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lineage or tissue contain identical genomic material has faded away 
[2]. Tumorigenesis occurs as a series of minor mutations rather than 
resulting from a single, high frequency mutation like P53 and APC 
[3]. Moreover, in some cases mere “misfortune” can be credited as 
one of the reasons that a patient develops cancer [4,5]. In efforts to 
explain at least some of the apparent stochasticity in tumorigenesis, 
there are recent attempts to identify cancer targets or markers 
associated with cancer. An epigenomic explanation for some of the 
unpredictability in cancer biomarkers might assist researchers and 
clinicians in the predictive use of these markers.

Clonal Evolution of Somatic Stem Cells and Cancers
Somatic cells were once believed to possess identical genomic 

contents since they are all derived from a single cell [6,7]. During 
development, growth factors and other environmental signals 
reshape gene expression to generate different lineages of cells that 
later become specific tissues [8-10]. During this process, external 
signals are relayed into the cells and are memorized as an inheritable 
code in the form of specific epigenetic modifications that restrain 
cell fate [11-13] (Figure 1). The internalization and translation of 
external signals into epigenetic codes occurs during the early stages 
of development and germ cell formation but rarely are identified or 
discussed during somatic stem cell differentiation or tumorigenesis 
[13-15].

The epigenetic code includes DNA methylation, histone 
modification, and non-coding RNA regulation [16-19]. Specific 
epigenetic combinations indicate gene expression states as well as cell 
physiology [20-22]. For example, the Polycomb group proteins EZH2 
and YY1 specifically methylate histone H3 at dimethylated lysine 27 
(H3K27me2) into the trimethylated form (H3K27me3) [23,24]. This 
particular histone mark is enriched in stem cells and is associated with 
stemness [9,13,14,25,26]. The loss of the third methyl group on H3K27 
at several genomic loci is sufficient to induce stem cell differentiation 
[25,27-30]. The same epigenetic mark is found in colon cancer cells 
but not in differentiated cells [25,31]. This, and similar findings, have 
been used to support the cancer stem cell theory.

In addition to determination of gene expression patterns, 
epigenetic modifications are also responsible for genome stability 
[32,33]. Forty-five to fifty percent of the human genome consists 
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Introduction
With the accumulation of “big data” on genetics in human diseases 

[1], the likelihood of onset of various cancers is better understood. 
Identification of causal or associated changes in biomarkers would 
be impossible if the onset of cancer were entirely stochastic. On 
the other hand, big data has revealed a degree of uncertainty in the 
human genome. Even the idea that somatic cells from the same 

Abstract
Inheritable epigenetic modifications, like histone modifications and 
DNA methylation, were once considered somatically stable and 
tissue-specific, yet accumulating evidence suggests the contrary. 
Environmental encounters are transduced into the cell through 
signaling pathways and these signals are relayed to the nucleus 
and memorized as epigenetic marks on target genes. Signaling-
specific epigenomic changes provide selectable outlines for further 
lineage determination during differentiation and serve as traceable 
biomarkers of specific signaling pathways during transformation. 
Current “big data” interrogation employs signal-specific reduction 
methods to identify epigenetically modified genes as possible signal 
targets. These pathway-based analyses show promise for finding 
true tumor biomarkers, but fail to explain why the onset of cancer 
can still be partially due to “bad luck”. Recent evidence indicates 
that epigenetically-governed repetitive sequences, especially long 
and short interspersed nuclear elements (LINE and SINE), in the 
somatic genome are not evenly distributed. Cell type-specific and 
even unique single-cell LINE1 transpositions are found in specific 
brain regions, demonstrating the unevenness of LINE1 in the somatic 
genome. Retrotransposable elements like LINE1 are silenced, an 
epigenetic mechanism that stabilizes the genome. Unchained LINE 
retrotranspositions are found in pre-malignant colon and gastric 
cancers, and accumulated random transpositions found during 
the course of cancer development might account for the onset of 
disease. Epigenetic codes relay and translate cellular encounters into 
selectable biomarkers and co-evolved with tumorigenesis. Epigenetic 
regulators are responsible for the maintenance of genomic stability 
and for the prevention of random transposition. Therefore, changes in 
epigenetic regulation might explain the probability of oncogenesis and 
could serve as predictive biomarkers.
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of repetitive sequences [34]. These repetitive sequences may be the 
evolutionary source of variation. For example, the endogenous 
retrotransposon Long Interspersed Nuclear Element 1 (LINE1) 
comprises around 17% of the human genome [35]. Some LINE1 
sites are able to transpose autonomously and can induce harmful 
disruptions in the genome [36-38]. Ancient LINE1s are silenced by 
a distinct set of epigenetic marks; more recently derived LINE1s are 
mostly silenced by DNA methylation, suggesting that our genome 
evolved unevenly [39].

It is clear that somatically inheritable epigenetic modifications 
must fulfill at least two missions during normal differentiation: one is 
to generate gene expression differences that restrict cell fate changes; 
the other is to maintain genomic stability during differentiation. If 
either of these missions fails, a cell might be transformed. Thus, an 
epigenomic mechanism must be responsible for the changes in gene 
expression and stabilization or destabilization of the genome during 
normal somatic stem cell differentiation or tumorigenesis.

Genome Instability might contribute to Transformation
External signals not only may lead to differentiation or 

transformation, but also might be responsible for the maintenance 
of genome stability before and after signal-induced changes in cell 
physiology [2]. Repetitive sequences like Short or Long Interspersed 
Nuclear Elements (SINE or LINE, respectively) are the driving forces 
behind genomic recombination and evolution [34]. Advances in 
sequencing technology and single-cell genome sequencing have 
shown that somatic neurons from the same hippocampus region 
possess different LINE1 insertions (Figure 2). Surprisingly, these 
variable insertions and transpositions are needed for normal brain 
function [2,40,41]. The stability of these repetitive elements is 
maintained by epigenetic modifications like DNA methylation and 
histone modification [42,43]. External signals thus induce epigenetic 

modifications that are needed both to change gene expression and to 
maintain genome stability before and after differentiation.

There are two proposed molecular mechanisms by which 
abnormal DNA methylation could lead to cancer [44]. One is 
increased DNA methylation within tumor suppressor genes like 
HIC1 and RassF1A [15]. The other is loss of global DNA methylation 
due to low methyltransferase activity that might lead to genome 
instability and ultimately cancer [45]. The loss of global methylation 
is hypothesized to mobilize endogenous transposable elements 
resulting in random insertions, translocations, and transvections [46]. 
Random transposition could be the “bad luck” element in the onset 
of cancer [4,41,46]. Indeed, random transposition is documented in 
gastric and colon cancers [39,47,48]. Targeted sequencing of LINE1 
elements shows LINE1 transposition occurring in pre-malignant 
tissues and progressively accumulating over the four stages of colon 
and gastric cancers (Figure 3) [39]. The association between LINE1 
transposition and the onset and progression of cancer suggests that 
LINE1 transposition might be one cause of transformation, and 
furthermore, random transposition might correlate with random 
onset of cancer [49-51].

Epigenomic Biomarkers: Signal-Specific Epigenetic 
Modifications

Environmental signals like exercise, diet, and smoking are 
transduced into the cell through more than 131 signaling pathways, 
including Notch, Wnt, BMP, and estrogen receptor (ER) pathways 
(Figure 1) [52,53]. Changes in a cell’s environment can lead to changes 
in the expression of downstream effector genes and their signal 
relays [54-57]. Such sequential changes need to be translated into 
molecular codes via epigenetic modifications to become somatically 
inheritable [48,58]. Accumulated epigenetic changes then result in 
varied gene expression and establish selectable parameters for further 

     

Figure 1: Signal-governed epigenomic changes. Environmental cues can be transduced into cells, relayed into nuclei, and memorized as epigenetic marks. The 
unknown mechanism by which external signals are translated into epigenetic codes is marked by a red question mark.
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differentiation (if the changes are “normal”) or tumorigenesis (if the 
changes are “abnormal”) [59-61].

The discovery of signal-induced specific epigenetic changes 
supports the notion that there is internalization of external signals as 

     

Figure 2: During somatic differentiation, the endogenous retrotransposon LINE1 (L1) can transpose if it is not silenced. Individual neurons from different brain 
regions possess different LINE1 insertions. (Modified from Morgan, G. J., et al., 2012 [52] and Singer, T., et al., 2010 [2]) LINE1 transpositions are represented 
by the colored lines in Circos plot.

     

Figure 3: Accumulated LINE1 retrotransposition is associated with development of cancers. There are detectable LINE1 retrotransposition in precancer lesions. 
More and more transposition is observed during tumorigenesis [39]. Increased LINE1 transpositions are represented by the increased colored lines in Circos plot.
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epigenetic modifications [56,62,63]. For example, if the expression of 
ER is knocked down, the YY1-governed repression complex initially 
silences downstream ER targets [56]. Later, DNA methyltransferase 
(DNMT) adds methyl groups at target loci, and the subsequent 
passage of cells inherits the methylation pattern [56]. This type 
of abnormal methylation of the ER target loci Trip10, ENSA, and 
Casp8AP2 takes place in ER non-expressing breast cancers, proving 
that the same signal-specific epigenetic modifications occur in vivo 
[56,64-66].

The assembly of co-regulator complexes has made predicting 
the downstream epigenome even more complicated. To continue 
with the same ER example, although ER itself is a nuclear receptor, it 
teams up with MYC, SMAD, and other transcription factors to up- or 
down-regulate ER target loci. In cis, MYC and SMAD transcription 
factor binding sites are located around the ER response element 
and different bound combinations of these transcription factors 
produce different patterns of gene expression [60,67,68]. Therefore, 
cis-regulatory elements and the architecture of the genome are 
parts of the machinery that programs cell fates [65,69]. Genomic 
architecture at signaling pathway-regulated sites can make the relay 
and memorization of signals more efficient. Increasingly, there are 
blueprints of signal-to-epigenome relays in specific cell types. The 
results of signals are traceable and the specific patterns of epigenomic 
changes can reflect the environment around the sequenced cell. 
Recent research using “big data” has realized the power of reduction 
studies of the signaling-to-epigenome relay as a blueprint to identify 
a disease’s target genes [70] that may serve as biomarkers.

The Epigenome and Genomic Stability
The three-dimensional (3D) architecture of the genome is 

critical for genome stability and proper cell physiology [56,71-
73]. The genome is organized into regulatory units consisting of 
multiple loops and inter- and intra-chromosomal interactions 
[74-76]. With advances in 3C (chromatin conformation capture) 
and Hi-C techniques [75,77,78], genome-wide maps describing 
the distribution of these interactions are becoming available. In 
Caenorhabditis elegans, a recent report indicates that knockout of 
the genes responsible for sex chromosome dosage compensation can 
systematically affect genomic interactions within X-chromosome 
[79]. In contrast, the same mutations do not affect the architecture 
of autosomes, but still interfere with the expression of autosomal 
genes [79]. This finding suggests that 3-D conformation, looping, and 
interactions among genomic regions are specific regulators of gene 
expression. Nonetheless, how the compartmentalization of regulatory 
zones is maintained and how compartments can be changed during 
differentiation or transformation remains unknown.

Understanding how the epigenome, including the methylome, is 
established, might help to answer these questions. Mammalian cells 
are separated into germ line and somatic lineages based on their DNA 
contents. During the early stages of the development, the methylome 
of these two kinds of cells undergoes drastic revision [80,81]. This 
methylation process is PIWI-interacting RNA (piRNA)-dependent 
and may be initiated on repetitive segments within the genome [82]. 
piRNAs are the largest class of small non-coding RNAs in animal 
cells, and are clustered within the mammalian genome. Argonaute 
(Ago) proteins can process their transcripts into pieces of RNAs that 
are further used to cleave target RNAs into smaller pieces [83,84]. 
The resulting smaller RNAs in turn process the remaining piRNA 
cluster transcripts and further fragment the target RNAs [85-88]. 
This repeated process is named the piRNA “ping-pong” cycle and it is 
important to amplify the effects of piRNA activity [89].

piRNAs are also crucial for methylation of their target transcripts’ 
promoters [90]. Since piRNAs must enter the nucleus to cause 
methylation, other factors are needed to direct their translocation 
and subsequent methylome establishment [91,92]. Although the 
sequences of piRNAs are not conserved across species, piRNA-
mediated silencing targets might be conserved. Indeed, the function 
of the Arg genes is conserved across species [93,94]. There are eight 
Arg genes in human cells [95,96]. Recently, researchers observed that 

Arg proteins need an average of only six nucleotides (nts) to recognize 
their target RNAs [97]. During the ping-pong amplification cycle, 
the frame shift between cycle rounds is about 10 nts. Therefore, it is 
unsurprising that 6-10 nts are needed for Arg proteins to recognize 
their piRNA interactors. A similar size recognition sequence may be 
sufficient for piRNA-mediated methylation silencing of targets such 
as LINE1 retrotransposons [98,99]. In the case of LINE1, 6-10nts 
is more than enough sequence for target recognition [100,101]. 
However, the impact of subtle sequence differences between different 
LINE1 elements, located in different genomic regions, is substantial. 
Even with only two nucleotide differences, LINE1 regions are 
sometimes silenced by different epigenetic mechanisms [99,102,103]. 
Only the most recently evolved LINE1 copies are silenced by DNA 
methylation; more ancient copies are not [39]. These data suggest that 
other factors or mechanisms determine the specificity of Arg/piRNA 
targeting.

Some researchers posit that piRNA clusters are the sequences that 
capture invading alien DNAs and serve as reservoirs of foreign DNAs 
information [104,105]. When transcripts with similar sequences are 
upregulated, piRNA-targeting sequences are able to silence related 
endogenous retrotransposons or exogenous retrotransposon-like 
elements [104]. Several constructs with reporter genes have been 
developed to mimic the capturing system and some of them seemed 
to be promising until a recent report proved otherwise [106,107]. 
Using a reporter capturing system, the authors disrupted a piRNA 
cluster sequence by CRISPR/Cas9 and found that the piRNA 
targeting system was still functional [108,109]. Since the investigated 
piRNA targeting system was piRNA cluster-independent, the search 
for other factors that are involved in the targeting process is necessary 
to reveal the links between the methylome and genome stability.

Epigenomic Explanations for Uncertainty in Cancer 
Predictions Using Biomarkers

The relay of the external signals into cells and the memorization 
of signals as epigenetic marks on target genes are programmed during 
differentiation and development. No matter how differentiation 
progresses, genome stability must be maintained to prevent cellular 
transformation. Thus, the relay of signals and the induction of 
epigenetic changes are specific, necessary, and under tight control. 
However, somatic cells are more mosaic than what was previously 
appreciated. This is evidenced by the extreme example of hippocampal 
neurons in which LINE1 transpositions occur within individual 
neurons (Figure 2) [110]. The data suggest that mosaicism is necessary 
for normal neuronal function [110]. Therefore, there must be a fine 
line that separates good mosaicism and transposition from deleterious 
changes. It seems that the pivotal separating point may occur during 
the relay of the external signals into regulatory epigenetic codes. In 
normal somatic stem cells the relay system might lead to necessary 
epigenetic modifications but also to possible randomized mosaicism 
that decreases genomic stability. Further elucidating the molecular 
explanations for apparently random epigenomic occurrences will 
assist researchers in findings biomarkers and other epigenetic 
identifiers associated with disease onset.
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