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Abstract
Asthma is a complex chronic airway disease with several 
distinct phenotypes characterized by different immuno-
pathological pathways, clinical presentation, physiology, 
comorbidities, biomarker of allergic inflammation, and 
response to treatment. Approximately 10% of patients 
with asthma have severe refractory disease, which is 
difficult to control on high doses of inhaled corticoster-
oids and other modifiers. About 50% of these individuals 
suffer from neutrophilic asthma. Neutrophilic asthma is a 
phenotype of asthma that is severe and persistent, with 
frequent exacerbations, and hospitalization. It is charac-
terized by the presence of high levels of neutrophils in the 
lungs and airways. The IL-23/IL-17 cytokine axis plays an 
important role in the pathogenesis of neutrophilic asthma. 
IL-23 is crucial for the differentiation and maintenance of 
Th17 cells, and it is required for full acquisition of an ef-
fector function of Th17 cells. Furthermore, IL-23 prolongs 
the expression of Th17 cytokines, such as IL-17, IL-17F, 
IL-22, and GM-CSF which induce tissue pathology and 
chronic inflammatory diseases. Th17 cells produce IL-17 
which plays a key role in the pathogenesis of neutrophilic 
asthma by expressing the secretion of chemoattractant, 
cytokines, and chemokines which lead to the recruitment, 
and activation of neutrophils. Activated neutrophils re-
lease multiple proteinases, cytokines, chemokines, and 
reactive oxygen species which cause airway epithelial 
cell injury, inflammation, hyperresponsiveness, and air-
way remodeling. Neutrophilic asthma is unresponsive to 
high dose inhaled corticosteroids, and probably to novel 
monoclonal antibody therapies. There is need for target-
ed precision biologics, and other treatment modalities for 
these patients, such as macrolide antibiotics, and bron-
chial thermoplasty.
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Abbreviations
Act1: Adaptor protein nuclear factor (NF)-κ activator; AERD: 
Aspirin-exacerbated respiratory disease; AHR: Airway hy-
perresponsiveness; ARDS: Adult respiratory distress syn-
drome; BAL: Bronchoalveolar lavage; CF: Cystic fibrosis; 
COPD: Chronic obstructive pulmonary disease; CXCL: 
C-X-C motif chemokine ligand; DPP-4: Dipeptidyl pepti-
dase-4; FEF25-75%: Forced expiratory flow at 25% to 75% 
points; FeNO: Fractional expired nitric oxide; FEV1: Forced 
expiratory volume in 1 sec; FVC: Forced vital capacity; 
GERD: Gastroeosophageal reflux disease; G-CSF: Gran-
ulocyte colony-stimulating factor; GM-CSF: Granulocyte/
macrophage colony-stimulating factor; GRO-α: Growth-re-
lated oncogeneα; ICS: Inhaled corticosteroids; IFN-γ: inter-
feron-γ; JAK: Janus kinase; LABA: Long-acting beta-ago-
nist; LAMA: Long-acting muscarinic antagonist; IL: Interleu-
kin; ILC-3: Type 3 innate lymphoid cells; LTB4: Leukotriene 
B4; MAP: Mitogen-activated protein; MIP-1α: Macrophage 
inflammatory protein 1-α; MMP: Matrix metalloproteinas-
es; MPO: Myeloperoxidase; NETs: Neutrophil extracellular 
traps; NF-κB: Nuclear factor-κb; NO: Nitric oxide; OCS: Oral 
corticosteroids; OSA: Obstructive sleep apnea; PAF: Plate-
let activating factor; PGE2: Prostaglandin E2; RORγt: Reti-
noic acid-related orphan receptor γ; ROS: Reactive oxygen 
species; RV: Rhinoviruses; SABA: Short-acting beta-ago-
nist; STAT: Signal transducer and activator of transcription; 
TGF-β: Transforming growth factor-β; Th2: T-helper type 2 
cells; Th17: T-helper type 17 cells; TNF-α: tumour necro-
sis factor-α; TSLP: Thymic stromal lymphopoietin; TXB2: 
Thromboxane B2

Review Article

Check for
updates

Introduction
Asthma is a complex chronic airway disease with se-

veral distinct phenotypes characterized by different im-
munopathological pathways, clinical presentation, phy-
siology, comorbidities, biomarker of allergic inflamma-
tion, and response to treatment [1-4]. It has now beco-
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cells; and the role of IL-17 in inducing the expressing 
cytokines, and chemokines which cause neutrophil re-
cruitment, and activation; and the immunopathology of 
neutrophilic asthma.

Interleukin-23
Interleukin-23 (IL-23) is a pro-inflammatory hetero-

dimeric cytokine composed of two subunits, p19 and 
p40 [23]. It shares the p40 subunit with interleukin-12 a 
family member cytokine [24,25]. The interleukin-12 fa-
mily comprises of four members, IL-12, IL-23, IL-27, and 
IL-35 [25]. IL-23 is more closely homologous to IL-12, but 
they have different receptors, and different immunopa-
thological effects [24,25]. IL-12 is involved in inducing 
the development of Th1 cells [26]. It stimulates the pro-
duction of interferon-γ (IFN-γ), and tumor necrosis fac-
tor-α (TNF-α) from T cells, and natural killer (NK) cells, 
and reduces IL-4 mediated suppression of interferon-γ 
(IFN-γ) [27]. On the other hand, IL-23 is involved in the 
development, maintenance, and stabilization of Th17 
cells after induction by transforming growth factor-β 
(TGF-β) and IL-6 [28]. Signal transducer and activator of 
transcription (STAT) are also involved in the final diffe-
rentiation, and maturation of the Th17 cells.

Interleukin-23 signals through it complex recep-
tor consisting of IL-23Rα and IL-12R β1, the latter also 
serves as a subunit for the IL-12 receptor [23,24]. The 
biological effects of IL-23 on its target cells are media-
ted through activation of tyrosine kinase2 (TYK2), Janus 
kinase 2 (JAK2), STAT3, and STAT4 [23,24]. The high af-
finity IL-23 receptor is expressed in many cell types, in-
cluding dendritic cells, macrophages, activated T cells, 
Th17 cells, γδ T cells, natural killer (NK) T cells, and inna-
te lymphoid cells (ILCs) [29]. Interleukin-23 is secreted 
by hematopoietic and non-hematopoietic cell such as 
macrophages, activated antigen presenting cells (APCs), 
B cells, and endothelial cells [29]. Activated macropha-
ges, and other immune cells also produce other cytoki-
nes, such as IL-1β, and TNF- α, and IL-17 itself, which are 
important in Th17 cell function [30].

Interleukin-23 is crucial for the maintenance of Th17 
cell [31], and it is required for full acquisition of an effec-
tor function of Th17 cells [32]. Furthermore, IL-23 pro-
longs the expression of Th17 cytokines, such as IL-17A, 
IL-17F, IL-22, and GM-CSF that induce tissue pathology 
and chronic inflammatory diseases [33]. These effects 
identify IL-23 as a key cytokine in the Th17 cells/IL-17 
inflammatory axis in the pathogenesis of many autoim-
mune and chronic inflammatory diseases [30]. IL-23 is 
implicated in several chronic inflammatory diseases, 
such as rheumatoid arthritis [34,35], psoriasis [36,37], 
inflammatory bowel disease [38,39], and neutrophilic 
asthma [40,41].

Ciprandi and colleagues [42,43] have found that se-
rum IL-23 levels were increased in allergic asthmatic 
children not on corticosteroids treatment, compared 

me common practice to phenotype asthma for precision, 
targeted treatment because asthmatic patients respond 
to the standard treatment differently. There are several 
proposed distinct clinical phenotypes of asthma, such 
as childhood-onset allergic asthma, adult-onset eosi-
nophilic asthma, neutrophilic asthma, exercise-induced 
asthma (EIA), obesity-related asthma, and aspirin-exa-
cerbated respiratory disease (AERD) [5-12]. About 5%-
10% of the patients in these different phenotypes of 
asthma have severe persistent disease [9-11], which is 
refractory to the standard treatment with high doses of 
inhaled corticosteroids (ICSs), long-acting β2-agonists 
(LABAs), and/or other modifier [5,7,9,13-15].

Severe refractory asthma encompasses several cel-
lular and molecular phenotypes of asthma, including 
eosinophilic, neutrophilic, paucigranulocytic, and mixed 
cellularity asthma [6]. Neutrophilic asthma compri-
ses about 30%-50% of the patients with symptomatic 
asthma, and is one of the most severe refractory phe-
notypes of asthma [16].

The pathogenesis of neutrophilic asthma is not ful-
ly understood. Early exposure of the lungs to bacterial 
and viral infections; allergens; and endogenous factors 
can lead to neutrophilic airway inflammation. This can 
cause epithelial cell injury and the release of toll-like 
receptors (TLR)2, and TLR4 responses, and inflamma-
somes, such as NLRP3 (nucleotide-binding oligomeri-
zation domain-like family, pyrin domain-containing 3) 
[17-19]. Activation of TLRs has been shown to induce 
a shift in the innate immune responses toward T hel-
per 1 (Th1) and T helper 17 (Th17) responses, leading 
to the expression and production of IL-1β, INF-γ, TNF-α, 
IL-17A, IL-17F, IL-8, and IL-6 [20]. Simpson, et al. [21] 

have reported that patients with neutrophilic asthma 
have increased expression of innate immune receptors, 
such as TLR2 , TLR4 and CD14, as well as pro-inflam-
matory cytokines, such as IL-1β, and IL-8. Neutrophilic 
asthma is associated with increased levels of NLRP3 and 
caspase-1 in the airways, exaggerated IL-1β responses, 
and Th17 cell differentiation, and IL-17 production. This 
lead to IL-17-driven neutrophilic inflammation, airway 
hyperresponsiveness, and severe steroid-resistant asth-
ma [18,19,22].

Interleukin-17 is produced mainly by Th17 cells, 
but other cells in the lung can also secrete the IL-17 fa-
mily members. It plays a key role in the pathogenesis 
of neutrophilic asthma by expressing the secretion of 
chemoattractant cytokines, chemokines, and adhesion 
molecules which lead to the recruitment, and activation 
of neutrophils. Activated neutrophils produce oxida-
tive bursts, releasing multiple proteinases, cytokines, 
chemokines, and reactive oxygen species (ROS) which 
cause airway epithelial cell injury, inflammation, hyper-
responsiveness, and airway remodeling.

This article discusses about the role of IL-23 and 
other cytokines in promoting IL-17 secretion by Th17 
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and non-hematopoietic cells, such as eosinophils, neu-
trophils, monocytes, macrophages, and bronchial fibro-
blasts can secrete IL-17, under certain circumstances 
[72-75]. Because of the large number of cells producing 
IL-17, it becomes very difficult to target any specific cell 
type. Moreover, most of these cells produce a plethora 
of inflammatory mediators, which can make precision 
therapeutic targeting difficult.

Interleukin-17
Interleukin-17 (synonymous to IL-17A) plays a key 

role in the pathogenesis of neutrophil asthma, via in-
duction and expression of cytokines, chemokines, adhe-
sion molecules, and growth factors which propagate 
neutrophil recruitment and activation into the airways. 
Interleukin-17 was initially identified as cytotoxic T-lym-
phocyte-associated antigen 8 (CTLA-8) in 1993 by Rou-
vier and colleagues [76]. Subsequent characterization 
revealed that this cytokine was produced by a special 
type of T helper cells different from Th1 and Th2 known 
as Th17 cells, and thus renamed as IL-17 [77,78]. Latter 
genomic sequencing led to the discovery of additional 
IL-17 family members totaling six, namely IL-17A (sy-
nonymous to IL-17), IL-17B, IL-17C, IL-17D, IL-17E (also 
known as IL-25), and IL-17F [79-81].

IL-17 is disulfide-linked homodimeric glycoprotein 
consisting of 155 amino acids with a molecular weight 
of 35 kDa; but heterodimers composed of IL-17A and IL-
17F, as well as IL-17F homodimers exist [79-81]. IL-17A 
homodimer produce more pathophysiologic responses 
than the heterodimer or the IL-17F homodimer [80-82]. 
Among the IL-17 family members, IL-17F has the highest 
homology (55%) with IL-17A [80,81] and IL-25 has the 
least homology (17%) [80]. Moreover, IL-25 immuno-
pathologically behaves as a Th2 cytokine similar to the 
other “alarmin” cytokines [83], such as IL33 and thymic 
stromal lymphopoietin (TSLP). IL-17A and IL-17F have 
similar pathophysiological roles, although IL-17 is about 
10-30 times as potent as IL-17F [80]. Both IL-17 and IL-
17F are implicated in the pathogenesis of many autoim-
mune diseases, and neutrophilic asthma.

IL-17 is the most studied family member [79-81], 

particularly in the pathogenesis of rheumatoid arthri-
tis [84,85], and psoriasis [86,87], and to a lesser ex-
tent in the immunopathology of neutrophilic asthma 
[5,6,10,16,20].

Th17 Cells and IL-17 Protein Expression in the 
Airways

Histopathologically, neutrophilic asthma is associa-
ted with increase in neutrophils, and Th17 staining cells 
in the airways. Bullone and coworkers [88] characteri-
zed the prevalence of neutrophilic asthma using bron-
chial biopsy specimens from the entire bronchial tree 
(lobar, segmental and subsegmental) in patients with 
asthma. Analysis of their bronchial biopsies revealed si-

with non-allergic children, and IL-23 levels were stron-
gly and inversely correlated with lung function (FEV1), 
and airflow limitation in small airways (FEF25-75%). In-
terleukin-23 can be used as a biomarker of airflow 
obstruction in patients with neutrophilic asthma [43] 
(Table 1). Targeting IL-23 has a potential for the deve-
lopment of biologics for precision medicines to treat IL-
23/IL-17 axis-mediated diseases.

T Helper 17 Cells
T helper 17 (Th17) cells were first identified in 2005 

as the main producer of the IL-17 [44,45]. Th17 cells also 
produce IL-17, IL-17F, IL-22, IL-21, and IL-26, and to a 
lesser extent IL-6, GM-CSF, and TNF-β [46-53]. The dif-
ferentiation of Th17 cells from naïve T cells is regulated 
by the combination of IL-6, and transforming growth 
factor (TGF)-β [54-60]. The presence of both IL-6, and 
TGF-β is required for the upregulation of a specific Th17 
cell transcription factor, retinoic acid receptor-related 
orphan receptor (ROR)-γt in mouse [56,57], and RORc 
in humans [57]. The transcription factor Rorγt is neces-
sary for Th17 cytokine production and for the expres-
sion of the IL-23 receptor complex [57]. Interleukin-23 
is required for expansion, stabilization, proliferation, 
and survival of Th17 cells to produce more IL-17, and 
other cytokines, and chemokines [61,62]. In addition, 
IL-23  prolongs the expression of type 17 signature 
cytokines, such as IL-17, IL-22, and GM-CSF which indu-
ce tissue pathology and mediates chronic inflammation. 
Interleukin-21 produced by Th17 cells, acts in a positive 
feedback loop to differentiate more Th17 cells [63]. Si-
gnal transducer and activator of transcription 3 (STAT3) 
is required for the stages of differentiation of Th17 cells 
[53,64]. Interleukin-1β is essential in the early differen-
tiation and conversion of Forkhead transcription factor 
P3 (Fox3+) T cells into IL-17-producing cells [65,66].

Other IL-17 Producing Cells
Interleukin-17 is also secreted by other activated 

immune cells, such as dendritic cells, CD8+ T cells, δγ T 
cells, natural killer cells, invariant natural killer T cells, 
lymphoid tissue inducer cells, and type 3 innate lym-
phoid cells (ILC3) [67-71]. Additionally, hematopoietic 

Table 1: Mechanisms of airflow obstruction in patients with 
neutrophilic asthma.

Airway neutrophil recruitment, Migration, and Activation

Release of cytokines, Chemokines, Growth factors, and 
Adhesion molecules

Airway epithelial damage and further release of cytokines

Goblet cells hyperplasia and Mucus hypersecretion

Airway hyperresponsiveness

Subepithelial fibrosis

Airway smooth muscle proliferation

Airway remodeling

Corticosteroid resistance
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which are involved in the recruitment, and activation of 
neutrophils in lung parenchyma, and airway epithelium, 
include IL-1β, TNF-α, CXCL1,CXCL2, CXCL5, CXCL6, LTB4, 
PAF, MIP-1α, and most important, CXCL8 also known as 
IL-8.

gnificant neutrophiliain the lamina propria of the airway 
wall [88]. Neutrophil-high patients had a 3-fold increase 
in cells staining positive for IL-17F+, which correlated 
with neutrophil numbers. After excluding smokers, Bul-
lone and colleagues [88] found an increase in the num-
bers of cells staining for IL-17A+ and IL-22+ in the lamina 
propria of the bronchial biopsies.

Soluble Interleulkin-17A protein expression has been 
shown to be increased in induced sputum and broncho-
alveolar (BAL) fluid obtained from patients with mode-
rate-severe neutrophilic asthma [75,89-92] particular-
ly during exacerbations. IL-17 protein expression also 
correlates with the severity of asthma [91,92]. Bullens 
and coworker [93] have demonstrate a modest incre-
ase in mRNA for IL-17 in sputum cells in patients with 
moderate-to severe asthma compared to health con-
trol subjects. The above findings suggest that increased 
expression of Th17 cells, IL-17 protein, and mRNA for 
IL-17 play an important role in the recruitment of neu-
trophils into the allergic airways. Additionally, IL-17 has 
been shown to be a potent activator of endothelial cells, 
which promotes transmigration of neutrophils to the si-
tes of allergic inflammation, thus promoting neutrophil 
diapedesis into the airways [94].

Immunopathological Roles of IL-17
Interleukin-17 per se, plays an important role in 

airway inflammation, and hyperresponsiveness. IL-17 
has been shown to stimulate bronchial fibroblasts, epi-
thelial cells, and airway smooth muscle cells prolifera-
tion which can lead to airway remodeling, and severe 
steroid-resistant neutrophilic asthma [92]. Most impor-
tant, the cytokines, chemokines, and growth factors in-
duced by IL-17 are responsible for the airway hypere-
sponsiveness, goblet cell metaplasia and hypersecretion 
of mucus, subepethelial fibrosis, airway smooth muscle 
proliferation, and airway remodeling [95].

Cytokines, and Chemokines Expressed by In-
terleukin-17

Interleukin-17 induces the expression of several che-
moattractant cytokines, chemokines, adhesion mole-
cules, and growth factors in asthmatic airways [96-98]. 
The mediators include IL-6, IL-8, IL-1β, TNF-α, G-CSF, 
GM-CSF, TGF-β, and many more other cytokines, and 
chemokines [96-98]. The proinflammatory mediators 
act synergistically with IL-17 in orchestrating neutrophi-
lic airway inflammation in patients with severe neu-
trophilic asthma [97,98]. Some of the mediators, such 
as IL-6, IL-23, TGF-β, and IL-1β are essential for the in-
duction, propagation, and stabilization of Th17 cells to 
secret more IL-17, and further perpetuating neutrophi-
lic airways inflammation. (Table 2 and Table 3) shows 
the list of the chemoattractant cytokines, and chemoki-
nes induced by IL-17 which are implicated in neutrophi-
lic airway inflammation.

The cytokines, and chemokines induced by IL-17, 

Table 2: Cytokines and Chemokines expressed by Interleu-
kin-17.

Cytokines
Interleukin-6 (IL-6) 

IL-8 (CXCL8)

Granulocyte colony-stimulating factor (G-CSF)

Granulocyte macrophage colony-stimulating factor (GM-
CSF)

IL-1β

Transforming growth factor-β (TGF-β)

Tumour necrosis factor-α (TNF-α)

Chemokines(C-X-C motif chemokine ligands)

CXCL1 (Gro-α)

CXCL2 (Gro-β)

CXCL5 

CXCL6

CXCL8

CXCL2

CCL20

Prostaglandins
Prostaglandin E2

Leukotrienes
Leukotriene B4

Cytokines
Interleukin-1β (IL-1β)

IL-6

IL-8 (CXCL8)

IL-17 and IL-17F

IL-23

Interferon-γ ( IFN-γ)

Tumour necrosis factor-α ( TNF-α)

Macrophage inflammatory protein 1-α (MIP-1α)

Chemokines
CXCL1 (GRO-α)

CXCL2 (GRO-β)

CXCL5

CXCL6

CXCL10

Lipids derivatives
Leukotriene B4 (LTB4)

Lipoxin A4

Prostaglandin E2 (PGE2)

Platelet activating factor (PAF)

Table 3: Chemoattractant mediators associated with neu-
trophilic airway inflammation.
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known as NETosis [119]. NETosis is a process by which 
neutrophils can extrude cytosolic and nuclear material, 
referred to as neutrophil extracellular traps (NETs) via 
a conserved cell death process distinct from apoptosis 
and necrosis [120]. NETosis are web-like scaffolds of 
extracellular DNA (eDNA) in complex with histones and 
antimicrobial neutrophil granular proteins, such as neu-
trophil elastase, and myeloperoxidase [121-124]. During 
NETosis neutrophils can transform into enucleated cells 
with chemokinesis known as cytoplasts [122,123].

NETs play a vital role in host defense against bacte-
ria and fungi [121,122,125] but NETs and cytoplasts are 
associated with organ injury and chronic inflammation. 
NETs and cytoplasts have been implicated in several 
chronic inflammatory and non-infectious diseases [126-
128]. Excessive NET production have been reported in 
patients with respiratory diseases, such as cystic fibrosis 
[129] and acute respiratory distress syndrome (ARDS), 
[125,130] and asthma [131].

Excessive NETs and cytoplast production during 
neutrophilic airway inflammation may cause epithe-
lial injury, and impair epithelial function barrier during 
respiratory viral infection [131,132]. Furthermore, NE-
Tosis induces Th17 differentiation and promotes neu-
trophilic airway inflammation in patients with asthma, 
and increased NETs and cytoplasts are associated with 
severe neutrophilic asthma [132,133]. Furthermore, ex-
tracellular DNA (eDNA) mediate inflammasome (e.g., 
NLRP3) activation, and secretion of IL-1β, and IL-17, 
which causes further neutrophilic inflammation and 
epithelial injury [132].

Viral-Induced Exacerbations in Neutrophilic 
Asthma

A major contributor of asthma morbidity and mor-
tality is an exacerbation usually caused by viral respi-
ratory infection [134] Systemic, [135] and respiratory 
viral infections can induce production of NETs from 
neutrophils [130,136], Influenza viruses and rhinoviru-
ses (RVs) are the most common cause of asthma exacer-
bations [130,137]. Toussaint, et al. [137] have identified 
neutrophils capable of forming neutrophil extracellular 
traps in asthmatic airways during infection with RVs. 
They have shown that activated neutrophils are capable 
of releasing NETs, and double-stranded DNA (dsDNA), 
which is major players in orchestrating the underlying 
airway inflammation and initiating RV-provoked asthma 
exacerbation [137]. It has been suggested that NETosis 
and the release of dsDNA, histones, and granule enzy-
mes, such as neutrophil elastase, may be one of the me-
chanisms responsible for the exacerbations observed in 
asthmatic patients [138].

Conclusion
Neutrophilic asthma is a complex phenotype of asth-

ma that is severe and persistent, with frequent exacer-

Interleukin-8
Interleukin-8 (synonymous known as CXCL8) is an 8.4 

kDa non glycosylated protein consisting of 69, 77, and 
79 amino acid residues depending on the length, and 
physiological functions of the protein. Interleukin-8 (IL-
8) is prototype cysteine-X-cysteine (CXC) chemokine; it 
was initially discovered as a leukocyte chemoattractant 
[99,100]. Interleukin-8 is one of the most potent che-
moattractant cytokine for neutrophil recruitment, 
activation, and degranulation, and the response is NF-
kB dependent [101,102]. There is evidence that IL-8 
prolong neutrophil survival by suppressing neutrophil 
apoptosis [103], thus promoting airway neutrophilia, 
and neutrophilic asthma. IL-8 differs from other cytoki-
nes due to its ability to specifically activate neutrophils. 
It causes a transient increase in cytosolic Ca2+, which 
causes release of enzymes and ROS from granules. IL-8 
also enhances expression of ROS, and of adhesion mo-
lecules, further promoting neutrophil chemotaxis [104]. 

IL-8 levels have been reported to be increased in indu-
ced sputum and bronchoalveolar lavage fluid in patients 
with neutrophilic asthma, thus implicating IL-8 in neu-
trophil recruitment, activation, and in the pathogenesis 
of neutrophilic asthma [105-108].

Activated Neutrophils in Neutrophilic Asthma
Neutrophils are polymorphonuclear leukocytes that 

have a fundamental role to play in innate immune re-
sponse [109,110]. Neutrophils act as the first line of de-
fense against pathogens, such as bacteria, fungi, and vi-
ruses, and participate in the resolution of inflammation 
and tissue repair [110]. However, neutrophils also con-
tribute to immunopathology of many diseases including 
respiratory diseases, such as bronchiectasis [111], cystic 
fibrosis [112], COPD [113], ARDS [114], and neutrophilic 
asthma [5,6,15,20].

Activated neutrophils produce oxidative bursts, re-
leasing multiple proteases, cytokines, chemokines, lipid 
mediators, elastase, metalloperoxidases, and cytotoxic 
reactive oxygen species that lead to airway epithelial 
cell injury, inflammation and hyperresponsiveness. The 
mediators are also responsible for goblet cell hyperpla-
sia, and mucus hypersecretion, airway smooth muscle 
proliferation, and airway remodeling [115,116].

Several studies have documented increased con-
centrations of neutrophil active mediators, such as IL-8, 
elastase, matrix metalloproteinase-9 (MMP-9), leuko-
triene B4 (LTB4), IL-17A, GM-CSF, and TNF-α in plasma, 
BAL fluid, and bronchial epithelial-conditioned media 
derived from patients with severe neutrophilic asthma 
[115-118].

Role of NETosis in Neutrophilic Asthma
Activated neutrophils due to viral, bacterial and fun-

gal infections or immunopathological inflammation, 
such as asthmatic responses, can undergo a process 
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bations, hospitalization, and fixed airway obstruction. 
Immunopathologically, it is characterized by the presen-
ce of high levels of neutrophils, and Th17 staining cells 
in the lungs and airways. Interleukin-23 plays a pivotal 
role in the development and maintenance of Th17 cells 
which produce IL-17. Interleukin-17 plays a key role in 
the pathogenesis of neutrophilic asthma by expressing 
the secretion of cytokines, and chemokines responsible 
for the recruitment and activation of neutrophils. Acti-
vated neutrophils release multiple proteinases, cytoki-
nes, chemokines, and reactive oxygen species which 
cause airway epithelial cell injury, inflammation, hyper-
responsiveness, and airway remodeling. NETs genera-
ted during viral respiratory infections may be respon-
sible for the observed exacerbations in patients with 
neutrophilic asthma. Neutrophilic asthma is unrespon-
sive to the standard care, including high dose inhaled 
corticosteroids, and probably to precision novel anti-I-
gE, interleukin and interleukin monoclonal antibodies 
therapies. There is need for targeted precision biologics, 
and other treatment modalities for these patients, such 
as long-acting phosphodiesterase-4 inhibitors, macroli-
de antibiotics, and bronchial thermoplasty.
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