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Abstract
Synapse remodeling is an essential physiological phenomenon 
in maintaining the normal brain function. Traumatic injury is one 
of the causes that triggers abnormality in synapse remodeling, 
leading to neurodegeneration. So far, substantial clinical trials have 
been attempted to cure neurodegeneration. One of the challenging 
approaches that improves neurodegenerative symptoms is 
therapeutic hypothermia. The putative positive feature induced by 
therapeutic hypothermia on patient is neuroprotection; suppressing 
neuronal apoptosis and inflammatory response. Recently, it 
has been reported that RBM3 (RNA binding motif protein 3), 
which is a cold shock protein expressed in brain when mammals 
were exposed to the cold temperature, negatively regulates 
the progression of neurodegeneration. However, the precise 
mechanism how this protein acts on brain is not fully understood. In 
this review, we summarize the possible mechanism of downstream 
pathway induced by therapeutic hypothermia associated with 
neuroprotection.
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animals. Dynamic synapse remodeling and morphological changes 
in neuron are observed in these animals along with the change in 
body temperature during torpor and waking state [7-9]. When 
animals were exposed to cold temperature, synaptic contacts get 
reduced, while rewarming forms new synaptic connections [7-9]. 
The exposure to cold temperature triggers the expression of RBM3 
(RNA binding motif protein 3), which takes part in neural plasticity, 
suppresses the synapse loss derived from neurodegenerative diseases 
[9-11]. The precise mechanism how this protein acts on brain 
has not been elucidated. Hence, further understanding toward 
downstream pathway induced by therapeutic hypothermia could 
be a breakthrough in neurodegenerative disorder treatment. In this 
review, we propose a clue in neurodegenerative disease by targeting 
cold shock as a possible remedy.

Therapeutic Hypothermia
Immediate treatment after the brain damage is required to 

prevent further exacerbation. Therapeutic hypothermia is one of the 
candidates thought to be a potential approach in suppressing neuronal 
apoptosis, inflammatory response and oxidative stress [4]. Although 
several attempts have been made to demonstrate the possible effect of 
therapeutic hypothermia in clinical trial, many studies failed to show a 
dramatic effect due to the unestablished way of conducting therapeutic 
hypothermia safely and effectively on patients [12,13]. In addition, 
how the downstream pathway induced by therapeutic hypothermia 
is involved in palliating neurodegenerative disease is not widely 
studied. Therefore, an investigation of therapeutic hypothermia is a 
challenging trial to explore a novel medical approach. Theoretically, it 
is said that an operation of therapeutic hypothermia between the range 
of 34-36°C is the optimum temperature to suppress the exacerbation 
of brain damage [14,15]. There are several ways to trigger therapeutic 
hypothermia, and major approaches are whole-body surface cooling 
and endovascular cooling [14]. In order to prevent shivering, patients 
are usually anesthetized [16]. When aiming at the certain parts of 
the brain only, cooling caps and helmets are common way, although 
further research must be conducted to support the efficacy for this 
method [14]. It should be stated that inducing excessively low body 
temperature abruptly on patient increases the tissue damage. Hence, 
slow induction of optimal body temperature for the clinical trial is 
necessary.

Patient with induced therapeutic hypothermia shows several 
physiological changes. The drop in heart rate and blood pressure 

Introduction
The normal brain function is tightly maintained by the 

elimination and reformation of synapse, which creates meticulously 
organized synapse network [1]. Incessant synapse loss by traumatic 
injury or by aging could result in neurodegenerative diseases, such as 
Alzheimer disease and Parkinson disease [2,3]. There are numerous 
publications revealing the mechanism of synapse loss, although less 
is known about how synapse is reformed. There have been several 
attempts to establish an efficient treatment for neurodegenerative 
diseases, but still the number of treatment is insufficient.

Although efficient treatment for neurodegenerative disease is 
limited, downstream pathway induced by therapeutic hypothermia 
is thought to play a positive effect on suppressing the ongoing 
exacerbation. One of the possible key features of therapeutic 
hypothermia is neuroprotection [4]. For instance, after the traumatic 
injury in brain, neuronal apoptosis and inflammation pathway 
are activated, resulting in further exacerbation [5,6]. Inducing 
therapeutic hypothermia could suppress these ongoing reactions 
[4]. The mechanism of how therapeutic hypothermia could 
suppress the ongoing neurodegeneration is inspired by hibernating 
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utilization, the intracellular concentration of ADP increases in order 
to generate more ATP. Hence, since animals during hibernation do 
not generate much ATP compared to their waking state, the ratio of 
AMP/ATP rises. 5’-AMP directly activates AMP-activated protein 
kinase (AMPK), which is a molecular stress response pathway 
[28,29]. The activation of AMPK up-regulates and down-regulates 
several pathways. For instance, fatty acid oxidation and glucose 
transport are facilitated, leading to ATP generation [30]. AMPK 
down-regulates the activation of mammalian target of rapamycin 
complex 1 (mTORC1), which is a sensor of cellular nutrient status 
[26,31]. An active mTORC1 during waking state promotes cell 
growth and proliferation, while it decreases energy-recycling 
processes such as autophagy [32]. As stipulated previously, blood flow 
in CNS decreases during hibernation [14,20], resulting in the lack of 
nutrients and oxygen supply in brain. In order to allow neurons to 
survive, mTORC1 is suppressed and stimulates autophagy, provides 
nutrients to the cells [26,31,32]. It is reported that injecting 5’-AMP 
in laboratory rodents can induce artificial torpor, leading to a drop in 
body temperature and metabolism [25]. Exposing laboratory rodents 
to a cold temperature for a certain period without injecting 5’-AMP 
could cause a severe tissue or organ damage due to the significant 
drop of the body temperature. However, cooling the animals after the 
injection of 5’-AMP has little risk in damaging the tissues and organs, 
having no side effects after the rewarming [33]. Thus, therapeutic 
hypothermia with 5’-AMP injection to the patient could be a new 
foray in establishing a safer treatment for neurodegeneration [33].

Autophagy and Neurodegeneration
Cells are constantly undergoing protein production and degradation 

to maintain homeostasis in brain [34]. Autophagy is a bulk protein 
degradation pathway triggered by starvation and protein turnover [35,36]. 
The aggregated abnormal-structured proteins are ubiquitinated, then 
engulfed by double-membraned vesicles, known as autophagosomes. 
The fusion of outer membranes of autophagosomes and lysosome results 
in the degradation of the aggregated proteins by the enzymes derived 
from lysosome [37-40]. Consequently, newly generated amino acids are 
reused to maintain the intracellular homeostasis. Recently, it has been 
reported that aggregation of intracellular misfolded protein due to the 
abnormality in autophagy features many late-onset neurodegenerations 
such as Huntington’s disease, Alzheimer disease and Parkinson disease 
[41]. Loss of Atg7, which is an essential enzyme for autophagy, leads to 
neurodegeneration [42]. Mutant mice gradually show behavioral defects 
and a reduction in coordinated movement, surviving almost one month 
of birth [36]. There is a report showing a large reduction in the number 

could be observed. Respiration rate and metabolic rate significantly 
drop. Interestingly, similar phenomena are observed in hibernating 
animals. Various mammalian species undergo hibernation in order 
to endure the harsh environment when nourishments are scarce. 
During hibernation, their metabolic rate significantly drops to as low 
as 1% of active state [17]. The heart rate and blood pressure decrease, 
as well as gas exchange rate drops [18,19]. The blood flow to the 
central nervous system (CNS) gets suspended [14,20]. In general, lack 
of blood flow in CNS results in a critical condition for human and 
other mammals. The interruption of the blood flow, as well as nutrient 
and oxygen supply, provokes malfunction in brain. Interestingly, the 
synapse loss could be observed by the drop of body temperature, 
but reformation takes place by rewarming [7-9]. It is still not clear 
how hibernating animals can withstand the significant drop of body 
temperature and metabolism. In addition, how animals survive by 
the drastic reduction of blood flow in CNS, without damaging the 
brain function, is yet to be elucidated. Thus, how synapse remodeling 
is controlled by the temperature change was an enigma, but recent 
report showed that RBM3 plays a key role in this regulation. RBM3 is 
said to be expressed at dendrites in hippocampus, suppressing neural 
apoptosis and synapse elimination [11,21,22]. In practice, conducting 
early cooling on Alzheimer mice and prion-infected mice prolong the 
surviving date, detecting more RBM3 [9]. Further study about RBM3 
can bring new therapeutic targets for neurodegenerative disease. 
Moreover, elucidating the mechanism of hibernation and inducing 
hibernation-like state on patients could be a treatment for several 
neurodegenerative disorders, resulting in a low mortality rate.

Induction of Low Metabolism
In nature, environmental light and temperature have a close 

linkage. An exposure to a constant darkness is regarded as one of 
the factors in triggering torpor by modulating the circadian rhythm 
[23,24]. It has been reported that animals under the condition of 
12h dark/12h dark has a lower body temperature and metabolism 
compared to the animals placed under the condition of 12h light/12h 
dark [25]. The pathways that regulate body temperature and energy 
metabolism are both located in hypothalamus with the connection of 
nuclei. Animal experienced constant darkness increases 5’-AMP in 
blood, a substance that plays a key role as an internal signal indicating 
that the cells are under metabolic stress [25,26]. Usually, AMP is 
generated as a by-product from the reaction generating ATP from 
ADP [27]. Animals use ATP as a primary energy source for sustaining 
the biofunction. When ATP generation fails to keep pace with ATP 
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Figure 1: Putative model for therapeutic hypothermia-induced neuroprotection.
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of Purkinje cells in ATG7 KO mice, and similar neural loss could be 
recognized in the hippocampal pyramidal cell layer [36]. It is thought 
that activating autophagy artificially can cure neurodegeneration derived 
from abnormal protein aggregation [41]. Since the onset of low body 
temperature triggers low metabolism and autophagyby the possible 
activation of AMPK [26,31,32], therapeutic hypothermia could be an 
effective approach. Moreover, RBM3 expressed by cold shock could 
possibly contribute in suppressing neuronal cell death derived from 
autophagy deficiency. In practice, there is a report showing that inducing 
autophagy by rapamycin, which inhibits mTORC1, in transgenic mice 
with Huntington disease palliated the symptom [43]. Applying rapamycin 
to the patient could be a useful tactic, although mTORC1 regulates not 
only autophagy but also translation of certain proteins and cell division, 
long-term use of rapamycin is considered perilous, resulting in side 
effects such as poor wound healing and general immunosuppression [41]. 
Although it is given that inhibiting mTORC1 activates autophagy, the 
precise pathway how mTORC1 regulates autophagy remains black box 
[44,45]. Hence, revealing this unknown pathway and targeting mTORC1 
for autophagy induction without the repercussion on other biofunctions 
could be a breakthrough in neurodegenerative disease treatment.

Conclusion
It is certain that downstream pathways induced by therapeutic 

hypothermia and energy metabolism pathway, as well as autophagy 
pathway have a close connection. Still the precise mechanism how 
these pathways are linked together remains unknown. Further study 
about temperature control, also about RBM3 could give a hint in 
developing therapeutic hypothermia (Figure 1). Taken together, 
therapeutic hypothermia on patient is likely to be a promising  
therapeutic strategy.
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