Protease Biosensors Based on Peptide-Nanocellulose Conjugates: From Molecular Design to Dressing Interface

J Vincent Edwards1*, Krystal R Fontenot1, Nicolette T Prevost1, David Haldane2, Nicole Pircher1, Falk Liebner3, Alfred French1 and Brian D Condon1

1Cotton Chemistry and Utilization Research, United States Department of Agriculture, USA
2Innovatech Engineering Tallahassee, USA
3University of Natural Resources and Life Sciences, Vienna, Austria

*Corresponding author: J Vincent Edwards, Cotton Chemistry and Utilization Research, United States Department of Agriculture, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA, E-mail: vince.edwards@ars.usda.com

Abstract
The development of point of care diagnostic protease sensors applied to wound healing has received increased interest in chronic wound treatment as an interface for chronic wound dressings. Biosensor technology and the use of nanomaterials have grown exponentially in recent years. A biosensor is fundamentally a biomolecule (functioning as a transducer) attached to a transducer surface, which is activated by a biochemical property that prompts a detection signal specific to a target biomarker. For instance, nanomaterials are often derivatized with a biomolecule that provides selectivity and sensitivity for diagnostic biomarkers. Nanocellulose can be prepared as a transducer surface from an assortment of sources like wood and cotton in a variety of physical forms such as nanocrystals, nanocellulose composites, and nanocellulose aerogels that possess ideal properties including biodegradability, biocompatibility, functionality, and a high specific surface area. Interfacing nanocellulosic biosensors with a wound dressing having protease-lowering properties allows in situ sensor detection selectivity and sensitivity to monitor the effectiveness of the dressing and titer of protease removed from the wound. Here we discuss chronic wound dressing design and mechanism with an emphasis on protease-lowering dressings and chronic wound modalities and a discussion of a number of different types of nanocellulosic materials as interface materials for potential sensor-dressing application. As a specific model, we focus on nanocellulosic systems conjugated to the elastase substrate n-succinyl-Arginine-Valine-4-methylcoumarin and n-succinyl-Alanine-Proline-Alanine-7-amido-4-methyl-coumarin, and discuss comparative properties and molecular design, crystal structure, protease binding kinetics, specific surface area, permeability, surface charge, and sensitivity to proteases as relates to biosensor positioning in a dressing design.

Introduction
Protease biosensors and chronic wound biomarkers

Advances in biosensor technology hold promise to revolutionize healthcare and diagnosis through assessment of health status, disease onset, and progression using non-invasive methods [1-4]. This is especially the case in the area of sensor and imaging for wound healing [5], which is critical for the management of wounds stalled in the inflammatory state i.e., a chronic wound [6].

Numerous inflammatory-based disease states are noted for secreting neutrophil and bacterial enzymes including, myeloperoxidase and gelatinases, and neutrophilic proteases. Two proteases that have been associated with chronic wound pathology are Matrix Metalloproteases (MMPs) [7] and Human Neutrophil Elastase (HNE) which have prolonged deleterious effects, from excessive degradation of extracellular matrix proteins [8-10], fibronectin [11,12], and growth factors [13]. It is also noteworthy that HNE and MMPs have been shown to work in a collaborative way to accelerate degradation [14].

Chronic wounds arise from an arrestment in the inflammatory stage of the natural flow of the wound healing phases of hemostasis, inflammation, proliferation, fibroplasia, and remodeling and are often found to have prolonged high titers of neutrophils which lead to high protease concentrations [15]. Although neutrophils play important roles in host defense and debridement of damaged tissue they contain free radical generating enzymes and proteases implicated in chronic inflammatory diseases. Thus, the stalled inflammatory state of chronic wounds [16,17] is often associated with the wound fluid containing high levels of harmful proteases (HNE and MMP) that have become increasingly important biomarkers for point-of-care diagnosis which is also important in appropriate wound dressing selection [18-20]. Thus, an increased interest in protease biosensors which may be designed to detect proteases of clinical interest has arisen giving rise to what has been referred to as a “test and treat” strategy [21].

A biosensor’s basic design may be defined as the interface of a molecular or receptor-recognition property with a cellular or biochemical activity, triggering a “bio-molecular switch” that in turn is connected with a detector signal [3,22]. Nanomaterials with high surface area and biocompatible properties make ideal transducer surfaces for biosensors. Nanocellulose, which we address in this paper, provides noteworthy advantages as a transducer surface, but has received less attention than other nanomaterials for sensor applications [18,23].

Chronic wound dressings

Chronic wound dressings used in the treatment of non-healing wounds may be organized into four groups including: passive, active, reactive, and regenerative dressing modalities [24]. Passive dressings provide a moist, occlusive, or permeable environment that promote healing by limiting infection, preventing dehydration, maintaining moisture content, and promoting a controlled wound environment [25]. Active dressings can actively control the wound environment where dressings can be designed to deliver antimicrobial agents to inhibit wound infection, with bioactive agents, such as growth factors, to enhance wound healing, or to provide a moist environment to accelerate healing [26]. Reactive dressings can also be used to enhance wound healing by dissolving the wound exudate to control infection, debride non-viable tissue, or provide a controlled environment to allow tissue regeneration [27]. Regenerative dressings can be designed to provide a matrix for tissue regeneration and provide a potential source of autologous cells for wound repair [28].

Received: March 02, 2016; Accepted: August 16, 2016; Published: August 19, 2016
Copyright: © 2016 Edwards JV, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
interactive, bioactive, and intelligent [24,25]. Passive dressings protect the wound bed from trauma and bacterial infection [24,26-30]. Interactive dressings maintain a moist wound and facilitate fibroblast proliferation and epithelialization [29,30] by way of a added functional property conferred by a material component of the dressing i.e. biomaterials like honey, collagen, hyaluronic acid, and chitosan have been associated with enabling mechanisms of wound healing. Current advancements in commercially available semiocclusive dressings include improvement on hydrocolloids, hydrogels, and semi permeable foam dressings that are designed to module fluid balance by retaining moisture or reducing exudate volume, and acting as a bacterial barrier while improving the range of their use i.e. to reduce pressure, friction, and shear for the patient for example [31].

Bioactive wound dressings, which include delivery systems, skin substitutes, and biological dressings, are being employed for their clinical efficacy to promote wound healing in challenging wounds by activating cellular roles in the proliferative or inflammatory stages of wound healing [24,32,33]. Bioactive dressings have been employed as a combination of keratinocytes, fibroblasts, and other cellular constituents as well as biopolymer composites designed to facilitate epidermal growth as are required in burn and full thickness wound patients [34,35]. It is noteworthy that a recent review by Dreifke, et al. has discussed FDA approved wound healing dressings based on collagen, silicon, chitosan, and hyaluronic acid in light of wound environment sensors for early detection of complications [36]. It also important to note in the context of bioactive analogs the development of therapeutic growth factor and neuroepitope analogs. Advances in the understanding of wound healing pathophysiology have provided targets for bioactive topical therapies with an emphasis on peptide and growth factor therapies which have appeared promising for modulation of the proliferative phase of wound healing [37-39].

An intelligent dressing may perform a specific function, for example protease sequestration or low-level hydrogen peroxide generation. It may also have sensor capabilities. Sensor functions like color, pHe, and temperature change, have been explored in dressing design where there is an underlying activation due to biochemical changes and cellular responses [40,41] in the wound. For example, biofilm detection and treatment is a clinically challenging area in 60 percent of chronic wounds; and Thet, et al. recently reported a prototype hydrogel wound dressing that is described as emitting a glow in response to bacterial biofilms present in a wound [42].

Wound fluids from chronic and acute wounds have different characteristic microenvironments and the composition of the fluid and the wound bed microenvironment undergoes basic changes in moisture, temperature, pHe and oxygen. Thus, theranostic markers like pHe useful in predicting whether the wound will heal may reflect the general condition of a wound in line of giving a more specific indication as a biomarker does [43-46]. In this regard it is notable that Rahimi, et al. evaluated a flexible pHe (4-10) sensor fabricated on a polymer coated palette and paper substrate, consisting of cyto- et al. evaluated a flexible pH (4-10) sensor fabricated on a polymer coated palette and paper substrate, consisting of cyto-...
MMP have been reported based on fluorescence resonance energy transfer (FRET) and include fluorescent tripeptide substrates of proteases with the mechanism being linkage of a highly sensitive fluorescent response between donor and acceptor molecules [71]; quantum dots, gold nanoparticles or organic dyes have also been explored with a similar approach [72,73]. Graphene which has a very large specific surface area has also been employed as a transducer surface for an oxide-based sensor, a fluoresein labeled peptide based on electrostatic interactions and as a fluoresce in isothioanate-labeled peptide conjugate [74,75].

HNE sensors

A recent review of HNE biosensors has listed a variety of designs proposed and utilized with the corresponding protease sensitivity ranges [18]. Briefly, biosensor-based detectors of elastase have included a microchip (Henare, et al. 2006) [76], microdiagnosis probe [77], fluorometric supramolecular pore sensor [78], immobilization of peptides on quantum dots [79], immobilization of HNE on a biosensor chip for surface plasma resonance [80], ethoxyacrylate resin [81], using a colorimetric detection and fluorometric peptides coupled to paper [79] as well as cotton cellulose nanocrystals [18,82]. Schyr, et al. recently reported fluorescent sensor film made from cellulose nanocrystals and polyvinyl alcohol has also been demonstrated as a protease sensor [83] with added functional porosity.

Other approaches and considerations with wound Sensors

A variety of imaging spectroscopy technologies are beginning to replace traditional visual cutaneous assessment of burn, diabetic and traumatic wounds [84], and recently an approach utilizing wound blotting of necrotic tissue for distribution analysis of marker proteins with nitrocellulose has been proposed as an approach to the prediction of healing progress in pressure ulcers [85]. Point-of-care protease detection has received increased attention and has been applied clinically throughout the world to enable chronic wound treatment decisions [19,86,87]. The pros and cons of a ‘test and treat’ strategy approach for elevated protease activity in venous ulcers was recently reviewed [21]. Moreover, peptide-based protease sensors are widely used in monitoring enzyme activity. They have a rich structure/function literature that can be utilized to design enzyme sensors and are central to a number of protease-based diseases and their therapy [88]. The clinical application of peptide-based biosensor approaches to protease biomarker disease assessment in chronic wounds is growing [19]. On the other hand, although there have been a few reports of prototypes, the combination of detection and treatment in a chronic wound dressing has not been adopted on a widespread clinical basis [18]. Thus, the ability to combine measurable protease detection with a dressing motif that removes proteases is an emerging research and development goal of wound healing biomaterial design [18,21,89].

There are many considerations in clinically evaluating a combined dressing-sensor system for protease detection. The use of an in situ detector should withstand scrutiny as to whether it be applied as an indicator to change the dressing and accurately detect the wound protease titers. It is also important to note that not all chronic wounds have abnormally high protease levels, and normal protease levels are important to wound remodeling [17]. In light of variations in wound protease levels a ‘dipstick’ approach for assessment of protease levels in chronic wounds [19,86] has been suggested before treatment options and dressing selection is made.

Nanocellulosic biosensors

Although the sophistication and sensitivity of detectors underlie much of the progress in the rapidly growing field of biosensors, the composition of the transducer surface material and its environment can also complicate and dampen the sensitivity of detection. Thus, biosensor materials should ideally be compatible with the complexity of the bio-system by being resistant to nonselective adsorption by lipids, proteins, polysaccharides, cellular debris, and breakdown of the transducer surface. In this regard, nanocellulose is both hydrophilic and structurally resilient, rendering it advantageous as a biomaterial.

The use of cellulose nanocrystals and nanofibrillated cellulose in biomaterials has been shown to have potential advantages in optics [90], nanocomposite materials [91], and has continued to show promise as an effective material in semiocclusive dressing design for chronic wound applications [92-94]. Nanocellulose is a crystalline biopolymer with hydrophilic properties and high surface area [91]; it possesses reactive hydroxyls that can be derivatized to covalently append a wide range of biologically active molecules. Its hydrophilic surface of nanocellulose improves wettability and abrogates binding by proteins and lipids.

The high specific surface area of the nanocellulose systems enables enhanced sensitivity of a peptide-based protease sensor by accommodating a higher peptide titer on the crystalline surface, and subsequently performing as a sensor more efficiently by way of increased binding of the protease on the sensor surface. For example, print cloth and filter paper, which are largely cellulosic when compared with and wood cellulose nanocrystals have a specific surface area of 0.016-0.020 m²/g and 261.2 m²/g, respectively [95]. Upon attachment of peptides to these types of materials, it was found that the approximate number of peptides per 200 anhydroglucose cellulose residues are print cloth (1), filter paper (2), and cellulose nanocrystals (12), and these ratios of peptide to cellulosic units correspond with a relative order of increasing specific surface area [95]. The relative activities also paralleled specific surface area of the cellulolic versus nanocellulosic materials and demonstrate the contrast in efficiency of cellulosic versus nanocellulosic sensors.

As introduced above elastase sensors provide a model for point of care biomarkers in inflammatory diseases and chronic wounds. It is understood that broad spectrum protease assessment would be beneficial in clinical point of care diagnosis. However, here we discuss elastase sensors as a model for broad spectrum protease sensors as a model for this approach. Here we evaluate fluorescent protease biosensors on nanocrystals, nanocomposite cellulosics, and nanocellulosic aerogels immobilized with the tetrapeptide substrate n-succinyl-Alanine-Alanine-Proline-Valine-7-amido-4-methylcoumarin (Suc-Ala-Ala-Pro-Val-AMC) and the tripeptide substrate n-succinyl-Alanine-Proline-Alanine-7-amido-4-methyl-coumarin (Suc-Ala-Ala-Pro-Val-AMC).

Material and Methods

Esterification of transducers

Standard fluorenylmethyloxycarbonyl (Fmoc) chemistry was used for esterification and immobilization of the peptide onto the transducer materials [96,97]. The esterification and peptide immobilization of the transducers is previously outlined by Edwards, et al. [82,95]. Briefly, the nanocellulosic transducers cotton cellulose nanocrystals (cCNC), wood nanocellulose composites 66/33 and 50/50 (wNCC), and nanocellulosic aerogel (NA) were esterified with Fmoc-Gly-OH with the respective coupling agents (Ethylcyanoglyoxylate-2-oxime (Oxyma Pure), Diisopropylcarbodiimide (DIC), and 4-dimethylaminopyridine (DMAP) in N,N-dimethylformamide (DMF)) and sonicated. The materials were washed thrice by centrifuging or filtration DMF, dichloromethane (DCM), and in select cases allowed to air dry. (Note: the NA-Gly-Fmoc was allowed to remain in DMF for storage and was not air dried). The transducers cCNC-Gly-Fmoc, wNCC-Gly-Fmoc, and NA-Gly-Fmoc were deprotected or stored at ~4°C. A deblock solution (piperidine/DMF) was used to deprotect the Fmoc protecting group from the glycine esterified transducers. (Note: the NA-Gly-Fmoc was washed with DMF prior to soaking in the deblock solution). The materials were washed thrice by centrifuging or filtration with DMF, DCM, and in select cases allowed to air dry. (Note: the NA-Gly was washed thrice with DMF followed by preparation for peptide coupling or stored in DMF for further use).

Immobilization of the fluorescent peptide substrate

Peptide immobilization of cCNC-Gly, wNCC-Gly, and NA-Gly were achieved by activating the tripeptide (Suc-Ala-Ala-Pro-

ISSN: 2378-3664

Page 3 of 11
AMC) or tetrapeptide (Suc-Ala-Ala-Pro-Val-AMC) substrates with DMAP in DMF for twenty minutes, to which Oxyma Pure and DIC were added. The solutions were sonicated for 3 hours, placed in the refrigerator overnight, and purified by centrifuging or filtering thrice with DMF, DCM or methanol (MeOH), and in select cases allowed to air dry. (Note: the NA-Pep was washed thrice with DMF, thrice with PBS, and stored in PBS). The biosensors were stored at −4–8°C until further use. Note “biosensor” will be defined as the glycine esterified transducer immobilized with the tripeptide or tetrapeptide substrate.

Upon the completion of drying, the peptide was cleaved from each biosensor by adding a mixture of TFA/water/triisopropylsilane to the biosensor for three hours. The solution for each biosensor was diluted (water/acetonitrile) and submitted for Electrospray ionization liquid chromatography mass spectrometry (ESI-LC/MS), which confirmed the intact sequence of the peptide component of the biosensor via its molecular weight.

<table>
<thead>
<tr>
<th>Biosensor</th>
<th>Fluorescent peptide substrates</th>
<th>SSA (^{b})</th>
<th>Sensitivity (^{c})</th>
<th>Surface charge (^{d})</th>
</tr>
</thead>
<tbody>
<tr>
<td>cCNC-Pep</td>
<td>Suc-Ala-Ala-Pro-Val-AMC</td>
<td>186.2</td>
<td>0.050</td>
<td>-41</td>
</tr>
<tr>
<td>wNCC-Pep 66/33</td>
<td>Suc-Ala-Ala-Pro-Val-AMC</td>
<td>0.021</td>
<td>0.250</td>
<td>-18</td>
</tr>
<tr>
<td>wNCC-Pep 50/50</td>
<td>Suc-Ala-Ala-Pro-Val-AMC</td>
<td>0.035</td>
<td>0.125</td>
<td>-17</td>
</tr>
<tr>
<td>NA-Pep</td>
<td>Suc-Ala-Pro-Ala-AMC</td>
<td>162.9</td>
<td>0.125</td>
<td>-19</td>
</tr>
</tbody>
</table>

\(^{a}\)The biosensor is defined as the nanocellulose material immobilized with the peptide substrate.

\(^{b}\)The specific surface area was determined Brunner Emmett Teller nitrogen or krypton absorption.

\(^{c}\)The sensitivity values reflects the lowest concentration of which the biosensors are able to detect HNE.

\(^{d}\)The surface charge as determined by Zeta potential.

Figure 1: Model of the cotton cellulose nanocrystals biosensor with the tripeptide based on the cellulose I diffraction patterns with a width of 58.8Å (109 chains and 15 layers) [82]. The tripeptide is substituted on the crystallite structure with a D.S. level of 0.044 and a SSA of 186.2 m²g⁻¹.
added. To start the reaction, 50 μL human neutrophil elastase (HNE) ranging from 2.0-0.0156 U/mL was added to the standard curve and to the biosensors to provide a total volume of 150 μL. Fluorescent measurements at 37°C were monitored for 1 hour at 1-minute intervals using a Biotech Synergy HT with tungsten halogen lamp and photomultiplier detection. The 96 well plates were shaken before each measurement for 3 seconds and the measurements were acquired at 360 nm excitation and 460 nm emission. The wound like fluid herein comprises of PBS and HNE.

Surface charge

The zeta potential (ζ) determines the surface charge properties of the peptide free transducers (cCNC, wNCC, NA), which are immersed in a conducting solvent and measured using a Malvern Zetasizer nano ZS90 equipped with a laser doppler and detected with a phase analysis light scattering. The wNCC and NA were ground into a powder using a Wig L Bug Ball Mill and pulsed for ~1.5 minutes. Stock solutions (5 mg/0.25 mL) of the ground transducers were prepared in DI H2O or PBS from which 1 mg/mL (cCNC and NA) and 0.5 mg/mL (wNCC) solutions were prepared. The respective solutions were sonicated for 2 hours prior to obtaining triplicate zeta potential measurements.

Moisture vapor transmission rate (MVTR)

The MVTR measures the rate at which moisture can permeate solid porous materials such as the wNCCs. Commercial Testing Company performed the water vapor transmission rate according to the ASTM E96-95 method with procedure B - water method at 23°C for the wNCC.

Results and Discussion

Cellulose nanocrystal-based sensors

Cotton cellulose nanocrystals (cCNC) and wood cellulose nanocrystals (wCNC) have a high surface area, mechanical robustness, a geometrical rod-like or whisker shape nanocrystal, and a negatively charged surface [18,100]. The cellulose nanocrystals have a high SSA of 186.2 m²/g¹ that allows for a greater number of peptide substrates to be anchored onto the surface. The fluorescence sensitivity of the nanocrystalline peptide biosensors was as low as 0.05 U/mL, which correlates to a higher concentration of peptide substrate loading and to a higher concentration of AMC-released fluorophore. Furthermore, as shown in table 1 the cellulose nanocrystals possess a negatively charged surface of ~41 mV [82,101] that enable binding of elastase. The surface charge influences the interaction between the wound fluid and the wound dressing, which promotes uptake of positively charged proteases by negatively charged materials consistent with phosphorylation, sulfonation, and oxidation of cellulose. This electrostatic mechanism promotes increased binding to HNE by targeting positively charged amino acids in the proteins sequence [52,102]. Therefore, negatively charged cellulose nanocrystals bind the HNE proteases present both in the wound fluid and the dressing, which has been shown to accelerate the healing rate of the wound [52,102,103].

Molecular design

Figure 1 shows a crystallite-tethered fluorescent tripeptide elastase substrate linked via the cellulose primary hydroxyls to a cotton cellulose nanocrystal surface. This depiction is representative of the molecular surface of a nanocellulose transducer with sensor molecules and constitutes the design components of a point-of-care protease sensor. Recently analogous structures have been discussed [99]. Modeling of the sensor molecule on the crystalline surface when accompanied with enzyme kinetic analysis is helpful in predicting the interaction of the protease with the sensor in terms of enzyme/substrate binding efficiency and crystal surface versus enzyme spatial considerations [104] i.e., of the enzyme on the transducer surface as it relates to peptide protease binding and kinetics. A peptide-nanocellulose analog characterized with a similar crystallite surface was shown to undergo a five-fold more efficient interaction with HNE than was observed of the analogous enzyme substrate in solution i.e. a higher Kcat/Km of the peptide-nanocrystalline material versus peptide in solution [104]. This improvement in the kcat/Km is attributable in part to enhanced binding of the cationic serine protease to an anionic crystallite surface.

Colorimetric sensor

Over the last ten years a variety of colorimetric protease sensors directed to point of care models have been reported. Edwards, et al. first reported a colorimetric approach for elastase detection with ethoxyacrylate resin as a transducer surface and demonstrated the relevant enzyme-substrate binding properties [105]. The incorporation of colorimetric detectors i.e. remazol brilliant blue into peptidoglycan and polymer motifs, with a goal of making them amendable to the wound environment, was reported with a variety of designs as a diagnostic device paradigm for wound infection relevant proteases [89,106]. Previously we proposed a colorimetric protease detection with dressings using cotton cellulose nanocrystals derivatized with both a tetrapeptide protease substrate (n-succinyl-Ala-Ala-Val-p-nitroanilide, Suc-AAPV-pNA) or tripeptide protease substrate (succinyl-Ala-Ala-Val-p-nitroanilide, Suc-AAV-pNA), which employs the visual amplification of a chromophore with a dye to enhance sensitivity [18] (Figure 2).

The colorimetric sensor-based dressing diagram shown in figure 3 comprises a matrix of layers functioning to: 1) absorb wound exudate and allow entry of the protease onto the surface of the sensor through a semipermeable absorptive layer and allow, 2) protease reaction with the protease substrate where upon, 3) release of the chromophore onto a 10 kDa dialysis membrane permeated with amplifying dye, and 4) a barrier layer to prevent backwash of the released dye into the wound. The cellulose nanocrystal tripeptide conjugate with colorimetric amplifying agents was capable of detecting HNE at 0.05 U/mL [18]. The free particle nature of the cellulose nanocrystals allows efficient use of the nanoparticles properties as a sensor, which includes high SSA, versatility of application, and improved sensitivity to the protease biomarker. The benefit of interfacing a protease sensor with a dressing may be construed in its value as an indicator for dressing saturation of proteases, a detector to monitor the efficacy of the dressing and its interaction with the wound environment.

Fluorescent-based sensors and dressing interface

Fluorescent imaging on the other hand has higher sensitivity limits toward visualization of molecular biomarkers at nano- or picomole levels of protease, but requires a fluorometric device for imaging. However it is notable that fluorescent imaging of wounds has shown potential to directly visualize the skin’s natural fluorophores (collagen and elastin for example), and this type of approach has been demonstrated with nicotinamide adenine dinucleotide (NADH), which is associated with oxidative phosphorylation as a maker for cutaneous healing [107]. Direct exogenous fluorescent imaging, for dressing application, has also been applied thru the use of fluorescent dyes injected into the systemic system, and the dyes are visualized in the vasculature of burn wounds to assess wound depth [108]. Also noteworthy is an elegant approach to incorporation of fluorogenic esterase sensors demonstrating potential as an in situ sensor functionality that addresses challenging signal and diffusion issues and can be incorporated into various cellulose dressing and substrate designs using a chemo-enzymatic approach [109].

A point of care diagnostic approach for chronic wound dressing selection is sensitive detection of the biomarker of interest [40]. Protease biomarkers that correlate to outcomes in wound healing include both MMPs and HNE as discussed above. Figure 4A, shows the interface of a fluorescent protease biosensor motif with a dressing. The dressing-sensor design directs uptake of wound exudate through a semipermeable contact layer onto the sensor surface where proteases react with the peptide substrate giving deposition of proteolytic reaction by-products on a barrier surface of the dressing tangential to the biosensor where it does not mix with wound fluid. Figure 4B portrays a series of images of
than is emitted by the fluorescent signal found with AMC. On the other hand, AMC upon hydrolysis fluoresces by way of excitation at 360 and emission at 460 nm. Figure 2 shows the pathway of A) hydrolytic cleavage of pNA from the peptide substrate followed by reaction with NEDH amplification and B) hydrolysis to yield AMC from a tetrapeptide substrate with elastase. Comparatively, the AMC signal is more sensitive than the colorimetric signal when the transducer surface is cellulose nanocrystals. As noted previously [18] the sensitivity of the fluorophore with the tetrapeptide substrate is approximately two-fold greater than the colorimetric response.

Figure 2 shows the cleavage pathway of A) pNA with NEDH amplification; B) AMC from the tetrapeptide substrate with HNE [110].

The functional comparison of colorimetric and fluorescent protease sensors

The colorimetric and fluorescent tetrapeptide elastase substrates function as sensors through a respective chromophore (pNA) and fluorophore (AMC), which have different mechanism pathways. The para-nitroanilide (pNA) chromophore upon release absorbs at 405 nm, and when coupled with amplification by way of N-(1-Naphthyl) ethylenediamine (NEDH) elicits a colorimetric signal that gives enhanced sensitivity of detection, but notably slightly less than is emitted by the fluorescent signal found with AMC. On the other hand, AMC upon hydrolysis fluoresces by way of excitation at 360 and emission at 460 nm. Figure 2 shows the pathway of A) hydrolytic cleavage of pNA from the peptide substrate followed by reaction with NEDH amplification and B) hydrolysis to yield AMC from a tetrapeptide substrate with elastase. Comparatively, the AMC signal is more sensitive than the colorimetric signal when the transducer surface is cellulose nanocrystals. As noted previously [18] the sensitivity of the fluorophore with the tetrapeptide substrate is approximately two-fold greater than the colorimetric response.

Figure 2A portrays the molecular sequence of events underlying colorimetric detection from hydrolytic cleavage of...
Nanocellulosic composite-based sensors

Nanocellulosic composites (NCC) may be considered appropriate for wound dressings and are porous paper-like films that have good gas barrier and mechanical properties [111]. Generating nanocellulose composites from wood cellulose nanocrystals and microfibrillated cellulose into thin film nanocellulose composites in ratios of 66/33 and 50/50, respectively [95] allowed for improved dressing construction while maintaining a porous structure that permits air, moisture, and gas permeation [111,112]. As shown in figure 6 the porous nature of

pNA from the tetrapeptide substrate via a two-step reaction. The sensor signal is prompted by the following: HNE hydrolyzes of the amide bond between valine and the COOH-terminal pNA whereupon an azide bond forms between pNA and NEDH. The detection signal of the pNA chromophore (405 nm) is amplified with formation of the azide bond between pNA and NEDH (545 nm), which results in a red shift in absorbance and increases the colorimetric signal [18,110].

Figure 2B demonstrates the one-step reaction that occurs upon HNE hydrolysis of the amide bond between valine and AMC subsequently resulting in a strong and sensitive fluorescence signal. It is notable that the one-step approach for the fluorescence signal as a detection method for a biosensor layer in a multilayered wound dressing is depicted in figure 5.

Nanocellulosic composite-based sensors

Nanocellulosic composites (NCC) may be considered appropriate for wound dressings and are porous paper-like films that have good gas barrier and mechanical properties [111]. Generating nanocellulose composites from wood cellulose nanocrystals and microfibrillated cellulose into thin film nanocellulose composites in ratios of 66/33 and 50/50, respectively [95] allowed for improved dressing construction while maintaining a porous structure that permits air, moisture, and gas permeation [111,112]. As shown in figure 6 the porous nature of
Nanocellulosic aerogels (NA) are lightweight solid materials with low densities, high SSA, and an interconnected open porous structure [117,118], which make them attractive for use in semiocclusive dressings. Nanocellulosic aerogels may be prepared from a variety of cellulose fiber sources including wood and cotton. The interconnected open porous structure enables gas exchange between the wound bed and environment [24], membrane permeability [119,33], and prevents wound dehydration by way of promoting a high water vapor transmission rate [24]. Furthermore, the wettability and swelling properties of the NA promotes a hydrophilic and absorbent structure conducive to absorbing wound fluid. In addition as shown in table 1, the NA is a potential sequestrant of HNE due to the NAs negative surface charge of ~-24 mV [52,102,103].

The high SSA, 162.9 m²/g⁻¹, of the nanocellulosic aerogels enables a higher loading of the sensor molecules (elastase tripeptide substrate) and increases sensitivity of the sensor by increasing the transducer surface area for protease binding. Figure 5 shows the NA biosensor interfaced with a semiocclusive wound dressing. The sensitivity studies of the NA peptide conjugate show the biosensor detects HNE as low as 0.125 U/mL.

Evaluation of nanocellulosic biosensors

It was observed that protease sensors made from the films had lower protease detection sensitivity of 0.25 and 0.125 U/mL, respectively when compared with the cellulose nanocrystal-based sensors [95]. The lower sensitivity is thought to be due to aggregation of the nanocellulose during the preparation process, which yields a lower specific surface area of 0.021-0.035 m²/g⁻¹. As shown in table 1 the incorporation of cellulose nanocrystals into the nanocomposite imparts a negatively charged surface [101] that functions to sequester excess positively charged proteases.

Nanocellulosic aerogel-based sensor

Nanocellulosic aerogels (NA) are lightweight solid materials with low densities, high SSA, and an interconnected open porous structure [117,118], which make them attractive for use in semiocclusive dressings. Nanocellulosic aerogels may be prepared from a variety of cellulose fiber sources including wood and cotton. The interconnected open porous structure enables gas exchange between the wound bed and environment [24], membrane permeability [119,33], and prevents wound dehydration by way of promoting a high water vapor transmission rate [24]. Furthermore, the wettability and swelling properties of the NA promotes a hydrophilic and absorbent structure conducive to absorbing wound fluid. In addition as shown in table 1, the NA is a potential sequestrant of HNE due to the NAs negative surface charge of ~-24 mV [52,102,103]. The high SSA, 162.9 m²/g⁻¹, of the nanocellulosic aerogels enables a higher loading of the sensor molecules (elastase tripeptide substrate) and increases sensitivity of the sensor by increasing the transducer surface area for protease binding. Figure 5 shows the NA biosensor interfaced with a semiocclusive wound dressing. The sensitivity studies of the NA peptide conjugate show the biosensor detects HNE as low as 0.125 U/mL.
the relative structure, SSA, and sensitivity as a biosensor component of a multilayered dressing. The nanocrystals exist in a powder form that is not readily adaptable in a wound dressing prototype as are the planar nanocellulose composites and nanocellulose aerogel. On the other hand the free particle nature of the nanocrystals maximizes the interaction with the human neutrophil elastase enzyme by virtue of the higher SSA thereby yielding a higher sensitivity to detect HNE present in chronic wound fluid. On the other hand, the incorporation of the nanocrystals into the wNCCs to create films affords a planar structure but a 5000-8000 fold reduction in the SSA occurs due to the aggregation of the nanocrystals blended with microfibrillated cellulose. The reduction in the SSA parallels the lower level of sensitivity; however, the planar but porous structure of wNCCs permits the permeation of moisture vapor and gaseous molecules, making it suitable for dressing interface as a biosensor layer. Nevertheless, the NA structure is also a compatible component of a multilayered dressing and offers a SSA with only a 1.14 fold reduction compared to the nanocrystals. Contrary to the SSA value, a higher sensitivity of 0.125 U/mL is observed versus the lower 0.05 U/mL compared to the cCNc, which may potentially be attributed to the pore sizes restricting the HNE enzymes penetration into the NA structure in order to interact with peptide substrate.

Even though the sensitivity of the nanocomposite and aerogel biosensors are at borderline levels for previously reported titers of elastase in chronic wounds [120] they are viewed as beneficial biosensors capable of detecting and sequestering HNE, and can be applicable as a dressing that can monitor wound saturation of HNE versus a preliminary way to detect the onset of a developing chronic wound. The benefit to both applications can provide information as to how the wound is healing when a new method of treatment is selected.

Conclusion

Biosensor development is undergoing exponential growth in the field of health care. In the area of point of care diagnostics, wound care developments with in situ detection that is compatible with wound dressing structure and function promises to change the face of wound care and help address the rapidly rising number of chronic wound patients worldwide. Here we have explored, in the context of the area of point of care diagnostic technology and dressing development, the comparative properties of nanocellulosic-based protease sensors for their potential interface properties with chronic wound dressings. Three nanocellulosic materials (nanocrystals, nanocellulose composites, and nanocellulose aerogels) were selected and evaluated for their ability to serve as a biosensor component for a multilayered chronic wound dressing. The nanocellululosic materials surveyed offer ideal properties including SSA, permeability, and surface charge that confer a compatible function to protease sequestrant semiinclusive wound dressings in the removal and detection of harmful proteases in the chronic wound.

A tetrapeptide (cCNc and wNCCs) and tripeptide (NA) substrate were immobilized onto transducer surfaces to generate the biosensors examined here. Each nanocellulosic biosensor was assessed for its ability to detect HNE and for its level of sensitivity in the presence of HNE. The relevant molecular and enzyme kinetic attributes suggest that negatively charged nanocellulose promotes efficient uptake of positively charges proteases. All of the biosensors were effective at detecting HNE at levels comparable to those found in chronic wound fluid or as may be expected to be taken up in a dressing. Furthermore, the anionic surface charge of the cellulose materials provides an uptake mechanism for cationic human neutrophil elastase and is compatible with protease lowering dressings in that regard. Therefore, a single dressing motif based on different nanocellulosic materials could both sequester harmful proteases while serving to detect their presence as well as signaling dressing saturation.

Each of the biosensors, discussed here, has physical properties similar to commercially available thin films, hydrogels, and hydrocolloid dressings. Therefore, interfacing these types of nanocellulose-based biosensors with a semicocclusive dressing can be construed as compatible with detection of other markers of clinical interest as well, through substitution of the biomolecule needed for the desired point of care diagnostics or theranostic interest. Future work will look to fine tuning the structure function relationships of sensor and dressing interface.

The biosensors presented herein are promising in view of nanocellulosic-based materials with a high SSA, permeability, hydrophilicity, absorbent structure, and anionic surface charge. The combination of these features in a single sensor will increase the sensitivity threshold and enhance uptake of the biomarker.

Acknowledgement

The U.S. Department of Agriculture financed this project. We thank Dr. Alfred D. French for the X-Ray Diffraction studies that yielded the nanocrystallite model.

References

Detection of Elastase Enzymatic Activity External to Microdialysis Sampling

Microchip: Simultaneous Determination of Ion Concentrations and Enzymatic

FRET sensor for rapid and sensitive detection of matrix metalloproteinase 2

Proteolytic activity monitored by fluorescence resonance energy transfer

Enhancement of Quantum Dot

Elastase Sequestration by Modified Cellulosic Dressings and Their Electrokinetic Analysis. J Funct Biomater 2: 391-413.

