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Abstract

Inheritable epigenetic modifications, like histone modifications and
DNA methylation, were once considered somatically stable and
tissue-specific, yet accumulating evidence suggests the contrary.
Environmental encounters are transduced into the cell through
signaling pathways and these signals are relayed to the nucleus
and memorized as epigenetic marks on target genes. Signaling-
specific epigenomic changes provide selectable outlines for further
lineage determination during differentiation and serve as traceable
biomarkers of specific signaling pathways during transformation.
Current “big data” interrogation employs signal-specific reduction
methods to identify epigenetically modified genes as possible signal
targets. These pathway-based analyses show promise for finding
true tumor biomarkers, but fail to explain why the onset of cancer
can still be partially due to “bad luck”. Recent evidence indicates
that epigenetically-governed repetitive sequences, especially long
and short interspersed nuclear elements (LINE and SINE), in the
somatic genome are not evenly distributed. Cell type-specific and
even unique single-cell LINE1 transpositions are found in specific
brain regions, demonstrating the unevenness of LINE1 in the somatic
genome. Retrotransposable elements like LINE1 are silenced, an
epigenetic mechanism that stabilizes the genome. Unchained LINE
retrotranspositions are found in pre-malignant colon and gastric
cancers, and accumulated random transpositions found during
the course of cancer development might account for the onset of
disease. Epigenetic codes relay and translate cellular encounters into
selectable biomarkers and co-evolved with tumorigenesis. Epigenetic
regulators are responsible for the maintenance of genomic stability
and for the prevention of random transposition. Therefore, changes in
epigenetic regulation might explain the probability of oncogenesis and
could serve as predictive biomarkers.
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Introduction

With the accumulation of “big data” on genetics in human diseases
[1], the likelihood of onset of various cancers is better understood.
Identification of causal or associated changes in biomarkers would
be impossible if the onset of cancer were entirely stochastic. On
the other hand, big data has revealed a degree of uncertainty in the
human genome. Even the idea that somatic cells from the same

lineage or tissue contain identical genomic material has faded away
[2]. Tumorigenesis occurs as a series of minor mutations rather than
resulting from a single, high frequency mutation like P53 and APC
[3]. Moreover, in some cases mere “misfortune” can be credited as
one of the reasons that a patient develops cancer [4,5]. In efforts to
explain at least some of the apparent stochasticity in tumorigenesis,
there are recent attempts to identify cancer targets or markers
associated with cancer. An epigenomic explanation for some of the
unpredictability in cancer biomarkers might assist researchers and
clinicians in the predictive use of these markers.

Clonal Evolution of Somatic Stem Cells and Cancers

Somatic cells were once believed to possess identical genomic
contents since they are all derived from a single cell [6,7]. During
development, growth factors and other environmental signals
reshape gene expression to generate different lineages of cells that
later become specific tissues [8-10]. During this process, external
signals are relayed into the cells and are memorized as an inheritable
code in the form of specific epigenetic modifications that restrain
cell fate [11-13] (Figure 1). The internalization and translation of
external signals into epigenetic codes occurs during the early stages
of development and germ cell formation but rarely are identified or
discussed during somatic stem cell differentiation or tumorigenesis
[13-15].

The epigenetic code includes DNA methylation, histone
modification, and non-coding RNA regulation [16-19]. Specific
epigenetic combinations indicate gene expression states as well as cell
physiology [20-22]. For example, the Polycomb group proteins EZH2
and YY1 specifically methylate histone H3 at dimethylated lysine 27
(H3K27me?2) into the trimethylated form (H3K27me3) [23,24]. This
particular histone mark is enriched in stem cells and is associated with
stemness [9,13,14,25,26]. The loss of the third methyl group on H3K27
at several genomic loci is sufficient to induce stem cell differentiation
[25,27-30]. The same epigenetic mark is found in colon cancer cells
but not in differentiated cells [25,31]. This, and similar findings, have
been used to support the cancer stem cell theory.

In addition to determination of gene expression patterns,
epigenetic modifications are also responsible for genome stability
[32,33]. Forty-five to fifty percent of the human genome consists
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Figure 1: Signal-governed epigenomic changes. Environmental cues can be transduced into cells, relayed into nuclei, and memorized as epigenetic marks. The
unknown mechanism by which external signals are translated into epigenetic codes is marked by a red question mark.

of repetitive sequences [34]. These repetitive sequences may be the
evolutionary source of variation. For example, the endogenous
retrotransposon Long Interspersed Nuclear Element 1 (LINEI)
comprises around 17% of the human genome [35]. Some LINE1
sites are able to transpose autonomously and can induce harmful
disruptions in the genome [36-38]. Ancient LINELs are silenced by
a distinct set of epigenetic marks; more recently derived LINE1s are
mostly silenced by DNA methylation, suggesting that our genome
evolved unevenly [39].

It is clear that somatically inheritable epigenetic modifications
must fulfill at least two missions during normal differentiation: one is
to generate gene expression differences that restrict cell fate changes;
the other is to maintain genomic stability during differentiation. If
either of these missions fails, a cell might be transformed. Thus, an
epigenomic mechanism must be responsible for the changes in gene
expression and stabilization or destabilization of the genome during
normal somatic stem cell differentiation or tumorigenesis.

Genome Instability might contribute to Transformation

External signals not only may lead to differentiation or
transformation, but also might be responsible for the maintenance
of genome stability before and after signal-induced changes in cell
physiology [2]. Repetitive sequences like Short or Long Interspersed
Nuclear Elements (SINE or LINE, respectively) are the driving forces
behind genomic recombination and evolution [34]. Advances in
sequencing technology and single-cell genome sequencing have
shown that somatic neurons from the same hippocampus region
possess different LINEI insertions (Figure 2). Surprisingly, these
variable insertions and transpositions are needed for normal brain
function [2,40,41]. The stability of these repetitive elements is
maintained by epigenetic modifications like DNA methylation and
histone modification [42,43]. External signals thus induce epigenetic

modifications that are needed both to change gene expression and to
maintain genome stability before and after differentiation.

There are two proposed molecular mechanisms by which
abnormal DNA methylation could lead to cancer [44]. One is
increased DNA methylation within tumor suppressor genes like
HICI and RassF1A [15]. The other is loss of global DNA methylation
due to low methyltransferase activity that might lead to genome
instability and ultimately cancer [45]. The loss of global methylation
is hypothesized to mobilize endogenous transposable elements
resulting in random insertions, translocations, and transvections [46].
Random transposition could be the “bad luck” element in the onset
of cancer [4,41,46]. Indeed, random transposition is documented in
gastric and colon cancers [39,47,48]. Targeted sequencing of LINE1
elements shows LINEI transposition occurring in pre-malignant
tissues and progressively accumulating over the four stages of colon
and gastric cancers (Figure 3) [39]. The association between LINE1
transposition and the onset and progression of cancer suggests that
LINEI transposition might be one cause of transformation, and
furthermore, random transposition might correlate with random
onset of cancer [49-51].

Epigenomic Biomarkers: Signal-Specific Epigenetic
Modifications

Environmental signals like exercise, diet, and smoking are
transduced into the cell through more than 131 signaling pathways,
including Notch, Wnt, BMP, and estrogen receptor (ER) pathways
(Figure 1) [52,53]. Changes in a cell’s environment can lead to changes
in the expression of downstream effector genes and their signal
relays [54-57]. Such sequential changes need to be translated into
molecular codes via epigenetic modifications to become somatically
inheritable [48,58]. Accumulated epigenetic changes then result in
varied gene expression and establish selectable parameters for further
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Figure 2: During somatic differentiation, the endogenous retrotransposon LINE1 (L1) can transpose if it is not silenced. Individual neurons from different brain
regions possess different LINE1 insertions. (Modified from Morgan, G. J., et al., 2012 [52] and Singer, T., et al., 2010 [2]) LINE1 transpositions are represented
by the colored lines in Circos plot.
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Figure 3: Accumulated LINE1 retrotransposition is associated with development of cancers. There are detectable LINE1 retrotransposition in precancer lesions.
More and more transposition is observed during tumorigenesis [39]. Increased LINE1 transpositions are represented by the increased colored lines in Circos plot.

differentiation (if the changes are “normal”) or tumorigenesis (if the The discovery of signal-induced specific epigenetic changes
changes are “abnormal”) [59-61]. supports the notion that there is internalization of external signals as
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epigenetic modifications [56,62,63]. For example, if the expression of
ER is knocked down, the YY1-governed repression complex initially
silences downstream ER targets [56]. Later, DNA methyltransferase
(DNMT) adds methyl groups at target loci, and the subsequent
passage of cells inherits the methylation pattern [56]. This type
of abnormal methylation of the ER target loci Trip10, ENSA, and
Casp8AP2 takes place in ER non-expressing breast cancers, proving
that the same signal-specific epigenetic modifications occur in vivo
[56,64-66].

The assembly of co-regulator complexes has made predicting
the downstream epigenome even more complicated. To continue
with the same ER example, although ER itself is a nuclear receptor, it
teams up with MYC, SMAD, and other transcription factors to up- or
down-regulate ER target loci. In cis, MYC and SMAD transcription
factor binding sites are located around the ER response element
and different bound combinations of these transcription factors
produce different patterns of gene expression [60,67,68]. Therefore,
cis-regulatory elements and the architecture of the genome are
parts of the machinery that programs cell fates [65,69]. Genomic
architecture at signaling pathway-regulated sites can make the relay
and memorization of signals more efficient. Increasingly, there are
blueprints of signal-to-epigenome relays in specific cell types. The
results of signals are traceable and the specific patterns of epigenomic
changes can reflect the environment around the sequenced cell.
Recent research using “big data” has realized the power of reduction
studies of the signaling-to-epigenome relay as a blueprint to identify
a disease’s target genes [70] that may serve as biomarkers.

The Epigenome and Genomic Stability

The three-dimensional (3D) architecture of the genome is
critical for genome stability and proper cell physiology [56,71-
73]. The genome is organized into regulatory units consisting of
multiple loops and inter- and intra-chromosomal interactions
[74-76]. With advances in 3C (chromatin conformation capture)
and Hi-C techniques [75,77,78], genome-wide maps describing
the distribution of these interactions are becoming available. In
Caenorhabditis elegans, a recent report indicates that knockout of
the genes responsible for sex chromosome dosage compensation can
systematically affect genomic interactions within X-chromosome
[79]. In contrast, the same mutations do not affect the architecture
of autosomes, but still interfere with the expression of autosomal
genes [79]. This finding suggests that 3-D conformation, looping, and
interactions among genomic regions are specific regulators of gene
expression. Nonetheless, how the compartmentalization of regulatory
zones is maintained and how compartments can be changed during
differentiation or transformation remains unknown.

Understanding how the epigenome, including the methylome, is
established, might help to answer these questions. Mammalian cells
are separated into germ line and somatic lineages based on their DNA
contents. During the early stages of the development, the methylome
of these two kinds of cells undergoes drastic revision [80,81]. This
methylation process is PIWI-interacting RNA (piRNA)-dependent
and may be initiated on repetitive segments within the genome [82].
piRNAs are the largest class of small non-coding RNAs in animal
cells, and are clustered within the mammalian genome. Argonaute
(Ago) proteins can process their transcripts into pieces of RNAs that
are further used to cleave target RNAs into smaller pieces [83,84].
The resulting smaller RNAs in turn process the remaining piRNA
cluster transcripts and further fragment the target RNAs [85-88].
This repeated process is named the piRNA “ping-pong” cycle and it is
important to amplify the effects of piRNA activity [89].

piRNAs are also crucial for methylation of their target transcripts’
promoters [90]. Since piRNAs must enter the nucleus to cause
methylation, other factors are needed to direct their translocation
and subsequent methylome establishment [91,92]. Although the
sequences of piRNAs are not conserved across species, piRNA-
mediated silencing targets might be conserved. Indeed, the function
of the Arg genes is conserved across species [93,94]. There are eight
Arg genes in human cells [95,96]. Recently, researchers observed that

Arg proteins need an average of only six nucleotides (nts) to recognize
their target RNAs [97]. During the ping-pong amplification cycle,
the frame shift between cycle rounds is about 10 nts. Therefore, it is
unsurprising that 6-10 nts are needed for Arg proteins to recognize
their piRNA interactors. A similar size recognition sequence may be
sufficient for piRNA-mediated methylation silencing of targets such
as LINE1 retrotransposons [98,99]. In the case of LINE1, 6-10nts
is more than enough sequence for target recognition [100,101].
However, the impact of subtle sequence differences between different
LINEI1 elements, located in different genomic regions, is substantial.
Even with only two nucleotide differences, LINE1 regions are
sometimes silenced by different epigenetic mechanisms [99,102,103].
Only the most recently evolved LINE1 copies are silenced by DNA
methylation; more ancient copies are not [39]. These data suggest that
other factors or mechanisms determine the specificity of Arg/piRNA
targeting.

Some researchers posit that piRNA clusters are the sequences that
capture invading alien DN As and serve as reservoirs of foreign DNAs
information [104,105]. When transcripts with similar sequences are
upregulated, piRNA-targeting sequences are able to silence related
endogenous retrotransposons or exogenous retrotransposon-like
elements [104]. Several constructs with reporter genes have been
developed to mimic the capturing system and some of them seemed
to be promising until a recent report proved otherwise [106,107].
Using a reporter capturing system, the authors disrupted a piRNA
cluster sequence by CRISPR/Cas9 and found that the piRNA
targeting system was still functional [108,109]. Since the investigated
piRNA targeting system was piRNA cluster-independent, the search
for other factors that are involved in the targeting process is necessary
to reveal the links between the methylome and genome stability.

Epigenomic Explanations for Uncertainty in Cancer
Predictions Using Biomarkers

The relay of the external signals into cells and the memorization
of signals as epigenetic marks on target genes are programmed during
differentiation and development. No matter how differentiation
progresses, genome stability must be maintained to prevent cellular
transformation. Thus, the relay of signals and the induction of
epigenetic changes are specific, necessary, and under tight control.
However, somatic cells are more mosaic than what was previously
appreciated. This is evidenced by the extreme example of hippocampal
neurons in which LINEI transpositions occur within individual
neurons (Figure 2) [110]. The data suggest that mosaicism is necessary
for normal neuronal function [110]. Therefore, there must be a fine
line that separates good mosaicism and transposition from deleterious
changes. It seems that the pivotal separating point may occur during
the relay of the external signals into regulatory epigenetic codes. In
normal somatic stem cells the relay system might lead to necessary
epigenetic modifications but also to possible randomized mosaicism
that decreases genomic stability. Further elucidating the molecular
explanations for apparently random epigenomic occurrences will
assist researchers in findings biomarkers and other epigenetic
identifiers associated with disease onset.
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