents the activation of signal transduction (Figure 
1).

On the other hand, binding of glucocorticoid to the receptor 
stimulates phosphatidylinositol 3-kinase and protein kinase AKT. 
It activates endothelial nitric oxide synthase (eNOS) and inhibits 
the release of prostaglandin PGE2 [54,55]. Consequently, there is 
down-regulation of endothelial adhesion molecules, inhibition of 
neutrophil migration and prevention of phagocytosis. It minimizes 
enzymatic tissue injury by a reduction of the neutrophil secretion of 
elastase and collagenase; and suppresses the development of micro-
vascular thrombosis by its inhibition of plasminogen activator [56]. 
Glucocorticoid depletes peripheral lymphocytes by promoting its 
sequestration within the reticulo-endothelial system but produces 
leucocytosis by systemic release of neutrophils from the bone 
marrow [57,58]. It inhibits lymphocyte activation and alters its 
action cytoskeleton by the dephosphorylation of ezrin-radixin-
moesin protein [59,60]. This causes inhibition of the migration of 
effector T-cell and therefore reduces its interaction with prevailing 
allo-antigens [60]. Suppression of ezrin-moesin proteins may also 
decrease calcium influx which in turn reduces the intracellular 
signaling for IL-2 synthesis [61].

Genomic mechanism

Genome-mediated cellular response has a slower onset 
but produces a more prolific biological activity. It involves 
translocation of cytosolic GC-bound-receptor into the nucleus 
where it binds steroid responsive elements (Figure 2). Inhibition 
of nuclear factor kappa B (NF-κB) repressed transcription of 
genes for the synthesis of pro-inflammatory mediators including 
IL-1, interferon-alfa [62], and inducible nitric oxide synthase 
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Figure 1: Molecular mechanism for the non-genomic inhibition of T cell receptor signaling system mediated by the GC activation of cell membrane-bound 
receptors.

(A).Activation of T cell receptor (TCR) on cell membrane is ineffective in the absence of multi-protein complex that includes membrane bound GC receptor 
(GCR), heat-shock proteinschaperone system (HSP), lymphocyte-specific protein tyrosine kinase (LCK) and FYN oncogene (B). Successful activation of T cell 
receptor bound to multi-protein complex by a ligand (C). GC ligation of the membrane-bound receptor causes inactivation of the T cell signaling by producingthe 
dissociation of LCK-FYN-HSP-GCR complex. 
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(iNOS) [63]. Glucocorticoid inhibits both T- and B cell immune 
responses but produces a greater impact on T-cell function. 
Although universally expressed in most cells, glucocorticoid 
receptors are less pronounced in non-thymic cells. On the 
contrary, steroid treatment of the thymic lymphocytes produce 
accelerated apoptosis by induction of C3 isoform of GC receptor 
mRNA. Furthermore, double-positive thymocytes (CD4+CD8+) 
and natural killer T cells are more susceptible to glucocorticoid-
induced cell death (GICD) [64].

Steroid and allograft tolerance

Glucocorticoid treatment tilts the balance in favor of graft-
tolerance by promoting the regulatory [Foxp3+ CD4+ CD25+] 
T-cells while inhibiting the cytotoxicity of T-effector cells [65,66]. 
Similarly, compared with the staining for IL-17 cytokines, individuals 
with renal histological specimen that expresses FOXP3 had lower 
frequency of steroid-resistant rejection events [66,67]. In addition, 
maintenance dose of steroids after a successful treatment of an acute 
rejection with pulse GC therapy results in a lower occurrence of a 

         

Figure 2: Simplified illustration of the cytosolic glucocorticoid binding system and translocation of the steroid-receptor complexes into the nucleus for the gene-
mediated cellular function.

Extracellular glucocorticoid (GC) dissociates from steroid binding protein and crosses the cell membrane, facilitated by a relative small size and lipophilic property. 
Inside the cell, maximum interaction with cytosolic glucocorticoid receptor (GR) occurs with the binding to a complex of chaperones that include immunophilin 
binding protein (FK506-BP) and heat shock proteins (HSP). Activation of the GC-GR unit results in its dissociation from the multi-protein chaperones. Both 
monomers and dimerized forms of GR-GC unitare translocated into the nucleus where they bind the responsive elements for transcription factors (TFRE) and the 
glucocorticoid responsive elements (GRE) respectively. The transcription factors are activator protein-1 (AP-1), nuclear factor-κB (NF-κB) and signal transducer 
and activator of transcription-5 (STAT5). The ultimate effects of this gene transcriptionsare inhibition of pro-inflammatory cytokines and downregulation of cellular 
proliferation (cell cycle arrest/ apoptosis). 

Table 1: Pharmacodynamic inter-relationship of steroids and contemporary maintenance immunosuppressive agents in renal transplantation

Steroids + Drugs Mechanisms of action Pros Cons
Tacrolimus (TAC) *Binds FKBP12 and inhibits calcineurin 

dephosphorylation of NFAT, a transcrip-
tion factor (TF) for IL-2 synthesis.

*TAC/MMF/steroids most effective main-
tenance ISA
*GC supports Tregs/ graft tolerance
*GC inhibits TF: AP-1 and NFKB
*Activate renal P-glycop/ cyt P450: 
reduce nephrotoxicity

*TAC diminishes IL-2 support for AICC 
and graft tolerance 
*TAC/MMF/GC may promote BK virus 
infection
*GC + TAC promote NODAT/ Hyperten-
sion/ hyperlipemia

Cyclosporine (CsA) *Binds cyclophillin and inhibits calci-
neurin dephosphorylation of NFAT, a TF 
for IL-2 synthesis.

*Similar to TAC but may be less 
effective

*Similar to TAC but more hyperlipemia 
and less NODAT
*Increases serum MMF + toxicity 

Mycophenolate Mofetil (MMF) *Inhibits IMDH + progression of cell 
cycle

*Allows lower doses of CNI/ GC
*GC enhances UDPGT + decrease 
toxicity
*GC attenuates BM depression

*Bone marrow depression
*CsA increases serum MMF + toxicity

Sirolimus (SRL) *Binds FKBP12 + mTOR to arrest 
growth cycle
*Anti-proliferative agent

*Reduces non-melanoma skin cancer
*Survival of Tregs/ graft tolerance?

*GC/RAP delay wound healing, cause 
NODAT + hyperlipemia
*RAP delays graft function/ nephrotoxic-
ity/ proteinuria
*TAC/ RAP promote PTLD in EBV (-) 
/ TMA

Belatacept CTLA4Ig: blocks co-stimulatory CD28 
receptor

*Better short-term graft function vs. CsA
*GC+Belatacept: Less CV morbidity vs. 
GC/CsA?

*Promotes PTLD in EBV (-)
*Does not inhibit memory T cell
*More frequent early AR vs. CsA

AICD: Activation-Induced Cell Death, AP-1: Activated Protein-1, AR: Acute Rejection, BM: Bone Marrow, CD28-r: CD28 Receptor on T-lymphocyte, CNI: Calcineurin 
Inhibitors, CTLA-4Ig: Cytotoxic T Lymphocyte Antigen-4: cyt P450: Cytochrome P450, FKBP-12: FK506-Binding Protein 12, dePP: Dephosphorylation, IMDH: Inosine 
Monophosphate Dehydrogenase; ISA: Immunosuppressive Agents, EBV (-): Epstein Barr Virus Seronegative, MMF: Mycophenolate Mofetil, Mtor: Mammalian 
Target of Rapamycin, NFAT: Nuclear Factor of Activated T cells, NF:B: Nuclear Factor Kappa B, NODAT: New Onset Diabetes Mellitus After Transplant, P-glycop 
P-Glycoprotein Efflux System, PTLD: Post Transplant Lymphoproliferative Disorder, TAC: Tacrolimus, TF: Transcription Factor, TMA: Thrombotic Microangiopathy,  
UDGT: Uridine Diphosphate Glucuronosyl-transferase
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second episode [44]. On the contrary, by promoting a non-selective 
down-regulation of IL-2 receptor activity, CNI fails to preserve the 
tolerogenic effect of the regulatory T-cells [65].

Mechanisms of Steroid Adverse Effects
Attempts to eliminate steroid and/ or CNI were motivated by the 

disproportionate impact of cardiovascular disease on the mortality 
rate of KTR with functioning graft [4,68]. Adverse effects of prolonged 
steroid use include hyperlipidemia, growth retardation, obesity, 
insulin resistance, hypertension, and bone diseases. By promoting 
apoptosis of plasmacytoid dendritic cells [PDC] and reducing the 
synthesis of interferon-alfa cytokine, steroid induction therapy 
increases the susceptibility of transplant recipients to opportunistic 
viral infection predominantly CMV and BK virus [69,70]. Steroid role 
in oxidative stress: While steroid (induction) modulates oxidative 
inflammation that results from IRI which is promoted by transplant 
surgery, its use as maintenance treatment in high doses may produce 
adverse carbonylation[catabolism] of the skeletal muscle protein 
[71,72]. This is partly due to activation of proteolytic ubiquitin-
proteasome pathway which is induced by up regulating the expression 
of atrogin-1 and MuRF-1 genes [73,74]. Fortunately, such untoward 
effect is mitigated by endogenous elaboration of IGF-I which 
inhibits FOXO gene and decreases PI3-kinase signal transduction 
[74]. In addition, there is adaptive increase in the renal expression 
of tocopherol (α) transfer protein gene, which in turn promotes the 
recycling of anti-oxidative vitamin E [73,75].

Steroid and hypertension

Due to impaired glomerular filtration, pre-existing (donor) 
vasculopathy and vasocostrictive effect of CNI, hypertension is 
common in the first few days of kidney transplantation [76,77]. 
Loading dose of steroids as used for induction during transplant 
surgery may augment such hypertensive events. Excess intake of 
salt decreases endothelial synthesis of protective nitric oxide while 
raising the vasoconstrictive substance, asymmetric dimethyl arginine 
(ADMA) [76]. However, contrary to the theoretical expectation, 
steroid withdrawal protocol fails to attenuate the long-term prevalence 
of post-transplant hypertension. The principal mediator of steroid-
induced hypertension is the glucocorticoid receptor activity [73]. This 
is demonstrated in an experimental mouse model of chronic steroid 
infusion that showed no significant change in the renal expression of 
mineral corticoid target genes including ENaC, Kras, and Nedd4 [73]. 
In addition, there was no evidence for tubular sodium reabsorption, 
potassium wasting or elevation in the plasma renin activity. Instead, 
GC effect increases the response to angiotensin II, which in turn 
enhances the synthesis of its (GC) receptors on vascular smooth 
muscle cell. It promotes hyper-filtration which causes an increase in 
the net sodium excretion [73]. Furthermore, there is (GC) reduction 
in the endothelial cell release of neuronal NO by the inactivation of 
protein kinase C signaling [78,79]. Finally, validating the effect of 
endothelial GC receptor, its knock-out mouse model failed to develop 
hypertension in response to dexamethasone infusion [80].

Steroids and NODAT

Due to the lower doses of steroid used in recent times, there 
is a falling incidence rate of new-onset diabetes mellitus after 
transplantation (NODAT) [81]. A study showed there is 5% risk 
of developing diabetes mellitus for every 0.01 mg/kg/day increase 
in prednisolone dose [82]. Similarly, there is 42% greater risk of 
developing NODAT in patients placed on steroid-based regimen over 
a period of three years [83]. Most likely there are additive effects from 
other agents. Hence calcineurin inhibitor, sirolimus and steroids 
are estimated to account for 74% incidence of NODAT. New onset 
diabetes mellitus has been associated with poorer graft survival and a 
three-fold higher risk of sustaining adverse CV events [84].

Risk factors of NODAT: Predisposing factors of NODAT include 
genetic susceptibility, deceased organ donation, older age (>40 years), 
male gender, ethnic minority, exogenous obesity, hyperlipidemia, 
hypertension, hepatitis C infection, previous transplants, and ≥ 

3 HLA class 1 mis-matches [85]. Similarly, greater number of 
metabolic syndrome components correlates with the probability 
of developing NODAT. Hence pre-transplant screening for the 
detection of modifiable metabolic events is an appropriate preventive 
strategy. Unfortunately, renal allograft survival is often limited by 
the occurrence of chronic immunologic injury that promotes a 
pro-inflammatory milieu which in turn increases susceptibility to 
metabolic disorders. This relationship is demonstrated in transplant 
patients with single nucleotide polymorphism for gene encoding 
interferon gamma cytokines and higher incidence of steroid-induced 
insulin resistance [86].

Mechanism of steroid-induced NODAT: Glucocorticoid 
produces hyperglycemia by inducing the transcription genes for 
hepatic gluconeogenic enzymes. Hyperglycemia in turn inhibits 
pancreatic beta cells, an effect that is readily overcome by a parallel 
event of excessive (circulating) insulin [87,88]. However the latter is 
invariably cytotoxic. For instance, insulin stimulation of its receptor 
prevents translocation of FoxO1 into the nucleus of beta cells, which 
in turn promotes apoptosis by the suppression of Pdx1 gene [89]. 
Such untoward effect may be potentiated by mitochondrial toxicity 
that results from concurrent use of CNI, particularly tacrolimus [90]. 
Ultimately, persistent stimulation of a fewer number of beta cells 
causes pancreatic cell hypertrophy [91].

It is pertinent to mention that in addition to risk categorization 
by epidemiologic profiles, assessment of genetic susceptibility are 
potential tools for (the) selection of patients that may benefit from 
individualized therapeutic approach. In this regard, genes that are 
associated with greater risk of developing NODAT are vitamin D 
receptor (VDR), hepatocyte nuclear factor (HNF1A), DUSP9 locus 
on X chromosome, and voltage-gated potassium channel (KCNQ1) 
[92,93]. Because most trials on this subject are not randomized, large 
scale studies will be required for the validation of this approach.

Steroids and dyslipidemia

Partly due to intensity of immunosuppression, dyslipidemia 
occurs within the first year in more than 80% of adult renal allograft 
recipients [94]. Patients who had hyperlipidemia before engraftment 
are more likely to have a persistent disorder after transplantation [95]. 
Interestingly, the most significant risk factor is the cumulative dose 
of corticosteroid [96]. Chronic steroid use increases free fatty acid 
synthetase and up-regulates hepatic synthesis of very low-density 
lipoprotein (VLDL) [96]. It also reduces the synthesis of low-density 
lipoprotein (LDL) receptor and inhibits the enzymatic activity of 
lipoprotein lipase [97]. The sum effect is an increase in the serum 
total cholesterol, high serum triglyceride, and elevated level of VLDL 
[98,99]. However, depicting a striking similarity with HD patients, 
due to a concurrent reduction in Apo-A lipid fraction, elevated 
level of plasma high-density lipoprotein (HDL) cholesterol does not 
confer a cardiovascular benefit [95,100]. In addition, chronic steroid 
treatment potentiates the lipemic effects of both CsA and sirolimus 
[27,101-103]. Because CsA is transported in the circulation by LDL 
cholesterol particles, prednisolone enhances its intracellular uptake 
by LDL receptors [101].

Supporting the synergistic role of steroids, co-culture of 
hepatic cells in a medium containing CsA and palmitic acid causes 
mitochondrial dysfunction via the activation of c-Jun N-terminal 
kinase (JNK) [102]. In comparison, it appears tacrolimus produces 
less lipid disturbances [101]. Similarly, 2 weeks after adding sirolimus 
to the regimen of CsA and steroids, it causes a dose-dependent 
increase in total plasma cholesterol, LDL, triglyceride, and ApoB-
100[97] [103]. Normal lipid levels are restored by about 4 weeks 
after discontinuation of the drug [103]. In animal model, sirolimus 
impairs hydrolysis of circulating triglyceride, cellular uptake of 
fatty acid, and lipid synthesis (lipin 1) by down-regulation of 
peroxisome proliferator-activated receptor-γ 2 (PPAR-γ 2) [104]. 
Additional mechanism of action is by the blocking of modulatory 
effects of mTORC1 on adipogenesis through the Akt-mediated 
phosphorylation of tuberous sclerosis complex 2 [104].
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Steroids and vascular thrombosis

Chronic steroid treatment promotes thrombotic vascular disease 
by increasing the serum concentration of plasminogen activator 
inhibitor antigen (PAI-1) [105]. This relationship is demonstrated 
in a study that showed a significant reduction in the stimulated 
fibrinolytic capacity in heart transplant patients who were treated with 
steroid-based protocol [105]. By combining steroids with CsA, this 
process may be aggravated by endothelial injury that is promoted by 
the calcineurin inhibitor [106]. Thus experimental rat model of aortic 
allograft developed proliferative hyaline thickening of the vascular 
wall within 2 months of CsA treatment but not with the use of AZA 
[106]. Similarly, sirolimus may potentiate chronic steroid-induced 
vasculopathy [107]. It inhibits smooth muscle cell hyperplasia by 
up-regulating the gene for the transcription of nitric oxide synthase 
[108]; and reduces synthesis of vascular endothelial growth factor 
(VEGF) in tumor cell lines [109]. On the other hand, as previously 
mentioned, loading dose of steroids [during transplant surgery] may 
be potentially beneficial to endothelial health. It reverses tacrolimus 
up-regulation of pro-oxidative, asymmetric dimethyl-arginine and 
endothelial nitric oxide synthase [110].

Steroids and bone metabolism

Steroids and linear growth: The initial wave of clinical trial on 
steroid minimization was conducted in pediatric population out of 
concern for its negative impact on longitudial skeletal growth [111]. 
A two-year randomized trial of late steroid withdrawal (>3 months) 
using cyclosporine and mycophenolate mofetil as maintenance 
therapy showed a positive catch-up growth and a favorable metabolic 
impact [105,112]. Similar result was obtained in children younger 
than 5 years of age while improved nutritional status was observed 
in steroid-free pediatric recipients of intestinal transplant [106;113].

Steroids and bone disease: Despite normal serum calcium, 
phosphorous and intact PTH, osteitisfibrosa, osteomalacia, and 
adynamic bone disease are common findings on bone biopsy 
obtained from transplant recipients [114]. There is positive 
correlation between cumulative steroid dose, loss of bone mineral 
density and the incidence of pathological fracture [115]. In addition 
to steroid use, delayed restoration of parathyroid gland, metabolic 
acidosis, vitamin D deficiency, and inadequate graft function may 
accelerate bone disease [114]. Dexamethasone inhibits renal tubular 
reabsorption of calcium and/ or phosphorous by modulation of 
serum glucocorticoid kinase [116,117], Na+/H+ exchanger [118] and 
Na-Pi 4 co-transporter [119]. It decreases bone-forming osteoblastic 
cells, increases apoptosis of osteocytes, and attenuates both insulin-
like growth factor-1 [IGF-1] and transforming growth factor-b 
(TGF-b) [120].

Furthermore, it stimulates osteoprotegerin ligand [OPG-L] and 
causes inactivation of its soluble neutralizing receptor, osteoprotegerin 
[OPG] [120]. Lower doses of steroids, alternate-daily regimen, and 
correction of hypogonadism may potentially ameliorate the severity 
of bone disease [121]. Indeed patients on GC withdrawal protocol 
sustain a net gain in BMD; a benefit that was more pronounced in 
patients with severe kidney disease [122]. There are limited data 
on the safety and effectiveness of bisphosphonates in solid organ 
transplantation. Its use in liver transplant recipients was associated 
with the preservation of trabecular bone mineralization but there was 
no (beneficial) therapeutic effect on the cortical bone mass [123].

Summary
We’ve achieved a remarkable stride in the provision of targeted 

immunosuppression against alloreactive T lymphocytes. This has 
reduced the attrition rate of renal allograft in the first year to the barest 
minimum; about 5-10%. Nevertheless inadequacy of the currently 
available ISA has led to increasing relevance of chronic antibody 
mediated injury as a potential reason for late onset graft losses. The 
broad-spectrum activity of steroids against B-and T- lymphocyte 
immune responses has played a beneficial modulatory role over the 
years. However, many transplant patients have paid a huge price in 

the form of adverse metabolic effects and CV complications.  To 
this end, it is commendable that steroid sparing regimen have been 
successfully used in low risk transplant recipients. Steroid avoidance 
in high immunological risk recipients often necessitates [induction] 
treatment with potentially toxic lymphocyte depleting agents. Finally, 
it is very likely that steroids will continue to play a significant role in 
the prevention and treatment of immune mediated allograft injury. 
In the near future, steroids may be most useful in the context of risk 
categorization to identify drugs that are best suited for individual 
patients.
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