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Abstract
Synaptic function is maintained by dynamic processes governed by 
regulators of plasticity or morphogenesis of pre- and postsynaptic 
compartments. Synaptic dysfunction often precedes neuronal death 
around the time of disease onset in neurodegenerative diseases, 
including Alzheimer’s disease (AD), and dysregulated microglia 
cause prolonged neuroinflammation with severe clinical symptoms. 
Although impaired amyloid beta (Aβ) clearance by astrocyte-
derived apolipoprotein E4 (ApoE4) has been considered to be the 
main contributor of sporadic AD, intracellular effectors, such as 
cell-adhesion regulatory proteins or lipophilic mediators, have been 
shown to regulate synaptic homeostasis, and are further involved 
in regulating chronic propagation of inflammation during the 
neurodegenerative process including AD. Catenin family proteins, 
such as β-catenin and p120 catenin, regulate cadherin trafficking 
and cytoskeletal rearrangement. Aberrant catenin signaling has 
been shown to play a role in the neuronal dysfunction seen in 
AD or Parkinson disease (PD) models with abnormal processing 
of amyloid precursor protein (APP) or oxidative vulnerability. The 
most abundant lipophilic endocannabinoid (eCB) in the brain, 
2-arachidonoylglycerol (2-AG), is primarily generated by sequential 
hydrolysis of phosphatidylinositol-4,5-bisphosphate (PIP2) by 
phospholipase C and diacylglycerol lipases, both important for 
normal synaptic transmission. Imbalance of PIP2 metabolism is 
implicated in the signaling of presenilin 1 (PS1) mutations causing 
familial AD or oligomeric amyloid beta (Aβ) peptide administration. 
Furthermore, monoacylglycerol lipase (MAGL) degrades 2-AG and 
has been known to terminate cannabinoid receptor (CBR)-mediated 
signaling; additionally MAGL plays a proinflammatory role in 
progression of neurodegeneration independent of CBR signaling. 
Here, we focus on several catenins regulating cadherin-mediated 
signaling, and lipid signal modulators organizing phosphoinositide 
(PI) or 2-AG metabolism in neurons and glia; special attention is 
given to how the microglial surveillance system is disorganized 
during the progression of neurodegeneration in AD and PD models.
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inputs or behavioral experiences. Enhanced neuronal activity triggers 
reorganization of the actin cytoskeleton in presynaptic compartments 
and induces coordinated changes in apposed postsynaptic density 
with actin dynamics [1]. Numerous cell-adhesion molecules are 
involved in these processes, and classical cadherins are most 
characterized and important for synaptic formation or dendritic 
arborization [2,3]. Several modulators of neurotransmission, besides 
cell-adhesion proteins, play a role in synaptic plasticity. Neuronal 
activity-dependent processing of amyloid precursor protein (APP) is 
required for synaptic homeostasis, but excess production of amyloid 
β (Aβ) can depress synaptic transmission, resulting in cognitive 
decline, as seen in early pathogenesis of AD [4]. Synaptic dysfunction 
has been shown to precede Aβ deposition and neurofibrillary tangle 
formation in AD model mice harboring knockin mutant presenilin 
1 (PS1M146V), mutant tau protein (tauP301L), and Swedish APP 
(APPSwe), which simulate the regional impact of Aβ plaques and 
neurofibrillary tangles observed in AD pathology [5]. Underlying 
regulatory mechanism of APP processing by PS1 interacting proteins, 
such as catenin, and that of inflammatory balance in dopaminergic 
neurons, have also been elucidated, and catenin family proteins 
play an important role in AD and PD pathogenesis with different 
mechanisms [6-12]. Catenins including p120, β- or δ-catenin also 
play an important role in actin reorganization through Rho family 
proteins at dendritic spines and synapses, whilst genetic inactivation 
can cause severe synaptic dysfunction (Table 1) [13-16]. Furthermore, 
δ-catenin, a neuron-specific catenin involved in dendritic branching, 
is recognized as a causative gene of Cri-du-chat syndrome, which 
presents severe cognitive impairment and mental retardation [17].

In addition to these regulatory proteins localized at the synaptic 
compartments, several membrane-derived lipid metabolites 
are important for the regulation of synaptic transmission. 
Phosphatidylinositol-4,5-bisphosphate PIP2 is critical for exocytosis 
of synaptic vesicles and membrane invagination for recycling 
processes, with several regulators including synaptotagmin and 
small GTPases [18,19]. Following depolarization-induced Ca2+ 
influx or activation of metabotropic receptors, PIP2 is hydrolyzed 
by phospholipase C and generated diacylglycerol (DAG) is 
subsequently degraded by sn-1-specific diacylglycerol lipases 
(DAGLα and DAGLβ). The most abundant endocannabinoid (eCB), 
2-arachidonoylglycerol (2-AG) is generated by DAGL-mediated 
hydrolysis at postsynaptic compartments, traversing synaptic clefts 
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and repressing neurotransmitter release [20,21]. 2-AG production is 
referred to as “on demand” biogenesis with neuronal activity, whilst 
most 2-AG is removed from the synaptic cleft and hydrolyzed by 
monoacylglycerol lipase (MAGL) at presynaptic compartments [22]. 
2-AG is known to act as a ligand for cannabinoid receptors (CBRs); 
CB1R is predominantly expressed in neurons, whereas CB2R mainly 
resides in immune cells. The neuronal MAGL-dependent regulation 
of presynaptic CB1R signaling is known as depolarization-induced 
suppression of excitation (DSE) and inhibition (DSI) in excitatory 
and inhibitory neurons, respectively [23,24], whereas involvement 
of MAGL in synaptic dysfunction and Aβ deposition has also been 
reported in AD mouse models [25-27].

A similar 2-AG generating mechanism catalyzed by PLC and 
DAGLs is preserved in microglia expressing purinergic receptors 
that respond to extracellular ATP [24]. Noticeably, MAGL-
mediated production of proinflammatory arachidonic acid (AA) is 
required for microglial activation and generation of inflammatory 
cytokines. Microglial MAGL expression is known to be upregulated 
in inflammatory conditions, such as Aβ accumulation or LPS 
treatment, and MAGL is involved in phagocytic activity of activated 
microglia [28,29]. In immune cells CB2R is hardly detectable under 
normal conditions but induced upon neuronal inflammation, as 
2-AG activates CB receptor (CBR) signaling, resulting in microglial 
migration [30]. Since modulation of CB1R signaling induces severe 
psychotropic effects, development of CB2R-specific chemicals has 
been sought after for the resolution of neuroinflammation as a 
clinical issue.

As for other lipid regulators, low-density lipoprotein receptor 
(LDLR) family such as low-density lipoprotein related proteins 
(LRPs) regulates internalization of apolipoprotein E (ApoE)-
containing lipoprotein at synapse. Three human ApoE gene has 3 
alleic variants on chromosome 19, i.e., ApoE2 (Cys112 and Cys158), 
ApoE3 (Cys112 and Arg158), and ApoE4 (Arg112 and Arg158), and 
ApoE4 generation is associated with increased risk of sporadic onset 
of AD [31]. ApoE is mainly produced and secreted by astrocytes in 
brain, and it stimulates Aβ uptake by neurons due to its affinity for 
Aβ [32]. Astrocytes carrying ApoE4 caused impaired degradation 
of Aβ in neurons and downregulation of synaptic proteins, which 
is cancelled by the genetic ablation of ApoE [32,33]. In this article, 
2-AG or cadherin/catenin-mediated regulation of neurodegenerative 
process is mainly focused with the recent progress in pharmacological 
aspects, in addition to the topic on LRP-mediated clearance of Aβ.

Dysfunction of Cadherin/Catenin in AD
Synapse and spine morphology are maintained by several integral 

membrane proteins such as cadherins, or Rho family proteins [34]. 
Catenin family proteins interact with cadherins, but also regulate 
Rho family proteins, as seen in the inhibition of RhoA activity by 
p120 catenin [13]. p120 catenin binding to cadherin and RhoA 
inhibition are mutually exclusive, and overexpression of p120 catenin 
causes blanching morphology by inhibiting the guanine-nucleotide 

exchange activity of RhoA, which is then blunted by dominant active 
RhoA; this may indicate the involvement of p120 catenin in regulating 
cadherin function through indirect effects on RhoA-mediated 
cytoskeletal reorganization. p120 catenin regulates dendritic spine 
morphogenesis and innervation with the formation of synaptic 
clusters and axonal filopodia by modulating Rho GTPase activity, 
as seen during hippocampal neuronal development or formation of 
neuron-muscle junctions [14,35]. Additionally, δ-catenin interacts 
with p190 Rho guanine nucleotide exchange factor by selective 
competition with RhoA activity among Rho GTPases, promoting 
dendritogenesis and spine morphogenesis (Table 1) [36].

β-catenin interacts with the C-terminal domain of N-cadherin, 
mediating modulation of glutamatergic synaptic currents with 
homophilic N-cadherin adhesive activity. Although abnormal 
morphology of dendritic spines is observed by loss of β-catenin, this 
does not involve the actin cytoskeleton [37]. N- and E-cadherins 
reside at synaptic junctions in mutually exclusive patterns [3]. 
Either cadherin is necessary for PS1 interactions with β-catenin, 
thereby promoting degradation of β-catenin through the ubiquitin-
proteasome system [6] (Figure 1). PS1/2 deficient cells exhibit 
accumulation of phospho-β-catenin with higher generation 
levels of reactive oxygen species (ROS) inducing cytotoxicity [9]. 
Amyloid precursor protein (APP), a type I membrane protein, also 
functions as a synaptic modulator and is proteolytically processed 
by β-secretase (BACE) and γ-secretase complexes, resulting in the 
generation of Aβ peptide [38]. Neuronal activity-dependent Aβ 
generation causes decreased synaptic transmission, whilst Swedish 
mutation of APP (APPSwe) severely depresses the transmission, 
presumably causing cognitive decline [4]. Interestingly, p120 catenins 
recruit γ-secretase to cadherins that promote their processing. These 
interactions inhibit the production of Aβ and intracellular domain of 
APP called AICD, suggesting that cadherin functions as one of the 
integral determinants of APP processing in neuronal homeostasis 
[7,8] (Figure 1). Interference of N-cadherin function by homophilic 
binding with N-terminal peptides, or expression of its ectodomain-
shed C-terminal fragments, has been found to accelerate the effects of 
oligomeric Aβ on synaptic dysfunction [39]. Another catenin family 
protein, δ-catenin or neural plakophilin-related armadillo protein 
(NPRAP), interacts with PS1, inducing PS1 expression to suppress 
dendritic branching [40].

Dysregulation of β-catenin in PD
Parkinson disease (PD) is a neurological disorder associated 

with selective degeneration of midbrain dopaminergic neurons 
and with gliosis. Activation of the Wnt/β-catenin pathway is 
required for the generation of dopaminergic neurons in the ventral 
midbrain but is also necessary for the prevention of cell death 
induced by 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) with oxidative load [41]. Systemic 
administration of these agents induces astroglial activation, resulting 
in expression of Wnt1 and inflammatory cytokines, and induction of 
β-catenin signaling cascades to protect dopaminergic neurons from 

Table 1: Physiological roles of catenin family proteins in neuronal functions.

Catenins Biological function in neuron Interacting proteins
α-catenin Increase in spine density and stability [69] vinculin [70]

β-catenin [70]
β-catenin Regulation of glutamatergic receptor response [37]

Regulation of synaptic vesicle formation [16,71]

cadherins [7], α-catenin [70]

PS1 [6], scribble [71]

Cdk5 [72]
δ-catenin Induction of dendritic morphology [36,40]

Regulation of spine morphology and synaptic

plasticity [10]

cadherins [15], PSD95 [15],

PS1 [40], cortactin [73]

p190 RhoGEF [74]
p120-catenin Stabilization of surface levels of cadherins [75]

Regulation of spine and synapse morphogenesis [14,76]

Inhibition of RhoA activity [13]

cadherins [75], PS1 [7]

Fer [77], Fyn [77], cortactin [78]

p190 RhoGEF [79]
p0071 Regulation of neurite outgrowth and blanching [80] PS1 [81], cadherins [82]
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neurotoxicity [42]. Wnt1 secreted from ventral midbrain astrocytes 
injured by MPTP treatment induces β-catenin stabilization in 
mesencephalic neurons expressing dopamine transporters and wnt1 
depletion nullifies the protection of tyrosine hydroxylase-positive 
(TH+) neurons. This survival pathway is regulated by Frizzled (Fzd)-
mediated suppression of GSK-3β, which destabilizes β-catenin and 
activates caspase. β-Catenin then translocates into the nucleus to 
activate Wnt-responsive genes, or functions as a protective molecule 
against oxidative stress in the neurons [43]. Interestingly, MPTP 
treatment causes temporal suppression of neurogenesis in the 
subventricular zone (SVZ), as neurotoxic effects are correlated with 
microglial activation with increased NADPH-oxidase generating 
reactive oxygen species [11]. Impaired neurogenesis is associated 
with GSK-3β activation and β-catenin downregulation in neural 
progenitor cells. This process is modulated by the anti-inflammatory 
drug, HCT1026, which mitigates the microglial toxicity by blunting 
phagocyte oxidase activity, and activating PI3K/Akt and Nrf2 signaling 
[11,12]. Interestingly, treatment with Rho kinase inhibitors, such as 
fasudil, recovers TH+ neurons damaged by MPTP, accompanied with 
decreased inflammation and accumulation of Frizzled and β-catenin 
[44,45].

Imbalance of Lipid Signaling in AD
In healthy conditions, microglia maintain neuronal homeostasis 

through several transmembrane proteins such as CD200 and CD47 
expressed in neurons as well as microglia, and their corresponding 
receptors CD200R and CD172 are expressed in microglia [46,47]. 
However, pathological neuronal damage induces the collapse of 
surveillance system engaged by these neuron/microglial interactions, 
and resulting microglia activation propagates alarm signals through 
the response of DAP12 adaptor proteins to a neuroinflammatory 
condition [46,48]. The expression of CD200 is regulated by 
inflammatory conditions: treatment of rats with Aβ (Aβ) decreases 

CD200 expression, whilst IL-4 directly upregulates the expression 
and attenuates Aβ-induced microglial activation [49]. Interestingly, 
DAP12 signaling in immune cells is indirectly linked to the regulation 
of Toll-like receptor (TLR) signaling, and crosstalk between TLRs 
and Aβ pathways have been elucidated in AD models [50,51]. CD14 
that function as LPS receptor is known to interact with Aβ fibrils 
in physical proximity to TLR4 and mediate microglial activation 
and neurotoxicity [52]. Besides the microglial surveillance system, 
regulation of synaptic transmission by several lipids plays an 
additional critical role in maintaining neuronal homeostasis. PIP2 
metabolism is important for the membrane trafficking and regulation 
of ion channels. Interestingly, FAD mutations of PS1, such as ∆E9 
or L286V, and PS2 mutations N141I lowered PIP2 levels, inversely 
correlating well with Aβ42 levels and aberrant Mg2+-inhibited cation 
(MIC) channel activity [53]. γ-Secretase inhibitors did not affect 
generation of PIP2 turnover, suggesting that PIP2 itself is critical for 
the activity of γ-secretase and MIC/TPRM7 channels. Oligomeric 
Aβ42 also disrupted PIP2 levels and this effect was cancelled by 
the haploinsufficiency for synaptojanin 1, the primary brain PIP2 
phosphatase in the synapses, suggesting that the PIP2 balance is 
important for suppression of Aβ-induced synaptic dysfunction [54].

ApoE-Mediated Aβ Clearance and Synaptic Regulation
ApoE4, which accounts for 15-20% of the population, is the 

primary genetic risk factor for sporadic and late-onset familial forms 
of AD although the ε2 allele of apoE is known to be associated with 
lower risk for AD [31]. LRP family proteins (LRP1, 2 or 5/6) promote 
clearance of Aβ, and ApoE is also involved in Aβ metabolism as shown 
by the efficacy of isoform-dependent complex formation between 
ApoE and Aβ. The interaction is related to inverse correlation with 
the risk of AD [55-57]. Aβ contains the binding site for ApoE and 
residues 12-28 of Aβ (Aβ12-28P) has been used for the interference of 
the association between ApoE and Aβ [32]. Astrocytes secreted ApoE 
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Figure 1: Schematic depiction of presenilin-1-mediated regulation of synaptic functions by cadherin/catenin complex. Synaptic function is maintained by β-catenin 
in a cadherin-dependent manner, regulating synaptic strength and dendritic spine morphology [37]. Presenilin-1 (PS1) interacts with β-catenin through cadherins, 
regulating β-catenin stability by GSK3β-mediated Ser/Thr phosphorylation and ubiquitin-proteasomal degradation [6]. p120 catenin is required for cadherin-
adhesive functions and also involved in the restrictive processing of cadherins through PS1 interaction via the JMD sequence. p120 catenin competes with amyloid 
precursor protein (APP) in its proteolysis catalyzed by the γ-secretase complex, including nicastrin, Pen2, and Aph1 (γ with an arrow in the figure indicates the 
cleavage site in APP or cadherin) [7,8]. Neural activity also controls APP processing and vice versa: imbalance in uncleaved APP levels and Aβ generation by 
familial Alzheimer’s disease mutations can induce depression of synaptic transmission [4].
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and decreased the neuronal degradation of Aβ, resulting in increased 
production of neuronal Aβ oligomers and disruption of synaptic 
homeostasis [32]. Treatment with Aβ12-28P promoted the clearance 
of intracellular Aβ accumulation and nullified the loss of synaptic 
proteins such as NMDA receptor and synaptophysin. Comparative 
study using AD transgenic model harboring each ε allele of ApoE 
showed higher amounts of fibrillar Aβ in human ApoE4-expressing 
mouse than ApoE2 or ApoE3 transgenic mouse, suggesting that the 
interaction between ApoE4 and Aβ has detrimental effect on neuron/
glia communication [32]. Mutant APP transgenic mice expressing 
ApoE4 increased synaptic activity in specific regions in their brains, 
which caused overproduction of Aβ and ubiquitin-positive dilated 
axons [58,59]. Human ApoE4 genotype itself has been shown to 
affect neurotransmission through changes in presynaptic terminal 
composition as seen in increased expression of vesicular glutamate 
transporter VGLUT1 in animal model [60]. Interestingly, ApoE4 
has an inhibitory effect on Wnt signaling through LRP5 or very low 
density lipoproteins (VLDLs) that functions as Wnt co-receptors 
in cell-based analysis [61]. Alleic variants of LRP6 have also been 
implicated in putative genetic risk haplotype for late-onset AD 
associated with ApoE4 carriers from genome-wide linkage studies 
[62]. Substitution of Ile1062 to Val in LRP6, one of the genetic 
variations, downregulated β-catenin signaling in response to Wnt3a, 
suggesting the decreased Wnt/β-catenin signaling may be attributed 
to the neurodegenerative process.

Pathological Role of MAGL and PLA in AD
A lipidomic analysis of fatty acids of transgenic (TG) mice 

expressing human APP reveals increases in AA and its metabolites, 
such as prostaglandin E2 (PGE2), contributing to excitotoxicity [63]. 

These metabolic changes are attributed to the upregulation of group 
IV isoforms of phospholipase A2 (GIVA-PLA2) in the hippocampus 
of APP TG mice and patients with AD. Treatments with inhibitors 
of GIVA-PLA2 or arachidonyl trifluoromethyl ketone (AACOCF3) 
suppressed Aβ-induced neurotoxicity and genetic ablation of GIVA-
PLA2 in APP TG mice showed improved learning and memory 
defected [63]. Aβ and AA acutely increase the expression levels of 
AMPA receptor in neurons, whilst the AMPA-mediated Ca2+ influx 
may cause further activation of GIVA-PLA2, resulting in the Aβ-
induced behavioral deficits in the APP TG mice [64]. Although 
GIVA-PLA2 targeting reagents have been considered promising for 
clinical intervention, the development of the specific chemicals has 
been a challenging issue [64].

Involvement of MAGL in dysregulated endocannabinoid 
metabolism has also been shown in several APP TG models. MAGL 
inactivation by genetic manipulation and treatment with MAGL-
specific inhibitor JGL-184 has been found to suppress gliosis 
and cytokine production, such as IL-6 and TNFα, ameliorating 
the pathological process of Aβ deposition [26,27]. These anti-
neuroinflammatory effects by MAGL inhibition are independent of 
CBR activation by 2-AG, as the treatments with antagonists of CBRs 
are unable to reverse the effects. Interestingly, transgenic mice carrying 
FAD mutations in APP and PS1 exhibited reductions in expressed 
levels of glutaminergic α-amino-3-hydroxy-5-methyl-4-isoxazole 
propionic acid (AMPA) or N-methyl-D-aspartate (NMDA) receptors 
in the cortex and hippocampus; whereas treatment with JZL-184 
reversed the pathological effects, with maintaining the integrity of the 
synaptic morphology as shown in the improvement of spatial learning 
and memory [27]. In AD mouse models long-term JZL-184 treatment 
decreased BACE1 expression and Aβ/CTFβ generation in both the 
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resides in presynaptic compartment, and suppresses the synaptic transmission known as depolarization-induced suppression of excitation (DSE) and inhibition 
(DSI) [20,21]. MAGL hydrolyzes most of 2-AG in the brain, resulting in the termination of 2-AG mediated CBR signaling [23]. In neuroinflammation neuron and 
astrocyte-derived MAGL mostly maintain 2-AG homeostasis and astrocytic MAGL is mainly contributed to the production of prostaglandins (PGs) and inflammatory 
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Microglial MAGL promotes Fcγ-mediated phagocytosis and uptake of Aβ in neuroinflammatory conditions [28,29].
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cortex and hippocampus [27]. The following molecular mechanism 
is further elucidated by aberrant MAGL activation downregulating 
PPARγ transcriptional activity through 2-AG degradation; MAGL 
activates NF-κB, resulting in BACE1 upregulation and Aβ-mediated 
neuroinflammation [65]. The beneficial effects of MAGL inhibition 
are independent of CBRs, suggesting that 2-AG may function as a 
direct activator for PPARγ-mediated transcription by crossing the 
plasma membrane, which implicates a novel mode of 2-AG action in 
maintenance of neuronal homeostasis.

2-AG Degradation System in Neuroinflammation
As for LPS-induced inflammation, selective LPS-mediated 

dopaminergic neurotoxicity is well known; low doses of LPS 
demonstrate toxicity in DA neurons in the presence of microglia 
in vitro, and result in delayed and progressive loss of DA neurons 
with precedent microglial activation in vivo [66]. This effect is in 
contrast to the acute neurotoxicity induced by MPTP or 6-OHDA; 
however, oxidative stress generated by microglia is also critical for 
the dopaminergic neurodegeneration [67]. Recently, the Cravatt 
group found that genetic MAGL inactivation, or treatment with 
JZL-184, accumulated AA, but not AEA, and led to no microglial 
activation when treated with LPS. These findings suggest that 
microglial MAGL might play a central role in the regulation of 2-AG 
homeostasis in inflammatory conditions [25]. However, microglial 
MAGL inactivation by lentiviral RNAi or JZL184 treatment in 
culture conditions, as well as MAGL introduction into immortalized 
microglial BV-2 cell lines lacking MAGL expression, did not affect 
the production of inflammatory cytokines by LPS treatment (Figure 
2) [29]. Microglial MAGL was transcriptionally downregulated but 
stabilized by LPS treatment promoting 2-AG degradation, suggesting 
that microglial MAGL is not explicitly required for the generation 
of inflammatory cytokines. Recently, Viader et al. reported that 
astroglial MAGL contributed predominantly to neuroinflammatory 
responses by inducing 2-AG hydrolysis, resulting in AA production. 
Additionally, astrocyte-specific inactivation of MAGL significantly 
affected cytokine production in the presence of LPS, suggesting 
that 2-AG homeostasis may be primarily regulated by neurons 
and astrocytes in inflammatory conditions, whilst generated AA 
or prostaglandins (PG) regulate microglial activation during the 
neurodegenerative process [68]. In MPTP-induced dopaminergic 
neurodegeneration models, JZL184 treatment or MAGL knockout 
caused significant suppression of the production of AA or PG [25], 
suggesting that similar molecular mechanisms might be commonly 
involved in the neurodegeneration process in PD model.

Conclusion
Catenin proteins have been found to mediate diverse cellular 

signaling patterns, including synaptic responses and dendritic spine 
morphology both necessary for neuronal homeostasis. Enhanced Aβ 
production is seen to impair synaptic function, also pathologically is 
linked to dysfunctional cadherin-mediated adhesion and detrimental 
effects of ApoE4. Furthermore, PS1 is integrated with cadherin-
mediated catenin signaling and regulation of cadherin and APP 
processing, by a mutually restrictive mechanism. Aberrant γ-secretase 
activity caused by FAD PS mutations can result in decreased 
neuronal activity and synaptic depression, in addition to affect APP 
processing via PS mutations [4,38,40]. AMPA and NMDA-mediated 
transmission are downregulated by APP mutations accompanied 
by MAGL activation, with the latter’s involvement previously 
identified by JZL184-dependent restoration of stability in animal 
AD models [4,27]. MAGL has a predominant role in downregulation 
of 2-AG signaling and catalyzes the production of AA and PGs in 
neuroinflammatory conditions; however, MAGL activity affects 
several signaling processes regulated by NF-κB or PPARγ, dependent 
on the context of neurodegeneration [65]. In neuroinflammation 
models with MPTP or LPS administration, MAGL is critical for 
microglial activation, but neither cell-autonomous MAGL activity, 
nor NF-κB activation in microglia is required [25,29]. Recent progress 
on these studies has highlighted the importance of neuronal and 

astrocytic MAGL in AD and PD models, respectively. Based on these 
findings, further elucidation of unknown critical signaling pathways 
affected by 2-AG turnover in each neurodegeneration model would 
be crucial for future development of clinical interventions.
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