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Abstract
Purpose: To assess central fractional anisotropy changes 
of the white matter in subjects with spasticity treated with 
botulin toxin.

Materials and Methods: Seven subjects with spasticity 
that developed 2-22 years after cerebrovascular accidents 
(CVA) were studied with 3T MRI of the brain including 
diffusion tractography (DTI) and fractional anisotropy (FA) 
measurements of the white matter of the corticospinal tracts 
(CST), corpus callosum (CC) and cerebral lobes of the affected 
and contralateral sides prior and after the injection of botulin 
toxin at the contours of peripheral nerves of the affected side.

Results: All 7 subjects improved their preexisting spasticity 
after the injections of botulin toxin. 4 out of 7 showed FA 
changes post injection in the CST of the affected side. 
The latter had CVAs occurring 5-15 years prior to the 
development of spasticity. 3 out of 7 subjects did not show 
significant FA changes post-treatment. They had CVAs 
occurring less than 5 years and more than 15 years prior 
to the development of spasticity. There was regression 
between ‘years of evolution’, as a dependent variable, and 
the square of pre and post injection differences of FA on the 
contralateral CST, as well as white matter of the parietal and 
frontal lobes as independent variables.

Conclusion: Botulin toxin injections improved spasticity in 
all the subjects of our cohort. There also were FA changes 
in the white matter of the CST of the affected side in those 
subjects with CVAs happened between 5-15 years prior to 
the development of spasticity, while those with lesions of 
less than 5 years and more than 15 years did not show 
statistically significant FA changes post treatment.
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Introduction
Spasticity is a physiological consequence of damage 

to nerve cells or their pathways that control muscle 
movement within the brain or spinal cord. It results in 
uncontrollable stiffening or straightening of muscles, 
shock-like contractions of all or part of a group of muscles 
and abnormal muscle tone which can have harmful 
effects such as pain, deformity, impaired function and 
severe disability with costly consequences. In severe 
cases it requires perineural injections of botulin toxin to 
alleviate disability and to improve quality of life.

Although the signs and symptoms caused by 
spasticity that affect activities of daily living are well 
recognized, the understanding of its causes and when 
it develops with respect to the time of onset of the 
neurological lesion are less well understood [1].

It is estimated that around 75% of patients with 
severe traumatic brain injury, 20% of stroke survivors 
and 60% of subjects with moderate to severe Multiple 
Sclerosis require specific spasticity treatment [2].

The neurological lesions of subjects with spasticity 
can be studied with non-invasive imaging techniques, 
particularly those related to MRI. Diffusion tractography 
imaging (DTI) is an advanced magnetic resonance 
imaging (MRI) tool based on the diffusion of water 
molecules within cells. In the case of neurons, it helps 
to image nerve bundles of white matter tracts [3-8]. 
Furthermore, it also provides quantitative markers 
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such as fractional anisotropy (FA) and Anisotropy 
diffusion coefficient or Apparent diffusion coefficient 
(ADC) [9]. In the cerebral white matter, contributions 
to these indicators come from fibre arrangements, 
degree of myelination, and axonal integrity [10], and 
are useful indicators to assess the severity of already 
known pathological conditions [11-13]. As an indicator 
of myelin sheath integrity, FA has already been 
correlated with electrophysiology studies, confirming 
the technique as particularly sensitive to distal motor 
latency and sensory nerve conduction velocity changes 
[14]. FA has been also used as a reliable indicator to 
evaluate the normalization of neuron structure in white 
matter lesions after therapy in demyelinating conditions 
showing neuroprotective effects of some drugs [15], 
and to assess pathological changes reflecting alteration 
of neuron integrity in neurodegenerative diseases [16] 
and traumatic brain injury [17].

ADC measurements for complicated systems as living 
tissues depend on the diffusion time and weighting used, 
or b factor, in a given volume unit or voxel. In this study, 
the diffusion tensor expressed by FA was preferred over 
ADC as the former reflects the underlying directional 
diffusion properties of the tissue independently of 
its orientation in the magnetic field while Te latter is 
influenced by how the subject has been placed in the 
scanner magnet and gradient coils [18,19].

Purpose
The main purpose of this pilot study was to evaluate 

if there were quantitative changes in the nerve bundles 
of the central white matter in subjects who developed 
spasticity after a CVA which could be identified with DTI-
FA after the injection of botulin toxin on the affected side.

A secondary purpose of this work was to investigate 
if there was a relationship between years of evolution 
after the lesion and FA values in the central white 
matter.

Materials and Methods
The Bioethics approval for this study was obtained 

from the Health Research Authority, NRES Committee 
South Central-Oxford, in the United Kingdom (13/
SC/0561; IRAS 140861). The institutional approval 
was granted by Research & Development of East Kent 
Hospitals University NHS Foundation Trust (2013/
RADIO/02) and individual subject consents were 
obtained before the first scan in what concerns imaging 
aspects of this pilot study. Separate individual consents 
were obtained by the Department of Neurorehabilitation 
before the treatment.

The initial cohort included 12 subjects who had 
developed spasticity due to upper motor neuron 
lesions. They had single hemispheric post ischaemic 
or haemorrhagic parenchymal sequelae affecting the 
gangliocapsular area with extension to the cerebral 
lobes. The lesions took place within a range from 1 to 25 
years before development of a handicapping degree of 
spasticity requiring peripheral injections of botulin toxin. 
The subjects were studied with Magnetic Resonance 
Imaging of the head before and after the treatment.

The spasticity scores were obtained according the 
Disability Assessment Scale [20] pre and post-injection.

Two subjects were excluded immediately after 
the initial MRI series for technical reasons (metallic 
fragments causing inhomogeneity in the magnetic field). 
The remaining ten were studied with MRI of the brain 
at a magnetic field strength of 3 Tesla and following 
a protocol that included localizers, isovolumetric T1, 
isovolumetric T2, axial and coronal FLAIR, axial Proton 
Density and T2, axial susceptibility weighted images 
(SWI) and diffusion tractography series (DTI) with 32 
directions (Table 1), before and eight weeks after the 
peripheral perineural injection of botulin toxin (200 
units, diluted in 4 ml of saline solution 9%).

Three subjects were excluded after the full initial 
scan due to poor imaging quality (movement artifacts 
or inability to complete the imaging protocol). Seven 
subjects were included and were studied before and 
after the injections. The obtained images were post 
processed in an independent workstation using Syngo 

Table 1: MR imaging protocol.

MR unit Siemens® skyra® with a magnetic field strength of 3 tesla
Series TR TE FoV NEX Resolution
Localizers Gradient echo T1, large FOV, quick acquisition time in all three planes as per vendor
Axial T2 (tse) 5000 88 22 cm 1 0.4 × 0.4 × 5 mm
Axial T1 (tse) 400 7.1 22 cm 2 0.6 × 0.6 × 5 mm
Axial FLAIR 9000 81 22 cm 2 0.7 × 0.7 × 5 mm
Coronal FLAIR (mpRAGE) 4680 84 22 cm 1 0.5 × 0.5 × 5 mm
Axial 3D T1 (SPACE) 1900 2.49 22 cm 1 0.9 × 0.9 × 0.9 mm
Axial 3D T2 3200 412 22 cm 1 1 × 1 × 1 mm
Axial SWI 400 4.92 22 cm 1 3 × 3 × 3 mm
Axial DWI 32 directions 700 95 22 cm 1 1.7 × 1.7 × 4 mm

FLAIR: Fluid Attenuation Inversion Recovery; SWI: Susceptibility Weighted Images; DWI: Diffusion Weighted Imaging; TR: Time 
of Repetition; TE: Time of Echo; FoV: Field of View; NEX: Number of Experiments.
The acronyms between brackets indicate the name of the pulse sequences as per the software of the magnetic resonance unit 
used for the study (Siemens®).
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Via® software to image the corticospinal tracts of the 
affected and contralateral sides (Figure 1 and Figure 
2), the corpus callosum (Figure 3) and the tracts in the 
white matter of the frontal, parietal, temporal and 
occipital lobes of the affected and contralateral sides. 
The seeding points for tractography [21] were placed 
in the rostral cerebral peduncles on axial plane for 
the corticospinal tracts, in the corpus callosum on the 
sagittal plane, and in the white matter of the cerebral 
lobes within the boundaries set by the Talairach Atlas on 
axial plane. Fractional anisotropy values were obtained 
for each of the tracts. Each measurement was repeated 
three times to ensure consistency.

The tabled variables included age, gender, spasticity 
score, presence of Wallerian degeneration, score of 
disability assessment scale pre and post injection and 
fractional anisotropy (FA) values of the corticospinal 
tracts (CST), corpus callosum (CC), frontal (FL), parietal 

(PL), temporal (TL) and occipital lobes (OL) of the 
affected (aff) and contralateral (cont) side. In the case 
the CC, as a midline structure, there were single pre and 
post injection measurements.

The square powers of differences between pre and 
post injection FA values of each measurement were also 
tabled.

Calculations carried out were basic statistics, potency 
tests for dependent samples, T-tests for dependent 
variables and Forward Stepwise Multiple Regression 
analysis. The latter considered the years elapsed from 
the onset of the lesion to the development of spasticity 
as a dependent variable and the transformed variables 
as independent, for each one of the areas, which 
included CST, CC, FL, PL, TL and OL of the affected and 
contralateral sides. All the quantitative variables were 
plotted in graphs jointly and separately on the y-axis 
versus years of evolution on the x-axis. The fittings were 
both linear and least squares in all the graphs. After 
obtaining the results as shown below, all the FA values 
were entered multiplied by 1000 (x = FA × 1000) to do 
the calculations with integer numbers.

         

Figure 1: FA maps fused to coronal T1 sectioning rostrally 
the cerebral peduncles showing CSTs in blue (white 
arrows). Note the lesion (white arrowhead) on the affected 
side on the patient’s right (left side of the image) and how it 
extends to the right CST.

         

Figure 2: DTI fused to 3D T1 showing CSTs (yellow and 
blue) and CC (purple).

         

Figure 3: DTI fused to 3D T1 showing CC in purple. Some 
of its fibres are affected by the lesion on the right side of the 
patient (and also right side of the photo).
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0.380 for TL and 0.394 for OL. Post-injection FA values 
for the contralateral side were 0.480 for CST, 0.388 for 
FL, 0.411 for PL, 0.408 for TL and 0.420 for OL (Table 3).

The mean values of transformed variables were 833 
for CC and on the affected side 203 for CST, 972 for 
FL, 783 for PL, 6302 for TL and 1143 for OL. The mean 
values of post injection transformed variables on the 
contralateral side were 647 for CST, 984 for FL, 1112 
for PL, 176 for TL and 1954 for OL (Table 4). On (Figure 
4) the linear graph shows FA values of affected CST 
tracts on y-axis versus years of evolution on the x-axis 
before and after the injection of botulin toxin, with least 
squares fitting. On (Figure 5) the box graph shows the 
distribution of FA values of affected CSTs pre and post 
injection for all 7 subjects.

The obtained power calculation of two-means T test 
for dependent samples was 0.81 with an alpha error of 
0.05.

T tests for dependent variables, considering the 
pre and post injection spasticity scores (DAS), were 
significant (t = 7.07). T tests for dependent variables 
were not significant when all seven subjects were 
considered (Table 5), although they became significant 
when only the subjects with a lesion evolution between 
5-15 years were included (4 out of 7 subjects) (Table 
6); the subjects with lesions of less than 5 years and 

Results
The seven subjects in this cohort included 2 males 

and 5 females, with an average age of 49 years (24-71) 
and an interval evolution of 10 years (1-25) since the 
onset of the causative central nervous system lesion. 
Two had imaging signs of Wallerian degeneration with 
bright signal on T2 and FLAIR in the CST at the rostral 
aspect of the cerebral peduncles on the affected side 
(Table 2).

The degree of spasticity improved in all subjects after 
the injection of botulin toxin. Their mean spasticity score 
in the Disability Assessment Scale improved from 2.5 (2-
3) previously to the injection to 1 (0-2) post-injection.

Pre-injection mean FA values for CC were 0.448 and 
on the affected side 0.462 for CST, 0.355 for FL, 0.372 
for PL, 0.363 for PL, and 0.388 for OL. Pre-injection FA 
values on the contralateral side were 0.485 for CST, 
0.370 for FL, 0.406 for PL, 0.413 for TL and 0.395 for 
OL. Post injection FA for CC was 0.457. On the affected 
side FA was 0.470 for CST, 0.340 for FL, 0.358 for PL, 

Table 3: Quantitative variables in the cohort.

Variable Descriptive statistics for quantitative variables

(FA values are converted into an integer by multiplying them by 1000)
  Valid N Mean Minimum Maximum Std.Dev.
DASpre 7 2.4286 2.0000 3.0000 0.53452
DASpost 7 1.0014 0.0100 2.0000 0.57447
Wallerian deg 7 103.5714 103.0000 104.0000 0.53452
CSTaff 7 462.0000 424.0000 509.0000 29.30870
CSTcont 7 485.8571 428.0000 546.0000 39.80548
CCallosum 7 448.1429 389.0000 489.0000 38.36417
FLaff 7 355.4286 308.0000 423.0000 44.35034
FLcont 7 370.5714 317.0000 457.0000 52.54477
PLaff 7 372.8571 304.0000 436.0000 52.11663
PLcont 7 406.4286 359.0000 444.0000 32.91331
TLaff 7 363.4286 283.0000 439.0000 62.15534
TLcont 7 413.0000 389.0000 431.0000 17.06849
OLaff 7 388.5714 339.0000 444.0000 44.01839
OLcont 7 395.7143 334.0000 439.0000 40.52042
CST2aff 7 470.1429 441.0000 501.0000 21.92737
CST2cont 7 480.2857 458.0000 512.0000 22.17141
CCallosum2 7 457.0000 411.0000 486.0000 23.57965
FL2aff 7 340.5714 245.0000 419.0000 58.86951
FL2cont 7 388.0000 323.0000 433.0000 41.34408
PL2aff 7 358.7143 245.0000 423.0000 68.34402
PL2cont 7 411.5714 344.0000 442.0000 38.11324
TL2aff 7 380.1429 308.0000 463.0000 58.57311
TL2cont 7 408.7143 370.0000 443.0000 23.98412
OL2aff 7 394.4286 341.0000 455.0000 37.66013
OL2cont 7 420.5714 349.0000 469.0000 39.83657
Years 7 10.5714 1.0000 25.0000 7.93425

Table 2: Qualitative variables in the cohort.

Gender Males Females
2 5

Wallerian degeneration Yes No
2 5

https://doi.org/10.23937/2572-4215.1510015
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Table 6: T tests for dependent samples in 4 subjects with in a time range of 5-15 years from the causing lesion.

 

Variable

T-test for dependent samples: Time range 5-15 years
Marked differences are significant at p < 0.05000
(FA values are converted into an integer by multiplying them by 1000)

  Mean Std.Dv. N Diff. Std.Dv.Diff. t df p
CSTaff 449.0000 27.39830            
CST2aff 466.7500 24.06069 4 -17.7500 4.99166 -7.11186 3 0.005721

         

Figure 4: Time of evolution with range 1-25 years on x-axis vs. fractional anisotropy of the affected corticospinal tract before 
and after the injection of botulin in all 7 subjects. FA has been multiplied by 1000 to convert it into an integer.

Table 4: Transformed variables.

 

Variable

Descriptive statistics of transformed variables

(square power of pre- & post injections FA differences)

[FA values are converted into an integer by multiplying them by 1000]
Valid N Mean Minimum Maximum Std.Dev.

dCSTaff 7 203.571 1.0000 484.00 200.637
dCSTcont 7 647.000 36.0000 1600.00 607.514
dCC 7 833.143 1.0000 3481.00 1212.439
dFLaff 7 972.571 4.0000 4761.00 1711.392
dFLcont 7 984.571 36.0000 4624.00 1637.711
dPLaff 7 783.000 1.0000 4096.00 1519.483
dPLcont 7 1112.286 64.0000 4225.00 1524.096
dTLaff 7 6302.143 1.0000 17161.00 7017.994
dTLcont 7 176.000 9.0000 576.00 197.101
dOLaff 7 1143.286 1.0000 3136.00 1181.290
dOLcont 7 1954.857 9.0000 10816.00 3957.964

Table 5: T tests for dependent samples in all 7 subjects, time range 1-25 years since from the causing lesion.

 

Variable

 

T-test for Dependent Samples. Time range 1-25 years
Marked differences are significant at p < 0.05000 (FA values are converted into an integer by multiplying them by 1000)
(FA values are converted into an integer by multiplying them by 1000)
Mean Std.Dv. N Diff. Std.Dv.Diff. t df p

CSTaff 462.0000 29.30870            
CST2aff 470.1429 21.92737 7 -8.1429 12.65476 -1.70244 6 0.139569
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for subjects with lesions that happened less than 5 and 
more than 15 years from the development of spasticity 
that affects activities of daily living (Figure 4, Figure 
5, Figure 6, Figure 7 and Figure 8). Potency tests for 
dependent samples were again calculated including 
only the 4 subjects with lesions with an evolution within 

more than 15 years of evolution since onset (3 out of 
7) were excluded (Figure 6). The latter were carried out 
after noting maximal FA differences in subjects within 
that range on graphs that plotted years of evolution on 
x-axis and pre and post-injection FA values in all four of 
them on y-axis, while no such changes were depicted 

         

Figure 6: Fractional anisotropy values of the affected corticospinal tracts in 4 subjects, whose time of evolution after the 
causing lesion ranged 5-15 years. FA is multiplied by 1000 to convert it into an integer.

         

Figure 5: Fractional anisotropy of the affected corticospinal tracts pre and post botulin injection. FA is multiplied by 1000 to 
convert it into an integer. All 7 subjects were included. Evolution time range 1-25 years.

https://doi.org/10.23937/2572-4215.1510015
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Some authors have reported central changes after 
peripheral treatments with botulin toxin [30-37]. 
However, it is unclear why FA changes post injection 
were identified in the four subjects of our cohort with an 
evolution that ranged from 5 to 15 years since the initial 
lesion while the remaining three, with an evolution 
of less than five years and more than fifteen years, 
did not show significant changes [38-41]. It has been 
shown that FA changes occur in given periods of time 
in linear studies of subjects with Parkinson’s disease 
[42] and hypertonia [43]. It may be hypothesized that 
microstructural changes related to neuroplasticity 
are favoured once all the inflammatory changes after 
the initial lesion are resolved and cease after a given 
period of time [44-48], as no further tissue repair can 
take place. Further linear studies with a more extensive 
cohorts would be required to ascertain it.

Clinically, however, all of the subjects showed clinical 
improvement of spasticity post injection of botulin toxin 
[39].

It is accepted that fractional anisotropy values 
change with age [49-52] and may also vary according 
to which of the two main measurement procedures 
is used. One measurement method is based on 
tracing regions of interest (ROI) in selected areas, as 
performed to obtain the white matter tracts and their 
FA in this pilot study. The other method is based on 
statistical parametric mapping (SPM), which is a more 
standardized and automated procedure [53]. In our 
group of subjects, the youngest showed the highest FA 
values and no significant post injection changes, which 
may have been influenced by the time of evolution as 

a range of 5-15 years, showing similar results to those 
obtained when considering all 7 subjects.

Multiple regression analyses for ‘years’ as a 
dependent variable, and transformed FA differences as 
independent variables showed the following values: R = 
0.92, R2 = 0.84 and adjR

2 = 0.69 with F(3,3) = 5.5, p < 0.05 
(Table 6).

Discussion
Spasticity indicates upper motor neuron dysfunction 

and when it is severe it usually leads to handicapping 
motion restriction and serious disability [22]. It is a 
common problem in patients following head trauma 
and cerebral vascular accident (CVA) [1,23] and may 
develop shortly after the onset of the initial lesions or 
several years afterwards.

Depending on its severity, spasticity may be 
improved by the perineural injection of botulin toxin 
close to the peripheral nerves controlling the affected 
muscle groups, mostly to improve quality of life [24] as 
performed with all the subjects included in this study. 
Post botulin injection changes may last for a variable 
period of time [25-27].

For these cases of subjects with handicapping 
spasticity, the status of white matter tracts were 
assessed with DTI to obtain not only qualitative 
assessment of the affected white matter but also a to 
measure FA as a quantitative indicator of the bundles 
microstructure [9,10,28]. Changes in this indicator 
usually predict evolution in acquired brain injuries and 
neuroinflammatory conditions [4,28,29].

         

Figure 7: Evolution time range 1-25 years on x-axis vs. fractional anisotropy values of the affected corticospinal tracts pre and 
post injection of botulin on y-axis in all 7 subjects. FA values are multiplied by 1000 to convert them into integers.
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Additionally, it was unclear why those subjects with 
imaging signs of Wallerian degeneration in the affected 
corticospinal tract showed both clinical and FA post 
injection improvement as it has been found by other 
authors [54], although there is contradictory evidence 
in this regard in the literature [55,56].

the lesion occurred in early infancy and more than 20 
years had elapsed to the development of the episode of 
handicapping spasticity considered in this study.

FA values in the subjects of this cohort have 
decreased with age, as noted then plotting age on x-axis 
and pre-post injection FA on y-axis (Figure 7).

         

Figure 9: Double y-axis plot of square of the FA differences of the affected CST on x-axis, versus subjects age, on left y-axis, 
and years of evolution after CVA on right y-axis. (FA values are converted into an integer by multiplying them by 1000).

         

Figure 8: Evolution time range 5-15 years vs. fractional anisotropy values of the affected corticospinal tracts on y-axis, pre 
and post injection of botulin, in 4 subjects. FA values are multiplied by 1000 to convert them into integers.
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ISSN: 2572-4215 DOI: 10.23937/2572-4215.1510015

Bertoni et al. Int J Physiatry 2018, 4:015 • Page 9 of 11 •

statistically significant FA variations in the corticospinal 
tracts of the affected sides.

There was regression between years of evolution as 
a dependent variable and FA values of the contralateral 
(non-affected) corticospinal tracts, and white matter of 
the parietal and frontal lobes of the contralateral side, 
as independent variables.

Further assessments of a larger cohort of patients 
should be pursued to confirm these preliminary findings.
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