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Introduction
The pathophysiological processes of dental caries 

lead to mineral loss, which occurs as a result of an im-
balance between enamel or dentin demineralization 
and remineralization. Recently, caries management has 
increasingly adopted more conservative approaches 
against conventional surgical treatment, depending on 
the early detection of white-spot lesions and the use of 
remineralizing agents to reverse or arrest caries lesion 
progression. Fluoride promotes remineralization and in-
hibits demineralization of dental hard tissue [1].

Fissure sealants are materials placed in the pits and 
fissures of teeth in order to prevent or arrest the de-
velopment of dental caries. Their effectiveness has 
been demonstrated through numerous studies and 
summarized in a systematic review [2]. However, sev-
eral factors, such as operator skill, sealant material, 
fissure type, enamel quality, and teeth eruption phase 
influence the optimal placement of fissure sealants [3]. 
Moreover, the removal of debris and biofilm, and the 
setting of sealant materials at the bottom of the fissure 
are complicated in the case of a deep and narrow fissure 
[4]. Furthermore, it is more desirable for the sealant 
material to have good antimicrobial and remineraliza-
tion properties than good sealing properties.

Fissure sealants are normally composite resin or 
glass ionomer cement (GIC) materials. In a systematic 
review [2] comparing the results of eight studies of com-
posite resin-based and GIC-based sealants, three stud-
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Abstract
Objective: This experimental study evaluated the release 
of fluoride and several minerals related to remineralization 
from a novel functional cement, apatite ionomer cement 
(AIC), and its anti-bacterial properties compared with glass 
ionomer cement (GIC) and surface pre-reacted glass-iono-
mer filler containing composite resin (giomer).

Materials and methods: Conventional GIC (Fuji III, GC 
Co., Tokyo, Japan) was used as the control and fundamen-
tal materials. In the AIC powder, 28% wt of GIC powder was 
replaced with spherical-shaped hydroxyapatite powder. The 
giomer, BeautiSealant (Shofu Co., Kyoto, Japan), was used 
as a positive control. Each specimen was immersed in de-
ionized water and analyzed by inductively coupled plasma 
atomic emission spectrometry (for Al, Si, P, Ca and Sr) and 
a fluoride-selective electrode. Antibacterial activity against 
Streptococcus mutans was evaluated using the adenos-
ine-5’- triphosphate luminescence method.

Results: Concentrations of released ions from AIC speci-
mens were significantly higher than those from GIC and gi-
omer specimens, except for Sr. Regarding antibacterial ac-
tivity, luminescence intensity of the AIC group (27.2 ± 12.6 
RLU) was significantly lower than that of the giomer group 
(787.4 ± 176.1 RLU).

Conclusion: It was concluded that AIC could be a most 
suitable material for pit and fissure sealant for enamel rem-
ineralization and anti-cariogenic and -bacterial activity.
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Co., Tokyo, Japan), was used for the control GIC (GIC 
group) and as the base material for the AIC group. Based 
on preliminary experiments, AIC powder contained 28% 
wt spherical-shaped hydroxyapatite particles (HApS) 
comprising Fuji III glass powder and HApS. GIC and AIC 
powders were mixed with Fuji III liquid at a powder/liq-
uid ratio of 1.2, according to the manufacturer’s recom-
mendation. All the cements were mixed in 60 seconds. 
In addition, BeautiSealant (Shofu Co., Kyoto, Japan), a 
giomer, was used for a positive control (giomer group). 
The specimens of giomer group light-cured in 20 sec-
onds by Highly concentrated light in a cordless hand-
piece, Pencure (J. Morita Co., Osaka Japan).

Fluoride ion release test
Five cylindrical specimens (10 mm in diameter × 2 

mm in thickness) were prepared for each of the GIC, AIC, 
and giomer groups using plastic split mold. The samples 
were individually suspended by a cotton thread in 18 ml 
of distilled water in sealed containers and were stored 
at 37 °C. For the measurements, each disk was removed 
from the water, washed by immersion in 2 ml of water, 
dried on filter paper, and immediately immersed in 18 
ml of fresh distilled water for further equilibration. A 
volume of 2 ml of total ionic strength adjustment buf-
fer solution (TISAB III, Thermo Fisher Scientific, Beverly, 
MA, USA) was added to the water sample. The fluoride 
ion concentration was measured daily for 7 days using 
a fluoride-selective electrode (6561-10 C, Horiba Ltd., 
Kyoto, Japan) connected to an ion analyzer D-53 (Hori-
ba Ltd.).

Elemental analysis by inductively coupled plas-
ma-atomic emission spectroscopy

Four cylindrical specimens (10 mm in diameter × 2 
mm in thickness) for each of the three groups were pre-
pared in the same manner as in the fluoride ion release 
test. The samples were individually suspended by a cot-
ton thread in 20 ml of distilled water in sealed contain-
ers and were stored at 37 °C for 7 days. The amounts of 
Al, Si, P, Ca and Sr released from the specimens were 
subsequently measured by inductively coupled plas-
ma-atomic emission spectroscopy (ICPS-8100, Shimad-
zu Co., Kyoto, Japan).

Anti-bacterial activity test
For the antibacterial activity test, six samples measur-

ing 10 mm in diameter × 2 mm in thickness per group 
were prepared in a plastic split mold. Antibacterial tests 
were performed using a bioluminescence method; The 
adenosine-5’-triphosphate (ATP) luminescence method 
according to a preliminary study [26]. This method uti-
lizes the luminescent mechanism of firefly luciferase; 
Fireflies generate light by creating a reaction inside their 
bodies between their own ATP and the enzyme lucifer-
ase. The presence of ATP can be considered proof of the 
presence of a living organism [27]. The amount of bac-
terial contamination around the specimens was evaluat-

ies reported an improved caries-preventive effect for 
composite resin-based sealants, two studies reported a 
better caries-preventive effect for GIC-based sealants, 
while three studies found no significant difference be-
tween composite resin-based and GIC-based sealants. 
Another review concluded that there was no consistent 
difference in caries-preventive effect between compos-
ite resin- and GIC-based sealants [5].

GIC, introduced in the 1970s by Wilson and Kent [6], 
has been widely used as a fluoride-releasing material in 
dental clinics [7-9]. GIC materials are mineral-based, ad-
here to the tooth surface, and facilitate post-eruptive min-
eral uptake in the enamel. Owing to these desirable prop-
erties, GIC products have been used as sealing materials in 
the pits and fissures of teeth in order to prevent or arrest 
the development of dental caries. GIC materials have been 
found to exert a cariostatic effect even after they had dis-
appeared macroscopically, and this effect might be based 
on remnants of the cement in the fissure as well as in-
creased levels of fluoride ions on the enamel surface [10]. 
Researchers recently indicated that GIC could be effective-
ly used, not only for occlusal initial caries, but also for prox-
imal caries and demonstrated that fluoride released from 
GIC restorations inhibited the progression of proximal car-
ies in adjacent teeth [11]. Proximal sealing with GIC directly 
could also manage initial proximal caries [12].

However, the use of GIC has been limited due to its 
inferior mechanical strength, wear resistance, and sen-
sitivity to initial moisture [13,14]. Therefore, several re-
searchers have attempted to strengthen the mechanical 
properties of GICs [15-17]. Hybrid materials that com-
bine GIC and a composite resin, such as resin-modified 
GICs, polyacid-modified resin composites (compomers), 
and giomers have been developed. In particular, gio-
mers, a type of composite resin, have been introduced 
in the latest development of fluoride-releasing materi-
als. They contain a surface pre-reacted glass-ionomer 
(S-PRG) filler in the resin matrix and possess anti-bac-
terial activity due to their ion release properties [18-
21]. However, some researchers have suggested that 
the properties of giomer-products are less conspicuous 
than those of S-PRG fillers [22,23].

In contrast, we previously reported that a novel ma-
terial, apatite ionomer cement (AIC), with a GIC matrix 
modified by hydroxyapatite particles, not only improves 
flexural and compressive strength, but also increases 
the quantity of fluoride ions released [24,25]. We also 
demonstrated that it possesses antimicrobial activity 
against cariogenic bacteria [26].

The purpose of the present study was to evaluate 
and compare the ion release and antibacterial proper-
ties of a novel material (AIC) with GIC and giomer.

Materials and Methods

Materials
A conventional GIC pit and fissure sealant, Fuji III (GC 
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are shown in Figure 1. Release amounts were signifi-
cantly larger in the AIC group than in the GIC group on 
all experimental days (p < 0.01). Moreover, fluoride re-
lease amounts from giomer specimens were significant-
ly lower than those from AIC and GIC specimens on all 
experimental days (p < 0.01).

Multi-mineral release properties
Figure 2 shows the results of inductively coupled 

plasma-atomic emission spectroscopy measurements in 
the GIC, AIC and giomer groups. Al and Si release from 
AIC was significantly greater than that from GIC and gio-
mer. The release of P from AIC was significantly greater 
than that from GIC. Furthermore, P was not detected in 
the water-immersed giomer group. Moreover, Ca was 
detected in water-immersed AIC group, but not in GIC 
or giomer groups. The release of Sr from giomer was 
significantly greater than that from GIC. There was no 
significant difference in Sr release between the AIC and 
giomer groups.

Anti-bacterial properties
The luminescence intensities of the GIC, AIC, giomer 

and no-sample groups before incubation and after 4 
hours incubation were compared. The luminescence in-
tensity of the S. mutans suspension without specimens 
increased significantly after 4 hours of incubation, and 
the luminescence intensities of the AIC and GIC groups 
decreased significantly after 4 hours of incubation. 
Moreover, the intensities of the AIC and GIC groups 
decreased significantly compared with the giomer and 
no-sample groups. The intensity of the giomer group 
was approximately the same as that of the no-sample 

ed by measuring the luminescence level of the ATP-lu-
ciferase reaction. Streptococcus mutans ATCC25175 was 
used as the test bacteria. The S. mutans suspension was 
spectrophotometrically (660 nm) standardized to a con-
centration of 8 × 106 CFU/ml. Samples were immersed 
in a S. mutans suspension and were then incubated at 
37 °C for 4 hours. Subsequently, samples were removed 
from the S. mutans suspensions and diluted with physi-
ologic saline, and the ATP luminescence intensity of the 
suspension was evaluated using a luciferin-luciferase ATP 
assay reagent kit (Lucifer HS Set, product code: 60315, 
Kikkoman Biochemifa Co., Chiba, Japan) and a luminom-
eter (Lumitester C-110, Kikkoman Co.), according to the 
manufacturer’s instructions. The luminescence intensity 
was expressed in relative luminescence units (RLU). In ad-
dition, the luminescence intensity of a ‘no-sample group’ 
comprising an S. mutans suspension without the immer-
sion of any sample, was measured in order to observe 
the increase of S. mutans before incubation (original S. 
mutans suspension) and after 4 hours of incubation.

Statistical analysis
Data are presented as mean ± standard deviation. 

Firstly, homoscedasticity was confirmed by the Bart-
lett’s test. Then data were analyzed by one-way anal-
ysis of variance and Tukey’s test (Kaleida Graph 4.00, 
Synergy Software, Reading, PA, USA), with p values less 
than 0.05 being considered statistically significant. The 
confidence interval was set at 95%.

Results

Fluoride release properties
GIC, AIC and giomer daily fluoride ion release amounts 
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Figure 1: Fluoride ion release from GIC, AIC, and giomer into deionized water.
GIC: Glass ionomer cement; AIC: Apatite ionomer cement; Analysis of variance/Tukey: **p < 0.01, ***p < 0.001.
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functional cement, AIC, and its anti-bacterial proper-
ties compared with GIC and giomer. We found that AIC 
had a significantly greater fluoride ion release property 
compared with GIC and giomer. Although the mecha-
nism of fluoride release from GIC is not yet fully under-
stood, Hatibovic-Kofman, et al. [28] demonstrated that 

group, which is considered to not exhibit effective anti-
bacterial activity (Figure 3).

Discussion
This experimental study evaluated the release of 

several remineralization-related ions from a novel 
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Figure 2: Ion (Al, Si, P, Ca, and Sr) release from GIC, AIC, and giomer into deionized water.
GIC: Glass ionomer cement; AIC: Apatite ionomer cement; ND: Not detected; Analysis of variance/Tukey: **p < 0.01, ***p < 
0.001; NS: Not significant difference.
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Figure 3: Luminescence intensity of S. mutans suspensions with GIC, AIC, and giomer specimens and without specimens 
before and after incubation.
GIC: Glass ionomer cement; AIC: Apatite ionomer cement; Analysis of variance/Tukey: *p < 0.05, ***p < 0.001; NS: Not signif-
icant difference.
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but there was no significant difference between AIC 
and giomer groups. Commercial GICs, including the one 
used in the present study, contain glass with complete 
substitution of Ca by Sr; This is advantageous because Sr 
has known anti-cariogenic properties [39]. In addition, 
Featherstone, et al. [40] reported that when Sr and F 
were incorporated together they improved apatite crys-
tallinity and were associated with marked reductions 
in the acid reactivity of synthetic carbonated apatite, 
which is observed in dental enamel during the early 
stages of dental decay. The release of fluoride and Sr 
from AIC could therefore promote the remineralization 
of early caries lesion. On the other hand, Ca, which was 
dislodged from the main element of GIC glass, has been 
demonstrated to enhance the formation of the GIC ma-
trix, increasing surface hardness [41]. Therefore, Ca is 
necessary to improve both the mechanical strength and 
remineralization property of GIC. The addition of HAp to 
AIC could potentially represent a source of Ca that im-
proves the mechanical strength of GIC because we have 
previously shown that AIC has significant high mechani-
cal strength compared with GIC [24-26].

The anti-bacterial properties of AIC and GIC was 
demonstrated in the present study. Moreover, the lu-
minescence intensities of S. mutans suspensions con-
taining immersed GIC and AIC were compared through 
both multiple comparisons and t-test. Results revealed 
that the luminescence intensity of AIC was decreased 
significantly compared with that of GIC after incubation 
for 4 hours. The present study was designed to com-
pare the bacterial increase in S. mutans suspensions 
with and without specimens (no-sample group). Com-
parison of the luminescence intensity before and after 
incubation revealed no significant difference between 
the S. mutans suspensions containing giomer specimens 
and those without specimens. This suggests that giomer 
sealant is unable to inhibit S. mutans growth.

In the present study, we compared anti-bacteri-
al properties between AIC and giomer (S-PRG filler 
containing composite resin). S-PRG filler particles are 
formed by an acid-based reaction of fluoroalumino-sil-
icate glass with polyacrylic acid, and six types of ions 
(Na+, Sr2+, SiO3

2-, Al3+, BO3
3- and F-), have been reported 

to be released from S-PRG filler [22,42]. The mechanism 
of ion release from S-PRG filler is believed to relate to 
the presence of a glass ionomer layer around the glass 
core filler. Several researchers have demonstrated that 
various ions released from S-PRG filler inhibit dentin de-
mineralization [43,44], reduce plaque formation [45], 
and inhibit oral bacteria growth [18-21]. However, in 
the present study, S-PRG filler containing pit and fissure 
sealant material was found to have a less potent an-
ti-bacterial property compared with that of GIC and AIC. 
An, et al. also reported similar results in a comparison 
with other composite resin sealants [23].

Most studies on the antibacterial properties of 

the quantity of released fluoride is positively correlated 
with the quantity of fluoride originally incorporated in 
the GIC product. Fluoride in GIC originates from fluo-
ro-alminosilicate glass. In the present study, AIC speci-
mens contained less fluoro-alminosilicate glass powder 
than the GIC specimens because 28% wt of glass pow-
der was replaced with HAp powder. Lewis, et al. [29] 
demonstrated that HAp reacts with acidic storage me-
dia from glass-ionomer cements to take up fluoride, re-
gardless of whether or not the fluoride forms a complex 
with any other chemical species. In previous studies 
[27,30], we showed that innumerable nano-HApS from 
porous spherical-shaped HAp were dispersed in the AIC 
matrix. It is inferred from these findings that the mech-
anism of increased fluoride ion release from AIC was 
due to nano-HApS dispersal in the matrix layer acting 
as a reservoir of fluoride ions and the release of stored 
fluoride ions from the cement bulk. Moreover, it was 
demonstrated that the release of fluoride ions from 
GIC containing cellulose, which is incapable of reacting 
with GIC, was also higher compared with that from GIC 
[31]. A second potential reason for the increase in the 
amount of fluoride ions released compared with GIC 
may be due to greater amount of polyacrylic acid liquid 
in AIC, which can react with fluoro-alminosilicate glass. 
If the latter reason is valid, it will also explain the in-
crease in releases of Al, Sr, and Si in the present study. 
However, further research is required to ascertain these 
reasons.

In the present study, Al and Si releases from AIC 
were also superior to those from GIC and giomer. Mc-
Cann [32] investigated the effects of various metal ions, 
especially Al, on the uptake and retention of fluoride by 
human enamel. Moreover, some enamel dissolution ex-
periments demonstrated that Al reacts with, and is in-
corporated into, enamel, and also possesses cariostatic 
properties [33-35]. While Al release is required to inhib-
it enamel demineralization, it has several well-known 
toxic effects in humans, including adverse effects on the 
central nervous system, skeleton, and hematopoietic 
system [36]. However, Nicholson, et al. [37] calculated 
that if a GIC filling dissolved completely over 5 years, 
an adult patient would only consume an extra 0.5% of 
the recommended maximum Al intake. This led to the 
conclusion that the release of Al from any type of GIC 
placed in the mouth is unlikely to pose a health hazard. 
In the present study, the release of Al from AIC was sig-
nificantly higher than that from GIC. However, this in-
crease was not considered to be directly detrimental to 
patient health.

Besinis, et al. suggested that Si has the ability to pen-
etrate dentin, remain embedded within the collagen 
matrix, and provide a suitable scaffold for the remin-
eralization of dentin [38]. The present findings indicate 
that the higher Si release from AIC leads to the promo-
tion of tooth structure remineralization. In addition, the 
Sr release from giomer was superior to that from GIC, 
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can release sufficient amounts of several types of ions 
to induce an antibacterial effect compared with giomer. 
It was concluded that AIC could be a most suitable ma-
terial for pit and fissure sealant for enamel remineral-
ization and anti-cariogenic and -bacterial activity. We 
will further focus on not only remineralization effect but 
also demineralization suppressing effect for teeth in the 
future research.
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