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Abstract
In this study, we evaluated the stability of three common 
housekeeping genes, GAPDH, beta-Actin, and 18S-rRNA, 
in human neuroblastoma SHSY-5Y cells exposed to varying 
levels of steroid hormones like progesterone (P4) and 
testosterone. Housekeeping genes serve as reliable internal 
controls, assumed to maintain consistent expression across 
diverse tissues and experimental conditions. Since steroid 
hormones act as ligand-activated transcription factors, 
directly impacting gene transcription, the identification of 
suitable housekeeping genes in steroid hormone-influenced 
tissues is imperative.

Our analysis, employing the Norm finder, Genorm, and 
Best Keeper algorithms within the web-based tool Ref 
Finder, indicates that GAPDH emerges as the most stable 
housekeeping gene among the three candidates. In contrast, 
18S-rRNA is deemed the least suitable, showing significant 
up regulation with low doses of progesterone treatment and 
down regulation in cells treated with testosterone and high 
doses of progesterone. It is worth noting that the ribosomal 
fraction might not accurately represent the overall cellular 
mRNA population.

Acknowledging the study's limitations, including the focus 
on SHSY-5Y cells with unique metabolic characteristics, we 
recommend cautious extrapolation to different cell types, 
tissues, and hormone concentrations. Determining an 
appropriate housekeeping gene is vital before embarking 
on new experiments. This study serves as a foundation for 
future research in qPCR analysis, shedding light on how 
steroid hormones influence commonly used housekeeping 
genes. It prompts the need for further exploration of 
hormone effects in diverse cellular contexts, contributing to 
enhanced research on life-imparing diseases.
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Introduction
Selecting appropriate housekeeping genes to 

normalize data is essential when applying RT-qPCR 
since their expression varies depending on the tissue 
and treatment and the choice of housekeeping gene will 
ultimately influence statistical interpretation of data. 
Steroid hormones are known to be ligand activated 
transcription factors in cell nuclei and therefore have 
a direct influence on the transcription of various genes 
[1]. Hence, evaluating RT-qPCR data of such steroid-
hormone treated tissue is challenging. The significant 
variation observed in housekeeping genes under diverse 
experimental conditions has the potential to result in a 
misinterpretation of the expression pattern of a target 
gene [2]. So far, no suitable housekeeping genes for 
human neuroblastoma cell-line SHSY-5Y treated with 
progesterone or testosterone have been reported.

In addition to its major role in female reproductivity, 
progesterone is known to be a neurosteroid of the 
central (CNS) [3-5] and peripheral nervous system (PNS) 
[6,7], inducing neuroplasticity, neuroregeneration and 
neuroprotection [8,9]. Two studies recently showed that 
progesterones neuroprotective properties even extend 
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Materials and Methods

Cell culture and differentiation protocol

Figure 1 gives an overview over the experimental 
setup. Exponentially growing SHSY-5Y neuroblastoma 
cells were seeded in T25 tissue culture flask at a density 
of 1 × 104 cells/cm2 at day 1. The cells were maintained 
in a humidified atmosphere at 37 °C and 5% CO2 in 
proliferation medium (Table 1). 24h after plating, the 
proliferation medium was replaced with differentiation 
medium containing retinoic acid to promote 
differentiation and induction of a neuronal phenotype. 
After 48h the differentiation medium was replaced by 
differentiation medium containing the external factors 
corresponding to the assigned group (progesterone (1 
nM, 10 nM, 100 nM), testosterone (1 nM, 10 nM, 100 
nM). As described in [11] progesterone was diluted in 
EtOH until the desired concentration was reached. Note 
that the final concentration of EtOH in the medium 
was never higher than 1%, which is described to have 
no influence on cell integrity [20]. After an incubation 
period of 24 hours adherent cells were collected using 
cell-scrapers followed by centrifugation for 5 min at 
4 °C and 1000 rpm. Each experiment was performed 
independently three times and all three samples were 
used for further processing and analysis.

Used solutions and reagents

RNA extraction and reverse transcription
After discharging the supernatant, the pellet was 

to the enteric nervous system (ENS) [10,11]. To this date, 
very few studies addressed possible housekeeping genes 
regarding the influence of progesterone on housekeeping 
genes. The neuroprotective potential of the gonade 
steroid testosterone has only recently been discovered. 
With publications found on pubmed doubling in the last 
20 years from 4000 publications in 2004 to over 8000 
publications per year in 2022. So far, only one study 
addresses the influence of testosterone on the expression 
of housekeeping genes [12]. SHSY-5Y is a human 
neuroblastoma cell line and a sub line of the SK-N-SH cell 
line, which was first established in culture in 1970 from a 
biopsied bone marrow metastasis of a 4-year-old female 
[13]. SHSY-5Y cell-line exhibits catecholaminergic and 
neuronal properties and is widely used in in vitro studies 
about neurodegenerative and neurodevelopmental 
disorders, such as Parkinson’s Disease, Alzheimer’s Disease 
and even autism spectrum disorder [14-16]. This particular 
cell line is commonly selected due to its human origin, 
catecholaminergic neuronal traits, and its user-friendly 
maintenance demands [17]. Nevertheless, up to this date 
few publications about suitable housekeeping genes when 
working with SHSY-5Y are available.

As the levels of testosterone and progesterone 
vary depending on the cycle and biological sex [18,19], 
vulnerability of the selected HK gene to these hormones 
in each tissue should always be considered when 
comparing groups of different sexes. With this study we 
aim to provide the reader with a suitable HK gene for 
such implications.

Figure 1: Timeline of the experiments.

Table 1: Compounds used for media and treatments.

Medium/Reagent Components
Proliferation •	 10% FBS (#F7524, Sigma-Aldrich)

•	 1% PS (#P4333, Sigma-Aldrich)

•	 In DMEM/F12incl. Glutamax (#, Thermo Fisher)

Differentation •	 0.25% Glutamine (G#7513, Sigma-Aldrich)

•	 1% PS (#P4333, Sigma-Aldrich)

•	 2% Neuromi × 2a plus retinoic acid (#17504044, Thermo Fisher)

•	 In Neurobasal medium (#10888022, Thermo Fisher)

Progesterone (#P8783; Sigma Aldrich) 1/10/100 nM diluted in EtOH

Testosterone (#8500-1g, Sigma-Aldrich) 1/10/100 nM diluted in EtOH

AG205 (#A1487, Sigma-Aldrich) 5 nM diluted in DMSO

https://doi.org/10.23937/2378-3001/1410125
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housekeeping gene. Best Keeper is Excel-based and uses 
pair-wise correlation analysis of candidate genes. After 
determining the best-suited housekeeping gene out of 
up to ten candidates the software combines them into 
an index. In this software all data processing is based on 
crossing points.

Norm Finder is also Excel-based algorithm for 
identifying the optimal normalization gene among a set 
of candidate genes. Ct-values cannot be used directly 
and must be transformed into linear scale expression 
quantities. This can be done by a standard curve or the 
delta-Ct method. The software calculates inter- and 
intra group variability among the tested samples. It 
provides a stability value for each gene which is a direct 
measure for the expression variation as estimated by 
the software.

Genorm is part of Biogazelle’s qbase+ software 
for quantitative PCR data analysis and older 
implementations remain available online, for python or 
R. to program executes on the base of non normalized 
expression levels and calculates pair wise variation for 
every control gene with all the other control genes and 
defines the average pair wise variation of each particular 
gene as the internal control gene stability measure M. 
The lower the M values, the more stable the expression 
of the candidate gene.

Results
The RT-qPCR analysis of the expression patterns of 

three candidate housekeeping genes GAPDH, beta-Act 
in and 18S-rRNA confirmed differential expressions 
following treatment with different doses of steroid 
hormones.

Upon examination of the mean cycle threshold (Ct) 
values (Figure 2), it is evident that 18s and Actin exhibit 
closely similar expression levels, with mean Ct values 
of 18.23 and 18.05, respectively. In contrast, GAPDH 
presents a slightly higher Ct value, detected at 19.36. 
This suggests that GAPDH is expressed at a relatively 
lower level compared to the other two housekeeping 
genes under the tested conditions. However, a more 
comprehensive assessment considering the standard 
deviation (SD) highlights a different aspect of the results. 
Both GAPDH and Actin demonstrate significantly lower 
SD values, measuring 0.34 and 0.30, respectively. This 
indicates that these two genes exhibit higher stability 

used for RNA extraction using the Nucleo Spin RNA-
Kit (740955.50, Macherey-Nagel, Düren, Germany). 
The RNA was eluted twice using the same 40 µl of 
nuclease-free water to increase the yield. The eluted 
RNA was measured by the Nano Drop™ One/One C 
ND-ONE-W, Thermo Scientific™ to ensure optimal 
quality and quantity for downstream applications. 
cDNA synthesis was performed using the Go ScriptTM 
Reverse Transcription Mix, Oligo(dT) (#A2790, Promega, 
Madison, WI, USA) with a total input of 1 µg of RNA. 
Both kits were used according to the manufacturer’s 
protocol.

Real-Time qPCR
In the following RT-qPCR the expression levels for 

the candidate housekeeping genes were measured in 
duplicates and in three independent experiments. 5 
µl GoTaq qPCR Master Mix (#A6001, Promega), 2.9 µl 
nuclease-free H2O, 0.5 µl Primer upstream, 0.5 µl Primer 
downstream and 2 µl diluted cDNA were combined 
to a reaction volume of 10 µl per well. The cDNA was 
diluted at 1:15 in nuclease-free H2O. Using the CFX96 
Real Time PCR Detection System (Bio Rad, Hercules, CA, 
USA) samples were heated to 95 °C for 2 min, followed 
by 40 amplification cycles, 15s at 95 °C and 60s at 60 °C. 
For each primer pair, dissociation curves to confirm PCR 
amplification specificity and exclusion of unspecific PCR 
products and primer dimers were performed (Table 2).

Comparison and evaluation of housekeeping-
genes

In a first attempt the achieved Ct values were analyzed 
as raw data. For further investigations a standard curve 
to calculate primer efficiency was run. The Ct values were 
then normalized to the differentiated but untreated 
cells also integrating the primer efficiency. Additionally 
qPCR data (Ct values) were analyzed using three widely 
established algorithms: Bestkeeper [21], NormFinder [22] 
and Genorm [23] on RefFinder web-based comprehensive 
tool [24,25]). The Ct value was determined by the count of 
cycles required for the fluorescence to attain a particular 
threshold detection level. This value exhibits an inverse 
relationship with the quantity of template nucleic acid 
existing in the reaction [26].

The employed programs all use a different 
algorithm to determine the stability of the candidate 

Table 2: Used primers for quantitative real-time PCR.

Primer Sequence
GAPDH 5’-GGGGAGCCAAAAGGGTCATC-3’ 

3’-ATGATCTTGAGGCTGTTGTCATACT-5’ (Microsynth)

beta-Actin 5’-AAACTGGAACGGTGAAGGTG-3’ 

3’-CTCGGCCACATTGTGAACTTT-5’ (Microsynth)

18S-rRNA 5’-CGGCTACCACATCCAAGGAA-3’ 

3’-GCTGGAATTACCGCGGCT-5’ (Microsynth)

https://doi.org/10.23937/2378-3001/1410125
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Figure 2: Boxplot of raw ct-values of the investigated housekeeping genes over all experiments. Depicting 
the range and mean.

Figure 3: Raw ct-values of all three investigated housekeeping genes GAPDH (A), 18s-RNA (B) and beta Actin (C), under 
all investigated conditions: In undifferentiated (-diff) and differentiated (+diff) cells and under different progesterone (P) and 
testosterone (T) treatments.

values are approximately 19.7 ± 0.3 (GAPDH) and 18.4 
± 0.6 (Actin). These findings suggest a potential down 
regulation of GAPDH and Actin expression in response 
to progesterone, albeit without statistical significance.

Conversely, 18s RNA displays an opposing trend, 
as increasing progesterone concentrations appear 
to up regulate its expression. This is evident in the Ct 
values, where at 1 nM progesterone, the Ct value for 
18s RNA is approximately 19.0 ± 0.4, and at 100 nM 
progesterone, the Ct value is approximately 17.4 ± 0.3. 
Again, it is important to emphasize that these trends 
do not achieve statistical significance, but they offer 
valuable insights into the potential regulatory effects of 
progesterone on 18s RNA expression.

Similar trends are observed in response to 
testosterone treatment, further highlighting the 

in their expression across the experimental conditions. 
On the other hand, 18s-RNA exhibits a notably higher 
SD value of 0.62, suggesting that its expression is less 
stable and more variable under the same conditions.

Treatment-dependent differential regulation
In the next set of observations (Figure 3), it becomes 

evident that steroid hormone treatment exhibits a 
tendency to influence the expression of housekeeping 
(HK) genes, with distinct patterns emerging among the 
tested genes. For GAPDH and Actin, a general trend 
towards decreased gene expression is observed as 
progesterone concentrations rise. At a progesterone 
concentration of 1 nM, the raw cycle threshold (Ct) 
values for GAPDH and Actin are approximately 19.1 
± 0.2 and 17.7 ± 0.5, respectively. In contrast, at a 
higher progesterone concentration of 100 nM, the Ct 

https://doi.org/10.23937/2378-3001/1410125
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analysis. Furthermore, it enables the generation of 
normalized data, thus affording valuable insights into 
the expression levels of the housekeeping genes under 
investigation within the context of differentiated and 
steroid hormone treated cells.

Figure 5 presents the normalized relative expression 
of the selected housekeeping genes following treatment 
with different concentrations of progesterone (1 nM, 10 
nM, and 100 nM).

For GAPDH, the relative expression after 1 nM 
progesterone treatment is 1.02 ± 0.29, at 10 nM it 
is 1.98 ± 0.58, and at 100 nM it is 1.63 ± 0.86. These 
results indicate a slight increase in GAPDH expression 
with higher progesterone concentrations, although 
statistical significance is not achieved.

In the case of 18s RNA, the relative expression at 1 
nM progesterone is 3.10 ± 0.53, at 10 nM it is 1.41 ± 
0.61, and at 100 nM it is 1.11 ± 0.61. Notably, 18S-rRNA 
exhibits a substantial decrease in expression with 

consistency of these patterns across different hormonal 
interventions.

Figure 4 displays the standard curves for the examined 
housekeeping genes. Utilizing linear regression analysis, 
we derived the equations that represent these curves, 
which, in turn, were employed to ascertain the primer 
efficiencies. The resulting equations are as follows: Y = 
-3.283X + 15.15 (for 18s RNA); Y = -3.368X + 16.24 (for 
GAPDH); Y = -3.878*X + 17.83 (for Actin). Consequently, 
these equations facilitated the computation of the 
percentage efficiencies of the primers, yielding primer 
efficiencies of 99% for GAPDH, 81% for Actin, and 102% 
for 18s RNA. These calculated primer efficiencies played 
a pivotal role in generating the data that have been 
normalized to the differentiated cells, as depicted in the 
subsequent figure (Figure 5).

The incorporation of these standardized curves 
and calculated primer efficiencies serves to enhance 
the precision and reliability of our gene expression 

Figure 4: Standard curves for the housekeeping genes GAPDH, Actin and 18s RNA.

Figure 5: Relative housekeeper gene expression after normalization to the differentiated untreated cells and treatment 
(A) progesterone or (B) testosterone.

https://doi.org/10.23937/2378-3001/1410125
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of the difference (Figure 6).

Discussion
In the present work the stability of the candidate 

housekeeping genes GAPDH, beta-Actin and 18S-rRNA 
in human neuroblastoma SHSY-5Y cell line treated 
with different levels of steroid hormones progesterone 
and testosterone was evaluated using the algorithms 
Norm finder, Best keeper and Genorm as they are 
implemented in the web-based tool Ref Finder. When 
performing rt-qPCR, it is essential to control for 
experimental variations in the amount of RNA used 
in each experiment and the efficiency of the reverse 
transcription reaction. To achieve this the expression 
of control genes that are supposed to have a stable 
expression between different tissues and are meant to 
be unaffected by experimental treatments are used. 
Steroid hormones are known to act as ligand-activated 
transcription factors in cell nuclei and therefore have 
a direct influence on the transcription of various 
genes [27]. Therefore, it is crucial to identify suitable 
housekeeping genes in steroid hormone-affected 
tissues.

Three of the most commonly employed 
housekeeping genes are Glyceraldehyde-3-phosphate 
dehydrogenase (GAPDH), beta-Actin and ribosomal 
18S-RNA. GAPDH is an enzyme of glycolysis and 
catalyzes the reversible oxidative phosphorylation of 
glyceraldehyde-3-phosphate [28]. Beta-actin is a major 
cytoskeletal protein with a universal expression across 
various cell types. It is among others involved in cell 
division, cell migration and phagocytosis [29]. 18S-rRNA 
is one of the basic components of all eukaryotic cells as 
it is a component of the ribosomal small subunit (40 S 
subunit), which is indispensable for protein biosynthesis 
[30].

Our data suggest that GAPDH is the most suitable 
housekeeping gene among the three selected candidates 
as proposed by algorithms like Norm finder, Genorm 
and Best Keeper. In contrast to this, 18S-rRNA has 
shown to be the least appropriate housekeeping gene 
in steroid hormone treated tissue, as it proved to be 
significantly upregulated in cells treated with low doses 

increasing progesterone concentration, again without 
reaching statistical significance.

Similarly, Actin displays variations in relative 
expression levels. At 1 nM progesterone, it is 0.93 ± 0.41, 
at 10 nM it is 1.37 ± 0.66, and at 100 nM it is 1.52 ± 0.74. 
While there is a discernible trend of increased Actin 
expression with higher progesterone concentrations, 
statistical significance remains elusive.

In a parallel set of experiments mirroring the 
progesterone treatment, we evaluated the normalized 
relative expression of housekeeping genes following 
treatment with different concentrations of testosterone 
(1 nM, 10 nM, and 100 nM). For GAPDH, at 1 nM 
testosterone, the relative expression is 1.42 ± 0.88, at 
10 nM it is 1.71 ± 0.85, and at 100 nM it is 1.39 ± 0.83. 
These results indicate a moderate fluctuation in GAPDH 
expression with testosterone concentration, though 
statistical significance remains absent. In the case of 18s 
RNA, at 1 nM testosterone, the relative expression is 
3.20 ± 2.51, at 10 nM it is 2.02 ± 0.76, and at 100 nM it is 
2.52 ± 1.42. Similar to the progesterone treatment, 18s 
RNA exhibits substantial variations in expression levels, 
albeit without reaching statistical significance.

Likewise, Actin demonstrates changes in relative 
expression levels. At 1 nM testosterone, it is 1.48 ± 
0.84, at 10 nM it is 1.70 ± 0.96, and at 100 nM it is 1.27 
± 0.76. Here again, a trend of altered Actin expression 
with varying testosterone concentrations is observed, 
without achieving statistical significance.

Rankings according to the employed algorithm
The Norm finder algorithm rates GAPDH as the most 

stable gene in this context with a stability value of 0.211 
followed by beta-Actin (stab. value .435) and 18S-rRNA 
as the least stable gene with a stability value of 0.76. 
In the ranking according to Best Keeper algorithm rates 
GAPDH as the candidate gene with the highest stability 
followed by beta-Actin and 18S-rRNA. Genorm suggests 
a combination of GAPDH and beta-Actin as the most 
suitable normalization gene and 18S-rRNA as the least 
stable gene. While the employed algorithms agree on 
the gene stability ranking, they differ in the magnitude 

Figure 6: Stability ranking of the three used algorithms, showing most stable gene on the left to least stable gene on the 
right. All three algorithms rank GAPDH (alone or in combination) as the most stable expressed gene.
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tissue types or hormone doses as the cell's responses to 
hormonal treatment may vary. Based on the presented 
data we highly recommend to establish a suitable 
housekeeping gene prior starting an experiment. 
Therefore this paper aims to provide a comprehensive 
overview of how steroid hormones, progesterone 
and testosterone, exhibit their influence on different 
commonly used housekeeper genes and can function as 
foundation for future research with accurate results in 
qPCR analysis.

Lastly, we would also like to discuss the limitations. 
Although three repetitions were carried out for each test 
condition, there is a notably standard deviation in some 
cases, which means that the data must be interpreted 
with caution. The algorithms itself also contain pitfalls, 
as, for example, a 100% primer efficiency is assumed, 
which, as shown, does not always correspond to real 
scenarios.

The study focused primarily on human 
neuroblastoma cells SHY-5Y, which are known for their 
altered metabolism. While interventions influenced 
by progesterone and testosterone are promising, 
external validity should be critically evaluated. Further 
investigation into the effects of various hormones 
commonly found in the organism on housekeeper 
genes is warranted. Advances in technology and a more 
thorough exploration of the role of hormones in cellular 
processes will provide a broader understanding and 
contribute to more accessible research on life-impairing 
diseases.

All in all, we encourage fellow researchers to publish 
their experiences with different HK genes and make 
their knowledge accessible to the community, as our 
study underscores the need to choose appropriate 
housekeeping genes for different experimental setups 
and cell lines.
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