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Abstract
This comprehensive review explores the multifaceted 
relationship between neoadjuvant immunotherapy, 
intestinal microbiota alterations, and anastomotic leakage 
risk in patients undergoing colectomy for colon neoplasia. 
With the advent of immunotherapy, remarkably immune 
checkpoint inhibitors, there has been a significant shift in 
the treatment paradigms for various cancers, including 
colon neoplasia. These treatments, while effective, have 
been associated with changes in the intestinal microbiome, 
which, in turn, may influence wound healing and the 
integrity of anastomotic sites. The review delves into the 
complex interactions between the immune system and the 
gut microbiota, examining how immunotherapy-induced 
dysbiosis could disrupt the delicate balance necessary for 
optimal anastomotic healing. It discusses the role of specific 
bacterial species in modulating the immune response to 
cancer and their impact on the efficacy of immunotherapeutic 
agents. Moreover, the review highlights the potential 
mechanisms through which the microbiota-immune system 
interaction could affect surgical outcomes, focusing on the 
development of anastomotic leaks. The implications of these 
findings for clinical practice are discussed, including the 
need for targeted strategies to modulate the gut microbiota 
in patients undergoing immunotherapy and colectomy. 
Through this discussion, the review aims to provide insights 
into improving patient outcomes by integrating microbiome 
management into colon neoplasia patients’ treatment 
and perioperative care.In summary, this comprehensive 
review illuminates the multifaceted landscape of RNA m6A 
modifications in cancer, offering valuable insights into their

diagnostic, prognostic, and therapeutic implications. 
Understanding the complex interplay between RNA m6A 
modifications and cancer biology is essential for harnessing 
their potential for precision oncology and novel therapeutic 
interventions.
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Introduction
The integration of neoadjuvant therapies, particularly 

immunotherapy, into the treatment paradigm for colon 
neoplasia represents a pivotal advancement, offering 
significant improvements in patient outcomes [1-3].

Immunotherapy, by modulating the immune 
system’s ability to recognize and eliminate cancer 
cells, introduces a novel approach for managing 
tumors characterized by specific molecular profiles, 
such as mismatch repair deficiency (dMMR) or high 
microsatellite instability (MSI-H) [4-6].

Despite the promising benefits of these therapies, 
their implications on postoperative complications, 
especially anastomotic leakage following colectomy, 
necessitate comprehensive investigation [7].
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Immunotherapy may alter the abundance of 
SCFA-producing bacteria, potentially affecting these 
protective mechanisms and impacting wound healing 
[29]. Moreover, specific bacterial species can modulate 
the efficacy of immune checkpoint inhibitors by affecting 
antigen presentation and the activation of cytotoxic T 
lymphocytes against tumor cells. This interplay between 
the microbiota and the immune system is crucial for 
the therapeutic response and potential side effects, 
including impacts on surgical outcomes [30-32].

The interaction between the gut microbiota and the 
efficacy of immune checkpoint inhibitors (ICIs), as well 
as their influence on wound healing and anastomotic 
integrity, has become an area of intense research focus 
[33]. The modulation of gut microbiota not only affects 
the therapeutic efficacy of ICIs but also plays a significant 
role in various physiological processes, including the 
healing of wounds and maintenance of anastomotic 
integrity.

Here’s an overview based on current scientific 
understanding:

Specific bacterial species modulating the efficacy 
of immune checkpoint inhibitors

•	 Bacteroides fragilis

Research has shown that Bacteroides fragilis can 
enhance the anticancer effects of CTLA-4 blockade, 
likely through the modulation of dendritic cell function 
and promotion of a favorable T cell response in the 
tumor microenvironment [34,35].

•	 Bifidobacterium

Studies have demonstrated that the presence of 
Bifidobacterium in the gut microbiota can improve the 
response to PD-L1 blockade by enhancing dendritic 
cell function and promoting T cell activation and 
proliferation [36].

•	 Akkermansia muciniphila

This bacterium has been associated with improved 
efficacy of PD-1 blockade in both preclinical and clinical 
settings, potentially by enhancing mucosal immunity 
and promoting the infiltration of effector T cells into the 
tumor microenvironment [37].

Modulation of gut microbiota and its effects on 
wound healing and anastomotic integrity

•	 Immune modulation

The gut microbiota can influence systemic and local 
immune responses, affecting the balance between 
pro-inflammatory and anti-inflammatory signals 
crucial for wound healing. An imbalance could lead 
to either impaired healing or excessive inflammation, 
contributing to anastomotic leakage [38-40].

•	 Barrier function

Anastomotic leakage is a severe complication that 
critically endangers patient recovery and oncological 
outcomes, influenced by an array of factors including 
patient health, tumor biology, surgical technique, and 
significantly, the intestinal microbiota [8-10].

Recent insights highlight the crucial role of the gut 
microbiome in modulating the host immune response, 
particularly within the context of cancer therapy. The 
intestinal microbiota maintains gut homeostasis, 
regulates immune function, and influences the efficacy 
and toxicity of immunotherapeutic agents [11,12].

Immunotherapy-induced alterations in the 
microbiota composition may disrupt this balance, 
potentially impairing wound healing, and anastomotic 
integrity. The underlying mechanisms involve intricate 
interactions among microbial-derived metabolites, 
immune cells, and intestinal epithelial cells [13-15].

The gut microbiota influences systemic and local 
immunity through various mechanisms. Short-chain fatty 
acids (SCFAs) produced Neoadjuvant immunotherapy 
and intestinal microbiota play important roles in 
anastomotic leakage and fistula formation after 
colorectal cancer surgery. Immunotherapy alters the 
host’s immune response, particularly in the context of 
cancer therapy [16-18].

The intestinal microbiota maintains intestinal 
homeostasis, regulates immune function, and influences 
the efficacy and toxicity of immunotherapeutic agents. 
Changes induced by immunotherapy in the composition 
of the microbiota can disrupt this equilibrium, potentially 
impairing wound healing, and anastomotic integrity 
[19,20]. The underlying mechanisms involve intricate 
interactions between microbial-derived metabolites, 
immune system cells, and intestinal epithelial cells [21].

Intestinal microbiota influences systemic and local 
immunity through various mechanisms. Short-chain 
fatty acids (SCFAs), produced by the fermentation of 
dietary fibers by gut bacteria, enhance the regulatory 
functions of T cells (Treg), promote the production 
of anti-inflammatory cytokines, and strengthen the 
intestinal barrier. Immunotherapy may alter the 
abundance of SCFA-producing bacteria, potentially 
affecting these protective mechanisms and impacting 
wound healing [22-24].

Moreover, specific bacterial species can modulate 
the efficacy of immune checkpoint inhibitors, affecting 
antigen presentation and the activation of cytotoxic 
T lymphocytes against tumor cells. This interaction 
between the microbiota and the immune system is 
crucial for therapeutic response and potential side 
effects, including impacts on surgical outcomes. By the 
fermentation of dietary fibers by gut bacteria, enhance 
regulatory T cell (Treg) functions, promote anti-
inflammatory cytokine production, and strengthen the 
gut barrier [25-28].
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inflammatory factors, cellular proliferation and 
migration, matrix deposition, and tissue remodeling 
[48].

A hyperactive immune system could 
potentiallyunbalancethis process, increasing the risk of 
anastomotic dehiscence through mechanisms such as 
excessive inflammation and tissue damage [19-21].

Additionally, immunotherapy-induced alterations 
in the intestinal microbiota may influence anastomotic 
healing. A state of dysbiosis could lead to an unregulated 
inflammatory response at the anastomosis site, 
potentially compromising integrity and favoring the 
development of fistulas [14-16].

Although immunotherapy does not cause 
immunosuppression in the traditional sense, its 
complex interactions with the immune system and 
the intestinal microbiota could theoretically influence 
the risk of postoperative complications, including 
intestinal fistulas [39-42]. Further research is required 
to elucidate these mechanisms and develop strategies 
to mitigate such risks in patients undergoing colectomy 
after neoadjuvant therapy for colon cancer [24].

The primary objective of this review article is to explore 
the relationship between neoadjuvant immunotherapy, 
alterations in the intestinal microbiota, and the risk of 
anastomotic leakage in patients undergoing colectomy 
for colon neoplasia [11].

Through an in-depth analysis of the molecular 
mechanisms by which the gut microbiome influences 
immune responses in the context of immunotherapy and 
its subsequent effects on anastomotic healing, we aim 
to provide valuable insights into optimizing treatment 
protocols, surgical planning, and perioperative 
management to mitigate the risk of this severe 
complication in the era of cancer immunotherapy [6-8].

Methods
The research methodology involved a comprehensive 

search of multiple reputable databases to ensure the 
inclusion of relevant studies while minimizing the risk 
of bias. PubMed, Scopus, Scielo, Embase, and Web 
of Science were chosen due to their comprehensive 
coverage of peer-reviewed literature in the medical 
field. Additionally, Google Scholar was utilized to access 
gray literature, which often includes valuable insights 
not found in traditional peer-reviewed articles. The 
study’s selection criteria were centered on the focus: 
Neoadjuvant Immunotherapy, Intestinal Microbiota, 
Anastomotic Leakage, and Fistula after Colorectal 
Cancer Surgery. To refine the search and capture 
relevant studies, a combination of keywords was used, 
including “Colonic Neoplasms,” “Neoadjuvant Therapy,” 
“Immunotherapy,” “Postoperative Complications,” 
“Intestinal Fistula,” and “Surgical Oncology.” This 
approach ensured that the selected studies were 
directly related to the topic of interest. The inclusion 

A healthy microbiota supports the integrity of the 
gut barrier, which can prevent the translocation of 
bacteria and reduce the risk of infection at surgical sites. 
Dysbiosis can weaken this barrier and compromise post-
surgical recovery [41].

•	 Production of metabolites

Short-chain fatty acids (SCFAs) produced by gut 
bacteria are essential for maintaining gut health and 
promoting healing. They can enhance the formation 
of collagen, promote angiogenesis, and regulate the 
immune response to foster a conductive healing 
environment [42].

Clinical implications of the interaction between 
the gut microbiota and the immune system in 
cancer therapy

•	 Personalized medicine

Understanding the relationship between the 
gut microbiota and the efficacy of ICIs could lead to 
personalized medicine approaches, where microbiota 
modulation strategies (e.g., probiotics, prebiotics, 
fecal microbiota transplantation) are used to enhance 
therapeutic outcomes [43,44].

•	 Biomarker development

The composition of the gut microbiota could serve as 
a biomarker to predict patient response to ICIs, allowing 
for more tailored treatment plans and potentially 
avoiding ineffective treatments [45].

•	 Management of side effects

Modulating the gut microbiota may also offer a 
strategy to manage or mitigate the immune-related 
adverse effects (irAEs) associated with ICIs, improving 
patient quality of life and treatment adherence [46].

•	 Enhancing surgical outcomes

For patients undergoing cancer surgery, strategies 
to optimize the gut microbiota before and after surgery 
could enhance wound healing, reduce the risk of 
anastomotic leakage, and potentially improve overall 
surgical outcomes [47].

Immunotherapy, particularly with immune checkpoint 
inhibitors such as anti-PD-1/PD-L1 and anti-CTLA-4, 
primarily reactivates the immune system to recognize 
and attack tumor cells [31-33]. While these agents can 
lead to a hyperactive immune system in some cases, 
causing inflammation and a range of immune-mediated 
side effects, the concept of immunosuppression as a 
direct effect of immunotherapy is not accurate [28]. 
The common side effects of immunotherapy reflect an 
exacerbated immune response, including dermatitis, 
colitis, and pneumonitis [12].

However, the healing process, especially concerning 
intestinal anastomoses, is complex and depends 
on a careful balance of pro-inflammatory and anti-
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potentially increasing the efficacy of ICIs [57,58].

Conversely, the gut microbiota’s role in regulating 
immune homeostasis and inflammation is paramount 
in the context of wound healing and anastomotic 
integrity. The balance between pro-inflammatory and 
anti-inflammatory signals, crucial for proper wound 
healing, can be tipped by alterations in the microbiome 
composition [15,42-44].

For example, an overabundance of pro-inflammatory 
bacterial species may exacerbate local and systemic 
inflammation, impeding the healing process and 
increasing the risk of anastomotic leakage. On the other 
hand, a healthy microbiome, rich in SCFA-producing 
bacteria, can promote an anti-inflammatory milieu, 
supporting tissue repair and integrity [33-35].

Studies have identified specific bacterial species, 
such as Bacteroides fragilis, Bifidobacterium, and 
Akkermansia muciniphila, as pivotal in modulating the 
therapeutic efficacy of ICIs. These bacteria influence the 
tumor microenvironment by enhancing dendritic cell 
function, promoting T cell activation, and facilitating 
the infiltration of effector T cells, thereby increasing the 
anticancer immune response [59-61].

Beyond the modulation of therapeutic efficacy, the 
gut microbiota plays a critical role in wound healing 
and the integrity of surgical anastomoses [62]. The 
physiological healing process is delicately balanced by 
pro-inflammatory and anti-inflammatory cues, cellular 
proliferation, and tissue remodeling all significantly 
influenced by microbial metabolites and the immune 
system [63].

Short-chain fatty acids (SCFAs) by gut bacteria 
are essential for maintaining gut barrier function 
and regulating immune responses conducive to 
healing. Disruptions in the microbial composition, or 
dysbiosis, can lead to an imbalance in these healing 
processes, potentially culminating in anastomotic 
leakage a dreaded complication with profound clinical 
implications [64-66].

The clinical ramifications of the interaction between 
the gut microbiota and the immune system extend into 
personalized medicine. The potential of leveraging the 
microbiome to predict responses to ICIs opens new 
views for tailored cancer therapy, reducing the trial-
and-error approach currently prevalent [18-22].

The potential clinical implications of these findings 
are vast. Firstly, understanding the role of specific 
bacteria in modulating immune responses to ICIs 
could lead to the development of microbial-based 
biomarkers for predicting treatment outcomes [3]. Such 
biomarkers could significantly refine patient selection 
for immunotherapy, ensuring that only those likely to 
benefit are exposed to these potent drugs and their 
associated risks [67].

criteria encompassed various studies, such as systematic 
reviews, case-control studies, cross-sectional studies, 
case series, review articles, and editorial studies. This 
broad inclusion criteria aimed to gather a comprehensive 
range of evidence and perspectives on the subject 
matter. The process of analysis, review, and selection 
of materials was conducted rigorously to maintain the 
quality and relevance of the chosen studies. It involved 
a systematic and blinded approach, with pairs of 
reviewers independently assessing the title and abstract 
of each study. In cases of disagreement between the 
two reviewers, a third reviewer was involved to reach 
a consensus and ensure the final selection of studies 
was based on well-founded criteria. This meticulous 
research methodology guarantees that the findings and 
conclusions drawn in the article are rooted in a robust 
and diverse body of evidence, enhancing the credibility 
and reliability of the study’s outcomes.

Results and Discussion
Delving deeper into the complexities of the 

interaction between neoadjuvant immunotherapy, the 
gut microbiota, and surgical outcomes in colorectal 
cancer surgery, we uncover a rich tapestry of biological 
interactions and potential clinical strategies [48,49]. 
This intricate interplay not only shapes the therapeutic 
efficacy of immunotherapy but also fundamentally 
influences the processes of wound healing and tissue 
regeneration critical to surgical success [50].

The burgeoning field of immuno-oncology has 
illuminated the intricate interplay between the gut 
microbiota, immune checkpoint inhibitors (ICIs), and 
their collective impact on surgical outcomes, particularly 
in colorectal cancer surgery. This discussion unravels the 
multifaceted relationships and underlying mechanisms, 
drawing upon recent scientific advances and clinical 
observations [51-53].

The emergence of ICIs targeting CTLA-4, PD-1, and 
PD-L1 has revolutionized cancer therapy, offering hope 
where conventional treatments have failed. However, 
the variability in patient responses underscores a 
complex interplay between the host’s immune system 
and the gut microbiome [36-38].

At the heart of this interaction are the molecular 
and immunological mechanisms through which the gut 
microbiota influences the host’s immune response to 
cancer and immunotherapy. The microbiota acts through 
various pathways to modulate systemic immunity, 
including the activation of pattern recognition receptors 
(PRRs) on immune cells, which detect microbial-
associated molecular patterns (MAMPs) [54-56].

This interaction can lead to the maturation and 
activation of dendritic cells, which play a pivotal role in 
antigen presentation and the subsequent activation of 
T cells. The presence of specific microbial species can 
thus enhance the body’s immune response to tumors, 
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paradigm of cancer care in the era of immuno-oncology 
[68-71].

Conclusion
In conclusion, the nexus of neoadjuvant 

immunotherapy, the gut microbiota, and surgical 
outcomes in colorectal cancer presents a complex 
but highly promising field of study. As we unravel the 
intricate web of interactions at play, the path toward 
more effective, personalized cancer therapy and 
improved surgical outcomes becomes increasingly clear.

The integration of microbiome science into oncology 
and surgery heralds a new era of precision medicine, 
where treatments are tailored not only to the genetic 
makeup of the tumor but also to the unique microbiome 
of the individual, offering hope for more effective 
treatments and better patient outcomes in the future.
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