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Abstract
S100A8 and S100A9 Ca2+ binding proteins influence a wide range 
of cellular processes, including cell differentiation, tumorigenesis, 
and inflammatory and autoimmune disorders. Both proteins are 
constitutively expressed in early myeloid lineage, with reductions 
during myeloid cell differentiation and maturation. Under normal 
conditions, S100A8 and S100A9 are present in circulating 
monocytes and granulocytes, but not resting tissue macrophages. 
During the stress-mediated response to infection and tissue injury, 
their levels markedly increase and contribute to acute and chronic 
inflammatory disorders as cell autonomous and non-autonomous 
activators of toll-like receptors (TLRs). There is controversy, 
however, whether S100A8 and S100A9 are pathogenic or 
protective during infection and inflammation. Some studies suggest 
that S100A8 and S100A9 proteins function extracellularly to 
amplify TLR-mediated responses, thereby increasing inflammation 
and tissue damage. Others support an adaptive anti-inflammatory 
role during acute infection and inflammation. This review focuses 
on the immunobiology of S100A8 and S100A9 in acute systemic 
inflammation induced by sepsis.

proinflammatory mediators, causing acute inflammation [3,8,9] 
by binding to and activating the toll-like receptor 4 (TLR4) and by 
amplifying the stimulatory effect of bacterial products, e.g., endotoxin/
LPS, thus causing excessive inflammation and tissue damage. 
Subsequent studies support that S100A8 and S100A9 can also play an 
anti-inflammatory role during infection and inflammation [1]. This 
emerging adaptation is supported by the finding that S100A8 and 
S100A9 expression can be induced by anti-inflammatory mediators 
such as IL-10 [10], and that they can exert direct anti-microbial 
activity [2]. These multifunctional roles of S100A8 and S100A9 may 
reflect differences in their intracellular and extracellular activities, 
depending on the inflammatory milieu [1,2]. This review will discuss 
both the proinflammatory and anti-inflammatory roles of S100A8 and 
S100A9 proteins, with an emphasis on sepsis-driven inflammation.

Expression and release of S100A8 and S100A9
Like most S100 proteins, S100A8 and S100A9 are located on 

chromosome 3 in mice and chromosome 1q21 in humans [11,12]. 
Structurally, S100A8 and S100A9 proteins have two helix-loop-
helix, Ca2+ -binding domains connected by a hinge region [3]. The 
C-terminal domain has a higher affinity to Ca2+ binding [3,11,13]. 
S100A8 and S100A9 are either constitutively expressed or inducible 
depending on the cell type and the environmental stimuli [1,3]. 
S100A8 and S100A9 are constitutively expressed in myeloid lineage 
cells and expression correlates with the state of differentiation 
[14,15]; expression decreases as immature myeloid cells differentiate 
into monocytes and dendritic cells [16,17]. In distinct contrast, 
mature human neutrophils constitutively express high levels of 
both proteins [18]. Circulating monocytes constitutively express 
low levels of S100A8 and S100A9 proteins which diminish upon 
monocyte extravasation from blood and subsequent differentiation 
into macrophages in tissues, while normal/resting macrophages do 
not express both proteins [17,19].

Both S100A8 and S100A9 expressions increase in response to 
bacterial products such as LPS, proinflammatory cytokines such as 
TNFα and IL-1β, and anti-inflammatory cytokines such as IL-10 and 
TGFβ [1,20,21]. These seemingly disparate responses occur in acute 
and chronic inflammatory conditions with activated neutrophils and 
macrophages expressing high levels of S100A8 and S100A9 [1,22,23]. 
The immunosuppressive cytokine IL-10 induces S100A8 and 
S100A9 expression in differentiated human dendritic cells [24] and 
in endotoxin-tolerant monocytes [10], which in turn synergize with 

Introduction
The S100A8 and S100A9, also known as myeloid-related protein 

8 (MRP8) and MRP14, are members of the S100 protein family [1-3]. 
Like other S100 proteins, which includes 25 family members, S100A8 
and S100A9 have two conserved Ca2+ binding domains connected 
by a variable hinge region thought to regulate its biological activity 
and is distinct for each family member [4,5]. S100A8 and S100A9 
are constitutively expressed in early myeloid lineage, with reductions 
during myeloid cell differentiation and maturation, but low protein 
levels are maintained in circulating monocytes and neutrophils but 
not resting tissue macrophages [1]. Both S100A8 and S100A9 are 
also expressed in other cell types after activation, including platelets, 
esteoclasts, keratinocytes, and vascular endothelial cells [1]. Under 
cellular stress conditions, such as infection and inflammation, 
S100A8 and S100A9 proteins are induced by a variety of mediators 
and form homodimers and heterodimers in the cytosol in a Ca2+-
dependent manner [2,3]. Because of their Ca2+ binding properties and 
high expression levels in activated granulocytes, S100A8 and S100A9 
are also termed Calgranulins [6]. Their heterodimer complex is called 
Calprotectin because of its protective, anti-microbial effects [7].

Early studies show that S100A8 and S100A9 can be 
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bacterial LPS to promote S100A8 expression in murine macrophages 
[25]. The CCAAT/enhancer-binding protein C/EBPβ has been 
shown to regulate S100A9 transcription in myeloid cells upon LPS 
stimulation [26]. This transcription factor has also been implicated 
in the induction of the S100A8 promoter in keratinocytes in response 
to IFNγ stimulation [27]. Stat3 also supports transcription of S100A8 
and S100A9 in myeloid cells [28], and several Stat3 binding sites 
locate on the S100A8 and S100A9 promoters [16].

Multiple processes also control S100A8 and S100A9 protein 
secretion/release. Both form non-covalent homodimers and 
heterodimers dependent on Ca2+ binding and protein kinase C 
(PKC) activation [29,30], with Ca2+ binding increasing heterodimer 
stability [31]. At high calcium levels, the heterodimer formation is the 
dominant form and is more stable than the homodimers [3]. In mice, 
S100A8 and S100A9 exist as homodimers and heterodimers [3,32] and 
in humans as monomers, heterodimers and heterotetramers [3,33]. 
However, mouse and human S100A8 and S100A9 are considered 
functionally homogeneous, i.e., having similar functions [34,35]. 
Homodimer and heterodimer formation can affect some functions 
of S100A8 and S100A9 such as chemotactic effects and cytoskeleton 
organization, suggesting that protein dimerization mediates some 
of the biological effects of S100A8 and S100A9 [1]. S100A8/S100A9 
heterodimerization may increase interactions with target proteins 
since it generates one binding site on each side of the two monomers 
in the heterodimer complex [36]. An increase in Ca2+ levels promotes 
translocation of S100A9 from the cytosol to the plasma membrane by 
a protein kinase C-dependent mechanism [37]. S100A8 and S100A9 
lack a secretion signal, and controversy exists regarding their mode 
of secretion. Recent data demonstrate that both S100A8 and S100A9 
are not secreted via the classic Golgi-dependent pathway but rather 
by an energy-dependent pathway that requires an intact cytoskeleton 
[38], activation of PKC, and formation of microtubules but not 
de novo protein synthesis [3,38]. This mode of secretion is mainly 
observed in activated monocytes/macrophages and neutrophils and 
accounts for most of the extracellular S100A8 and S100A9 proteins 
at inflammation sites [8,39]. Also, passive release at inflammation 
sites of S100A8 and S100A9 from activated neutrophils dying from 
necrosis may occur [39]. S100A8 and S100A9 can also be released 
from activated neutrophils during neutrophil extracellular trap 
formation, which facilitates antimicrobial activity [40]. Furthermore, 
post-translational modification of S100A9 via phosphorylation at 
Threonine 113 by p38 MAPK has been observed in activated human 
neutrophils [41]. Although this phosphorylation does not affect the 
heterodimer formation, it may regulate interaction of the S100A8/
S100A9 heterodimer with the microtubules, which is critical for 
neutrophil migration [9]. Because secretion of the S100A8/S100A9 
heterodimer also depends on functional microtubule polymerization 
[8,38], it remains to be seen whether S100A9 phosphorylation by p38 
MAPK supports heterodimer secretion. In this context, a recent study 
showed that stimulation of human monocytes with IL-10 increased 
S100A8/S100A9 heterodimer more efficiently than TNFα, but 
enhanced secretion of the heterodimer required both TNFα and IL-
10 signals [42]. This report suggested that IL-10 signal may activate 
p38 MAPK to phosphorylate S100A9 in order to efficiently secrete 
S100A8/S100A9 heterodimer.

Chemotactic properties of S100A8 and S100A9

The murine S100A9 protein constitutes 10-20% of neutrophil 
cytosolic proteins, whereas the human S100A8/S100A9 heterodimer 
complex constitutes 45% of cytosolic proteins in neutrophils and ~1% 
in monocytes [33]. When released in the extracellular space, S100A8 
and S100A9 are chemotactic for murine and human macrophages 
and neutrophils [32,43,44], which is required for microbial clearance 
[2]. Neutrophils, followed by macrophages, are rapidly recruited 
to sites of acute inflammation by bacterial chemoattractants and 
activated complement components such as C5a [2]. Release of 
S100A8 and S100A9 proteins by activated phagocytes then recruit 
more phagocytes to the infection site. Lackmann and colleagues [32] 
first reported that murine S100A8 is chemotactic for neutrophils and 
monocytes in vivo by showing that injection of S100A8 into the mouse 
food pad promotes phagocyte recruitment, with early recruitment of 

neutrophils at 4-6 hours followed by monocytes over 24 hours.

Mechanistically, phagocyte recruitment to infection and 
inflammation sites requires that leukocytes transmigrate to activated 
endothelium, which is facilitated by binding of selectins on endothelial 
cells to glycoproteins on leukocytes [45]. Subsequent interaction 
of leukocyte integrins with the vascular endothelial cell adhesion 
molecules facilitates adherence and immobilization of leukocytes 
[46,47]. Some studies suggest that S100A8/S100A9 heterodimers 
released from transmigrating neutrophils at local infection sites can 
amplify leukocyte recruitment, via facilitating leukocyte-endothelial 
cell interaction [48]. In support of this, human S100A8 and S100A9 
increase β2 integrin CD11b expression and affinity on phagocytes 
[49]. In this scenario, S100A9 heterodimerizes with S100A8 as 
reported using recombinant S100A9 to study leukocyte-endothelial 
adherence interactions by neutrophils [43] and monocytes [50]. 
Moreover, murine S100A9 null neutrophils migrate in vitro in 
response to the chemokine IL-8 despite failing to upregulate CD11b 
expression [51]. However, leukocyte recruitment in response to 
thioglycollate-induced peritonitis is normal in S100A9 null mice 
[52], and these mice are resistant to LPS-induced endotoxemia [9]. 
In contrast, antibody blockade of S100A8 and S100A9 in a mouse 
model of Streptococcal pneumoniae strongly inhibits neutrophil and 
macrophage recruitment to the alveoli but has no effect on clearing 
bacterial load [53]. This defect may be due to S100A8 ability to 
regulate the microtubule network in response to Ca2+ elevation, a step 
required for leukocyte migration [3,54]. In contradiction, a recent 
study showed that leukocyte recruitment was not affected in S100A9 
null mice; S100A8 degrades in the absence of its binding partner, 
S100A9 [52]. As another biological property, S100A9, or S100A8/
A9 heterodimers may regulate cell signaling and affect leukocyte 
migration. For example, human monocyte infiltration is reduced 
when S100A9 phosphorylation at threonine 113 is blocked by the p38 
MAPK inhibitor, suggesting that this phosphorylation may affect its 
heterodimer complex formation with S100A8 [54,55]. Table 1 lists 
the main biological functions described for S100A8 and S100A9 so 
far and their association with inflammatory diseases/conditions. It is 
evident that S100A8 and S100A9 broadly participate in inflammation, 
whether acute or chronic, proinflammatory or anti-inflammatory.

Evidence for proinflammatory and cytotoxic role of S100A8 
and S100A9

S100A8 and S100A9 proteins are damage-associated molecules 
that initiate inflammatory responses by binding to and activating 
damage-associated molecular pattern (DAMP) sensors receptors 
such as TLR4 and the receptor for advanced glycation end products 
(RAGE) on innate immune cells [3,81]. Extensive work by Roth and 
colleagues [3,9] indicate that S100A8 and S100A9 act as endogenous 
danger signals to amplify inflammatory responses to infection and 
injury. S100A8/S100A9 heterodimer promotes endotoxin-induced 
shock and lethality in mice [9], and mice lacking S100A8 and 
S100A9 expression resist LPS endotoxemic reactions and E. coli-
induced abdominal sepsis [9]. Furthermore, bone marrow-derived 
myeloid cells lacking S100A8 and S100A9 proteins exhibited reduced 
responses to LPS, as demonstrated by reduced production of the 
proinflammatory mediators TNFα, IL-6, and IL-8. This defect was 
restored by the stimulation with recombinant S100A8 and S100A9 
proteins, thus suggesting that they can function as proinflammatory 
mediators [9].

When stimulated, TLR4 on innate immune cells triggers signaling 
cascades that include MAP kinases and NF-κB transcription factors 
that increase proinflammatory cytokines and chemokines [82-84]. 
S100A8/S100A9 protein complexes act as endogenous activators 
of TLR4 to promote immune responses to infection [9,85]. Strong 
evidence for this path is the work of Vogl T [9] and van Zoelen 
[67], which showed that S100A8 homodimers and S100A8/S100A9 
heterodimers directly activate TLR4 on murine macrophages, and 
that S100A8 protein is the active component that binds specifically 
to the TLR4-MD2 receptor complex. This molecular bridge couples 
with adapter protein MyD88 and sequential activation of IRAK1, 
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ERK, p38 MAPK and NF-κB, and production of proinflammatory 
cytokines and chemokines [9,67]. Since infections and bacterial 
toxins such as LPS induce S100A8 and S100A9 protein expression 
and release [8,9,67], S100A8 and S100A9 can amplify the ongoing 
innate immune and inflammatory responses [3,86]. In support 
of this, S100A9 null mice, which also lack S100A8 protein but not 
mRNA due to enhanced S100A8 protein metabolism, exhibit reduced 
acute/systemic inflammatory response to infection as demonstrated 
by the reduced production of proinflammatory cytokines such as 
TNFα [8,67]. The findings that LPS stimulation in murine phagocytes 
promotes S100A8 and S100A9 production while S100A9 null 
phagocytes exhibit attenuated response to LPS support that S100A8/
S100A9 protein complexes function in paracrine and autocrine 
pathways to amplify acute inflammatory responses [8,9,67]. Indeed, 
TLR-4 mediated stimulation by LPS and S100A8 activate the same 
signaling routes since murine phagocytes lacking functional TLR4 
receptors did not respond to the stimulation with the S100A8/
S100A9 complex [3,8]. In addition, S100A8 and S100A9 expression 
reflects various inflammatory autoimmune disorders [87,88]. In 
a mouse autoimmune disease model, local release of S100A8 and 
S100A9 induced autoreactive CD8+ T cells and enhanced a systemic 
autoimmune reaction mediated via TLR4 [85].

In addition to TLR4, the RAGE receptor, which binds glycation 
end products (N-glycans) and other unrelated ligands, is a target 
receptor for S100A8 and S100A9 [89,90], and recent reports 
implicate RAGE in the acute inflammatory responses [91]. Similar 
to TLR4, the binding of S100A8 and S100A9 to RAGE activates the 
signaling cascades that lead to MAPK and NF-κB activation [89]. This 
binding depends on RAGE carboxylated glycans [92]. In this context, 
S100A9 appears responsible for the S100A8/S100A9 heterodimer 
binding to RAGE because the S100A9 homodimer shows greater 
binding affinity than the S100A8/S100A9 heterodimer in phagocytes 
stimulated in vitro [93]. This property contrasts with TLR4 activation 
by the S100A8/S100A9 heterodimer where the S100A8 component 
promotes the S100A8/S100A9 heterodimer binding to the TLR-MD2 
receptor complex [9]. Because TLR4 and RAGE are co-expressed on 

many innate immune cells, including phagocytes, it is unclear which 
receptor is more important in the inflammatory response to S100A8/
S100A9. It has been argued that one receptor at a time likely mediates 
S100A8/S100A9 signaling and that the differential effect and receptor 
engagement may depend on the cell type, pathophysiological context, 
and the oligomerization state of S100A8 and S100A9 proteins [2,3]. 
Given that S100A8 and S100A9 activate phagocytes at very low 
molar concentration, it is possible that they synergize to amplify the 
inflammatory response under certain conditions by activating both 
TLR4 and RAGE. Thus, S100A8 and S100A9 are proinflammatory 
mediators that may promote defense at adjacent or distant tissue 
injury. Figure 1 shows a suggested scheme of pathways that 
induce S100A8/S100A9 expression and secretions, as well as their 
intracellular and extracellular effects on innate immunity cells.

Anti-inflammatory role of S100A8 and S100A9

Although most studies initially demonstrated proinflammatory 
effects of S100A8 and S100A9, recent reports suggest that S100A8 
and S100A9 also can play anti-inflammatory roles during infection 
and inflammation. Ikemoto et al. [65] found that the S100A8/S100A9 
heterodimer exerts an anti-inflammatory effect by reducing acute 
inflammation and liver injury during LPS-induced endotoxemia; 
endotoxemic rats intraperitoneally-injected with S100A8/S100A9 
protein complexes purified from human neutrophils produced 
smaller amounts of the proinflammatory mediators IL-6 and nitric 
oxide (NO) and had less liver damage compared with rats injected 
with saline. Another study demonstrated that intraperitoneal delivery 
of recombinant S100A8 and S100A9 in endotoxemic mice reduced 
neutrophilic infiltration and attenuated liver, kidney, and lung 
injury [69]. These studies suggest that S100A8 and S100A9 in certain 
contexts can attenuate acute proinflammatory responses to bacterial 
toxins. Using a rat model of autoimmune myocarditis, Otsuka 
et al. [70] showed that intraperitoneal injection of recombinant 
S100A8/S100A9 reduced myocardial inflammation and damage by 
attenuating the expression of the proinflammatory cytokines TNFα, 
IL-1β, and IL-6.

Table 1: S100A8/S100A9 functions and association with inflammatory conditions.

Function Ref
Murine: - Neutrophil and monocyte chemotaxis (S100A8) [43-56]

- Activate TLR4 and amplify inflammatory responses (S100A8) [9]
- Inhibit macrophage spreading and phagocytosis of adherent
peritoneal cells (S100A9) [57]
- Oxidant scavenger (S100A8) [56]
- Reduce H2O2 release from activated macrophage (S100A9) [58]

Human: - Neutrophil chemotaxis (S100A8/S100A9) [43,44]
- Upregulate Mac-1 expression (S100A8? S100A9) [43,44]
- Promote intercellular arachidonic acid transport (S100A8/S100A9) [18]
- Antimicrobial defense (S100A8/S100A9) [59]
- Inhibit fibrin formation (S100A9) [60]
- Sequester intracellular Zn2+ (S100A8/S100A9) [61]
- Oxidant scavenger and NO shuttle (S100A8) [22,62]
- Reduce H2O2 release from activated macrophage (S100A9) [58]
- Proinflammatory; enhance expression of proinflammatory cytokines
and adhesion molecules (S100A8/S100A9) [63,64]
- Anti-inflammatory; recombinant proteins reduced LPS-induced systemic
release of IL-6 and NO in rats (S100A8/S100A9) [65]

Association with inflammatory disease/disorder
Murine: - Arthritis (S100A8/S100A9) [66]

- Abdominal sepsis [55,67]
- Pneumonia-derived sepsis [68]
- LPS-induced endotoxemia [65,69]
- Autoimmune myocarditis [70]

Human: - Arthritis (S100A8/S100A9) [71-73]
- Inflammatory bowel disease (S100A8/S100A9) [74]
- Systemic inflammation (S100A8/S100A9) [75,76]
- Pancreatitis (S100A8/S100A9) [77]
- Sepsis (S100A8/S100A9) [67-79]
- Lupus erythematosus [80]
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Extracellular S100A8 and S100A9 complexes also may exert 
direct antimicrobial activity to confer resistance to bacterial invasion. 
Surprisingly, purified S100A8 and S100A9 have broad antibacterial 
activity in vitro against microbes, including Candida albicans, E. coli, 
and Staphylococcus aureus [2]. This effect depends on chelating the 
divalent cation Zn2+. The Zn2+-binding sites in S100A8 and S100A9 
are structurally conserved and, like Ca2+-binding sites, induce 
heterotetramer complex formation [31]. Zn2+ is an essential nutrient 
for bacterial growth [94], and by the binding to and sequestration of the 
Zn2+ present at local inflammatory sites, S100A8/S100A9 complexes 
can inhibit bacterial growth [95]. In support of this observation, 
moderate increases in Staphylococcus aureus infection occur in 
S100A9 null mice, which coincide with higher levels of Zn2+ within the 
abscesses [96]. Human S100A8 and S100A9 normally occur in airway 
secretions [97] and in inflammed gastric mucosa [98], suggesting 
that they may function to limit growth of commensal organisms and 
defend against pathogen invasion. In contrast, a recent study reported 
that S100A8/S100A9 complex had no antimicrobial effects during E. 

coli-induced urinary tract infections, as bacterial growth, neutrophil 
infiltration, and inflammatory cytokine production were similar in 
wild type and S100A9 null mice [99]. Furthermore, during infection, 
phagocytes produce high levels of intracellular anti-infective reactive 
oxygen species (ROS) and anti-inflammatory reactive nitrogen 
species (RNS) for microbial killing [5], although ROS production 
at inflammation can cause tissue damage. In this light, S100A8 and 
S100A9 may function as ROS scavengers to reduce inflammation-
dependent oxidative damage [100]. S100A8 and S100A9 may also play 
an anti-inflammatory role via nitric oxide (NO) production. They can 
induce NO synthase to increase NO levels in murine macrophages 
[101]. NO promotes vascular homeostasis and anti-microbial defense 
[102], and S100A8 can act as an NO shuttle via covalent binding [62].

While most studies described anti-inflammatory roles for 
extracellular S100A8 and S100A9, recent studies by Gabrilovich 
and colleagues [16] and Chen et al. [103] suggest that intracellular 
S100A8 and S100A9 can have profound effects on immune and 
inflammatory responses via targeting hematopoiesis and myeloid 

          

Figure 1: Expression and activity of S100A8/S100A9.

During infection, bacterial toxins activate TLR4 to induce S100A8/S100A9 expression in phagocytes. Protein kinase C increases Ca2+ levels, which dacilitates 
S100A8/S100A9 protein heterodimerization. Activation of p38 MAPK phosphorylates S100A9 and also facilitates heterodimerization as well as secretion. 
Intracellularly, the S100A8/S100A9 binds to the actin filaments, which promotes tubulin polymerization and bundling of microtubules, thus leading to cytoskeleton 
reorganization phagocyte migration, and recruitment. When released extracellularly, S100A8/S100A9 binds to and activates TLR4 and RAGE receptors on 
phagocytes and other innate cells. These cells then release inflammatory mediators to amplify the ongoing inflammatory responses. S100A8/S100A9 also 
activates its own expression, thus acting in a paracrine and autocrine manner.
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cell differentiation. They showed that Stat3-inducible upregulation of 
S100A9 enhances MDSC generation in tumor-bearing mice. MDSCs 
are precursors of monocytes, granulocytes and dendritic cells and 
possess potent immunosuppressive activities during infection and 
inflammation [104-106]. S100A9 null mice, which simultaneously 
lack the S100A8 protein, generate fewer MDSCs and mount potent 
anti-tumor immune responses, whereas over expression of S100A9 
in embryonic stem cells inhibits macrophage and dendritic cell 
differentiation leading to MDSC accumulation [16]. S100A9 binds 
CD33 receptors on MDSCs from patients with myelodysplasia and 
induces anti-inflammatory/immunosuppressive cytokines IL-10 and 
TGFβ production by MDSCs [103].

Role of S100A8 and S100A9 in sepsis

Acute sepsis, initiated by infection or trauma, is characterized 
by systemic inflammation due to activation of TLR4 and excessive 
production of proinflammatory cytokines and chemokines, such as 
TNFα, IL-1β, IL-6, and IL-8, which cause vascular dearrangement, 
shock, and multiorgan failure [107-109]. The initial so-called systemic 
circulation cytokine “storm” is almost simultaneously epigenetically 
and post-translationally reprogrammed to a protracted adaptation 
state with persistently repressed innate and acquired immune 
responses. Among the immune changes associated with this cellular 
reprogramming and immunosuppression are increases in IL-10 and 
TGFβ production, increases in repressor T regulatory cell numbers, 
and dendritic cell apoptosis. This reactive adaptor phenotype delays 
clearance of the primary inciting infection and increases risk for 
secondary bacterial and viral infection [108].

Recent studies by Vogl et al. [9] and van Zoelen et al. [67] showed 
a link between S100A8 and S100A9 protein expression and sepsis 
pathophysiology and suggested that they can play a pathogenic, 
proinflammatory role at least during sepsis initiation. This study 
found that levels of the S100A8/S100A9 protein complex were 
elevated systematically and locally in mice during E. coli-induced 
abdominal sepsis [67]. This response was associated with increased 
production of TNFα and IL-6 and enhanced bacterial dissemination, 
whereas S100A9 null mice had reduced bacterial dissemination and 
were protected from acute sepsis inflammation [9,67]. In addition, 
patients with peritonitis-derived sepsis had very high levels of 
S100A8/S100A9 complexes both in the circulation and the abdominal 
fluid at days 1-3 after sepsis onset [67]. These studies suggest that 
S100A8/S100A9 proteins play a proinflammatory role in sepsis. In 
contrast, S100A8/S100A9 complexes can become anti-inflammatory 
and protective during Gram-negative pneumonia-derived sepsis [68]. 
Infection with Klebsiella pneumoniae in S100A9 null mice, which 
also lacks the S100A8 protein, results in significant increases in TNFα, 
IL-1β, and IL-6, enhanced bacterial dissimination 48 hours after 
infection, increased organ damage, and reduced survival, suggesting 
that S100A8/S100A9 complexes exert an anti-inflammatory effect 
Gram-negative pneumonia-derived sepsis. In septic patients, a 
recent study suggested that protracted elevated S100A9 mRNA 
levels can predict hospital-acquired infections [79]. S100A9 mRNA 
levels were elevated in whole blood leukocytes from sepsis patients. 
Interestingly, mRNA levels decreased at days 7-10 in patients that 
did not progress to late sepsis, but remained elevated in patients that 
later acquired opportunistic infections and entered the late phase, i.e., 
were immunosuppressed [79]. In this study, the functional/secreted 
S100A9 protein level was not measured and thus the results may not 
indicate an actual S100A9 effect during the late, anti-inflammatory 
septic phase. The same group [10] also reported that S100A8 and 
S100A9 mRNA levels were increased in normal blood mononuclear 
cells that were rendered endotoxin-tolerant by exposure to a low dose 
of bacterial endotoxin/LPS. Of note, endotoxin tolerance observed 
in circulating leukocytes from animals and humans with late sepsis, 
is associated with unresponsiveness to bacterial toxins and suggests 
immunosuppression [110,111]. In addition, a recent study in septic 
shock patients showed that S100A8 mRNA and protein levels 
decreased along the recovery [78]. The S100A8 protein decreased 
in blood mononuclear cells 7 days after sepsis diagnosis in patients 

that recovered. However, the protein level decreased even further 
in patients that did not survive the septic shock [78]. Because only 
a limited number of 17 patients were used in this study and the 
mononuclear cell preparation also contained lymphocytes, it is 
unclear from these results if the decrease in S100A8 protein during 
the late sepsis phase can predict survival. Thus, although the above 
studies indicate association between S100A8 and S100A9 expression 
and sepsis pathogenesis, further studies are needed to clarify whether 
these proteins promote or attenuate inflammation during sepsis. 
Together, the published data support a dual proimmune and anti-
immune function of S100A8 and S100A9 in sepsis.

Concluding remarks
Within the immune system, S100A8 and S100A9 are expressed 

under normal conditions in neutrophils and at very low levels in 
macrophages, suggesting that they may play a role in immune 
homeostasis, e.g, via maintenance and organization of the 
cytoskeleton. However, the findings that expression of S100A8 
and S100A9 is dramatically increased during acute and chronic 
inflammation indicate that they play multifunctional roles during 
cellular stress-induced responses to infection and inflammation. 
While support for their proinflammatory functions as amplifiers of 
the immune and inflammatory responses during acute inflammation 
mounting, emerging data suggests they can be anti-inflammatory 
and directly antimicrobial protective mediators. Specific changes in 
the inflammatory microenvironment most likely play an important 
role in the functional diversity of S100A8 and S100A9. The post-
translational modifications on S100A8 and S100A9 proteins, 
transition metal (Zn2+,Ca2+) binding, protein complex formation, 
and cell autonomous and non-autonomous activities indicate their 
pleiotrophic function in inflammation and immunity. In addition, 
receptor binding and co-stimuli may also play a role in regulating the 
pro- and anti-inflammatory aspects of S100A8 and S100A9 functions. 
There is no distinct receptor identified for S100A8 and S100A9 thus 
far; both proteins bind and activate the TLR4 and RAGE receptors, 
which also are receptors for many other inflammatory mediators. 
Sepsis pathophysiology involves both proinflammatory and anti-
inflammatory responses, which are influenced by S100A8 and 
S100A9. Thus, better understanding of the mechanisms that regulate 
the biology and function of S100A8 and S100A9 may inform new 
treatment targets for inflammatory diseases.
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