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Abstract
Heavy metal toxicity has been conjectured as a possible 
risk factor for and player in amyotrophic lateral sclerosis 
(ALS) and other neurodegenerative disorders. To test for 
a correlational relationship or linkage, we conducted a 
retrospective study of 54 sALS and 26 healthy volunteers 
who agreed to serve as controls, all of whom were seen 
at the Personalized Regenerative Medicine Clinic (San 
Clemente, California USA) between 2011 and 2016.

We evaluated clinical laboratory findings including heavy 
metal content in blood and urine samples, along with 
serum creatinine, ferritin and haptoglobin levels, by means 
of inductively coupled plasma optical spectrometry and 
instrumental activation analysis. Disease progression, 
assessed using the Revised ALS Functional Rating Scale 
(ALS-FRS-R), was generally associated with mercury, lead, 
cadmium, arsenic and nickel burden. In our analysis, we 
found evidence of an association between ALS morbidity 
risk and elevated levels of mercury, lead, cadmium, arsenic, 
and nickel.

Our findings implicate and support a linkage between 
relatively high levels of heavy metals, elevated serum ferritin 
and haptoglobin levels, and reduced urine creatinine level 
and sporadic amyotrophic lateral sclerosis. By virtue of this 
the authors argue that these may serve as a biomarker to 
help distinguish clinically ALS from other, symptom similar 
neurogenerative conditions.

Keywords
ALS, Neurodegeneration, Heavy metals, Mercury, Lead, 
Cadmium, Nickel, Arsenic, Creatinine

Introduction
Amyotrophic lateral sclerosis (ALS) is typically a 

lethal neurologic disease characterized by progressive 
muscular weakness with atrophy and fasciculation. 
Although the etiology of ALS is unclear, previous 
epidemiologic studies have suggested an association 
with exposure to various environmental chemicals and 
metals environment [1-3].

In addition, many researchers have found that au-
toimmune pathways and mechanisms are implicated in 
ALS, which is compelling as environmental factors in-
cluding xenobiotics such as chemicals, drugs and heavy 
metals, have been implicated in the development of 
various autoimmune diseases. Interestingly, autoan-
tibodies occur in systemic and organ specific autoim-
mune diseases and sometimes are detected prior to 
their onset and by virtue of this can be used as predic-
tive markers with respect to these. Some are disease 
specific markers and are employed to establish a diag-
nosis, to record progression and predict the outcome 
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tained from published data and standards [13,14]. Af-
ter an initial chart review, stored serum samples from 
the 54 participants with ALS and twenty-six (26) healthy 
control volunteers, all of whom were included in a sep-
arate ALS observational study that ran from 2011 to 
2016, were analyzed for urine creatinine, metals levels, 
serum ferritin, and haptoglobin. These samples were 
sent to the Pathology Laboratory at LabCorp Laborato-
ry, Inc and analyzed using an electro chemiluminescent 
immunoassay or enzyme-linked immunosorbent assay 
(ELISA), ELECSYS 2010 (Roche Diagnostics, Indianapolis, 
IN) or Creatinine ICP-MS by Jaffe Method. The serum 
haptoglobin levels were measured in a hospital labo-
ratory using a Beckman Coulter Unicel DXC by combin-
ing an antihaptoglobin antibody with the haptoglobin 
molecule, forming an insoluble complex [15]. This anti-
gen-antibody complex was measured by optical absor-
bance at 340 nanometers using the turbidimetry princi-
ple. The serum haptoglobin was reported in milligrams 
per deciliter (mg/dL). 

Statistical Analysis
The data collected was expressed as mean ± stan-

dard error of the mean (SEM), with differences between 
groups determined by ANOVA with Student’s t-test us-
ing GraphPad InStat. P < 0.05 was considered statistical-
ly significant.

Results

Heavy metals intoxication
It is well documented in the literature that the physi-

ologic damage wrought by mercury toxicity is magnified 
by the presence of other heavy metals such as cadmi-
um, lead, nickel and arsenic.

In light of the foregoing, we analyzed clinical data 
on fifty-four (54) sALS cases which revealed significantly 
elevated mercury concentrations (16.91 ± 4.23 µg/g) 
compared with the control group (1.88 ± 0.5 µg/g, 
reference range < 2 ug/g), All positive findings were 
statistically significant compared to the controls (P < 
0.0001) Figure 1.

In one published study researchers reported that 
neuronal damage occurs in adults and children after 
poisoning with mercury compounds [16], although mer-
cury poisoning in ALS patients with a history of occupa-
tional or other exposure has been rarely reported [17]. 
It is nonetheless true that environmental pollution in-
volving mercury has led to an increased concern over 
the possibility that accumulated neurologic exposure is 
causing neuronal damage in some people. In this study, 
we found elevated mercury levels in all fifty-four (54) 
sALS patients. In addition, their ALS-related symptoms 
decreased following chelation therapy. What is intrigu-
ing being that the vast majority of these sALS patients 
showed evidence on computed tomography (CT) scans 
of degenerative pathology and a history of spinal inju-

of various diseases [4,5]. In addition, the extant scien-
tific literature clearly demonstrates that heavy metals 
induce autoimmunity in a variety of animal models, and 
reports exist that link metal exposure to the develop-
ment of autoimmunity in man include epidemiological 
studies, occupational exposure to them, and a high in-
cidence of side-effects following treatment with metal 
chelators and colloidal gold [3,6].

Metals in nature occur bound to sulfur groups in 
metal ores in the ground. When extracted for industrial 
use, they are purified and thereby lose their chemical 
stability. Some transition metals such as iron, cobalt, 
zinc, selenium, molybdenum, magnesium, chromium, 
manganese and copper are essential for life. Others, 
such as mercury, lead, nickel, cadmium, palladium, 
and arsenic are widely used in industry and in various 
implants but are toxic at certain levels in humans [7-9]. 

While the pathophysiology of sporadic ALS remains 
unclear, some environmental factors including heavy 
metals has been considered as an etiologic player in the 
disease [6,10-12].

The aim of this retrospective study was to determine 
whether significant heavy metal levels exist in a popula-
tion of sALS outpatients vs. healthy controls, and, where 
present, to touch on mechanisms as to how they might 
play a role in this insidious disease. The authors also 
looked at creatinine, haptoglobin, and ferritin levels in 
both sALS patients and healthy controls (All of which are 
believed influenced by the ALS disease process or as a 
consequence of “downstream” effects of the disease).

Materials & Methods

Description of patients
ALS subjects were recruited through the Personalized 

Regenerative Medicine Clinic (San Clemente, California 
USA) with the following inclusion criteria: (1) Age great-
er than 18 years; (2) Probable (lab test-supported), or 
definite ALS which meets the revised El Escorial criteria; 
(3) Able to provide informed consent; (4) Had complete 
medical charts on-file at the aforementioned clinic. The 
study was approved by the Institutional Review Board 
at the nonprofit Steenblock Research Institute (SRI). All 
participants provided written informed consent.

Fifty-four (54) sporadic ALS patients (28 men and 
26 women) charts were selected for inclusion in the 
retrospective in the study. Twenty-six (26) gender 
matched healthy controls were also included.

Patient mean (SD) age is 62.3 (10.7) years (range, 43-
78 years).

Determination of urinary metals, creatinine, and 
serum of blood samples

All laboratory samples collected from the fifty-four 
(54) ALS patients were analyzed by LabCorp Laboratory, 
Inc. The normal reference ranges for metals were ob-
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between elevated levels of lead and sALS in our sample. 

In one study, it was reported that high levels of 
cadmium, a sign of exposure to heavy metals, was 
found in the brain tissue of deceased ALS patients. The 
effects of cadmium on enzyme systems that mediate 
neurotoxicity in motor neuron disease suggest a cause-
effect relationship between cadmium and ALS [20]. 
In the current study, our data revealed significantly 
elevated cadmium concentrations in the sALS group 
(2.39 ± 0.4 µg/g) compared to the control group (0.44 ± 
0.03 µg/g, P < 0.01, Figure 3).

The resulting inflammation is modest compared 
to that of cadmium, although nickel induced strong 
TNFα production [19,21]. Nickel and arsenic were also 

ry and (in many instances) reinjury to the original in-
jury site (Something that could create breeches in the 
blood-spinal cord barrier that admit neurotoxic mis-
folded proteins, pro-inflammatory cytokines, activated 
monocytes, heavy metals bound to specific proteins and 
so on, into the central nervous system [18]). There were 
also many reports of peripheral neuropathy, tremor, 
and psychiatric symptoms including confusion and de-
pression among this population which is symptomati-
cally and clinically consistent with mercury toxicity [19].

In this study, lead concentrations were high (18.69 
± 2.1 µg/g) in the ALS group compared with (2.2 ± 0.7 
µg/g) the control group (reference range < 2 µg/g), P 
< 0.0001, Figure 2. This suggests a strong association 
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Figure 1: In addition, it has been suggested that environmental toxins could be a risk factor for amyotrophic lateral sclerosis 
(ALS) with mercury being implicated in a dose-dependent fashion.
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Figure 2: The relation of lead exposure in ALS has been well documented by researchers. For men and women combined, 
exposure to lead was associated with their development of ALS.
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compared to the control group (3.08 ± 0.46 µg/g, P < 
0.005, Figure 5).

Increased ferritin and haptoglobin levels in the 
blood of ALS patients

The results of hematological analyses are reported. 
The levels of all hematological parameters except 
for lymphocytes and album non-significantly differed 
between sexes. All values were normally distributed 
within each sex.

The levels of ferritin in blood serum from these 
participants are shown (Figure 6) with gender producing 
no significant differences in ferritin (P = 0.3) and 
haptoglobin (p = 0.90) levels: The blood ferritin (male, 
[325.5 ± 9.3 ng/mL]; female, [330.2 ± 0.1 ng/mL], p = 

found to induce strong phosphorylation of IκBα. Since 
inflammation produced by nickel might be relevant in 
sALS, we investigated the activation of human THP-1 
cells. Laboratory tests revealed nickel concentrations 
in the sALS group (10.64 ± 2.1 µg/g) to be significantly 
higher than in the healthy control group (5.7 ± 1.1 µg/g, 
P < 0.0001, Figure 4).

Arsenic inhibited translocation of NFs into axo-
nal neurites in culture and increased perikaryal NF 
phosphoepitopes [6,7]. Folate deprivation potentiated 
the impact of arsenic on these activities, while supple-
mentation with S-adenosyl methionine (SAM) attenuat-
ed the impact of folate deprivation on arsenic neurotox-
icity [22]. Our data revealed an arsenic concentration 
in the sALS group (35.58 ± 5.3 µg/g) that was very high 
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Figure 3: Cadmium impairs the blood-brain barrier, reduces levels of brain copper-zinc (Cu-Zn) superoxide dismutase (SOD), 
and enhances the excitotoxicity of glutamate via up-regulation of glutamate dehydrogenase and down-regulation of glutamate 
uptake in glial cells.
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Figure 4: Nickel induced cell activation has been linked to increases in ferritin and haptoglobin levels.
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or unusual forms of hemoglobin in which the α-chain is 
missing. The haptoglobin-hemoglobin complex is rapidly 
removed from circulation by the reticuloendothelial 
system to prevent/minimize hemoglobin loss and to 
conserve iron [14,21,23,24].

Ferritin levels were significantly increased in ALS pa-
tients compared to controls (p < 0.001), while no differ-
ences in the levels of serum iron, transferrin, iron sat-
uration or total iron binding capacity were found. The 
increased ferritin level in the sporadic ALS patients may 
reflect a general increase in stored iron or be a conse-
quence of ongoing muscle and motor neuron degener-
ation [25].

In one published study, haptoglobin is depicted as an 
acute phase protein and its inhibitory activity on pros-

0.16), Haptoglobin (male, [198.2 ± 7.1 ng/mL]; female, 
[199.1 ± 8.1 ng/mL], p = 0.16).

The ferritin level in the blood of ALS patients (319.57 
± 47.9 ng/mL) was increased compared with the con-
trols (60.32 ± 12.1 ng/mL) (p < 0.0001), with the ferritin 
level in the ALS group showing a significant elevation 
compared to the control group, Figure 6. 

The haptoglobin quotient, a marker of blood-brain 
barrier (BBB) function, was significantly higher in the 
ALS patients (204.8 ± 30.7 mg/dL) than the controls (34 
± 5.1 mg/dL) (P < 0.0001), Figure 7. 

Haptoglobin is a protein synthesized in the liver that 
binds with the globin α-chains of hemoglobin A, F, S, or 
C. Haptoglobin does not bind methemoglobin, heme, 
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Figure 5: Recent published research has shown that the environmental neurotoxin arsenic is linked with decreased 
neurofilament (NF) content in peripheral nerves.
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Figure 6: The increased levels of blood ferritin and haptoglobin were further examined in the 54 sALS patients compared 
with 26 controls using ELISA.
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the observed association between haptoglobin and mo-
tor neuron disease with some confidence. That is, the 
functional properties of haptoglobin may, in combina-
tion with other factors, be involved in the pathogenesis 
of ALS [24].

Decreased urine creatinine

A comparison of urine creatinine from ALS and 
controls are shown in Figure 8. The urinary creatinine 
levels in the ALS group was significantly elevated 
compared to controls (P < 0.005). The figure below 
shows the results of the creatinine levels of ALS patients 
compared to controls which signal that the latter had a 
significantly lower level of urinary creatinine.

taglandin synthetase and cathepsin B were proposed 
as part of the regulation of an inflammatory reaction. 
Its inhibitory effects on lymphocyte blastogenesis and 
monocyte chemotaxis at concentrations corresponding 
to those in clinical inflammatory states suggests its in-
volvement in the immunological response. A sensitiza-
tion of motor neuron disease lymphocytes to neuronal 
membrane components released by denervated muscle 
and the cytotoxic activities of ALS plasma against eryth-
rocytes has been demonstrated in the laboratory. These 
factors reacted with antibodies present in ALS plasma 
known to suppress terminal axonal sprouting and sub-
sequent reinnervation of skeletal muscle [15,26]. If, in 
fact, haptoglobin is involved in the regulation of any 
part of the immunological response, one may interpret 
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eral spinet (left > right) along with persistent atrophy in 
the left deltoid and biceps. Fasciculations were noted in 
the upper extremity muscles in a scattered distribution, 
predominately proximally. Our diagnosis corresponded 
with the El Escorial criteria classification parameters [6].

Discussion
In this retrospective study, we analyzed data from 

fifty-four (54) sALS patients and twenty-six (26) healthy 
controls who were outpatients at the Personalized 
Regenerative Medicine Clinic (San Clemente, California 
USA). We found a positive association between heavy 
metals concentration, creatinine level, haptoglobin 
and ferritin levels and sALS morbidity. In addition, 
clinical symptomatology including compromised motor 
functioning in sALS patients was found to correlate in a 
dose dependent fashion with their heavy metals levels.

If the concentration of heavy metals and sALS is 
causal, it follows that otherwise healthy people with 
significantly elevated levels of heavy metals would be 
at an increased risk of developing ALS. Of course, it is 
possible that the positive association of heavy metals 
in this study’s ALS patients was due to chance or 
residual confounding and thus represented no causal 
relationship [28].

In support of a putative link between heavy metal 
load and ALS:

Heavy metal exposure has been linked to the devel-
opment of autoimmunity in humans in various epidemi-
ological studies, plus reports of occupational exposure 
to metals, as wells as a high prevalence of side-effects 
following treatment with metal chelators and colloidal 
gold. Metals in ionic form reach cell membranes at-
tached to circulating blood proteins, particularly the wa-
ter-soluble component of lipoproteins [29,30]. It is this 
feature that allows ionic metals to exchange freely be-
tween lipoproteins and cell membrane ligands, includ-
ing red blood cells. The hemoglobin of red blood cells 
is particularly rich in SH groups which further explains 
how ionic metals reach the various cell membranes via 
the blood. Since metals in ionic form are lipophilic, they 
readily pass through the blood brain barrier. For exam-
ple, mercury readily oxidizes in the brain and nervous 
tissue to its ionic form, where the ionic mercury then 
binds with the SH groups of cell membranes, protein 
and brain enzymes [22].

The toxic effects of metals are mediated through free 
radical formation, cell membrane disturbance or en-
zyme inhibition, among other biochemical mechanisms. 
By binding to cell membranes, metals alter the mem-
brane charge, which may result in changed membrane 
permeability, calcification and cell death. Metals also 
bind to mitochondria, thereby impairing cellular respi-
ration. Depending on genetically determined detoxifi-
cation systems, an individual may tolerate exposure to 
toxic metals before showing adverse effects [31].

A total of fifty-four (54) sporadic ALS patients and 
twenty-six (26) gender-matched healthy controls were 
included. The Revised ALS Functional Rating Scale (ALS-
FRS-R) was used to assess the motor function status 
of the sALS patients. Urine creatinine levels were sig-
nificantly lower in the sALS patients (66.46 ± 9.9 mg/
dL) compared with the controls (197.18 ± 29.6 mg/dL), 
(P < 0.005), Figure 8. Low urine creatinine levels are of 
concern as this may indicate deceased kidney function-
ing or severe muscle loss due to disease. Creatinine is a 
waste by-product that is created when muscles break 
down and metabolize creatinine, and is filtered from 
the blood by the kidneys and excreted through the 
urine. The levels seen in the sALS patients may indicate 
dysfunction of the glomerularus [27].

Correlation as illustrated by a sALS Clinical Case
A 58-year-old man presented to the Personalized 

Regenerative Medicine Clinic with a history of weakness 
in his left arm and shoulder, with discomfort and 
difficulty dressing himself during the past month and 
a half. Initially, he had attributed his issues to a prior 
rotator cuff injury. He then noted a progressive shrinking 
in the muscles of his left arm and hand with decreased 
grip strength and the development of uncomfortable 
‘charley horses’ in his left leg.

The results of a neurological examination showed 
atrophy in the left biceps and deltoid and the left first 
dorsal interossei muscle. fasciculations were noted 
in the left forearm and left first dorsal interossei. An 
electrodiagnostic study performed the same week 
showed low amplitudes in the left upper extremity mo-
tor nerve-muscle action potentials with intact sensory 
nerve action potential responses. There were fibrillation 
potentials and positive sharp waves in the left deltoid, 
triceps, biceps, flexor carpi radialis, tibialis anterior, 
and bilateral gastrocnemius medial heads. His tongue 
showed a discrete firing pattern without abnormal rest-
ing activity. Sensory testing, coordination, and gait were 
within normal limits.

The results of neuroimaging studies of the spine re-
vealed age-related degenerative joint and disc disease 
with spondylosis. A cervical spine MRI demonstrated 
some mild discogenic changes with moderate chronic 
cord deformity, but no active cord compression at C4-5, 
cord signal abnormality, and significant stenosis.

Further laboratory investigations revealed an immu-
noglobulin E total (766 IU/mL), serum ferritin (724 ng/
mL), haptoglobin (500 mg/dL), fibrinogen activity (344 
mg/d). urine creatinine (27.5 mg/dL), and extremely 
high levels of various toxic heavy metals (Mercury 45 
µg/g, lead 26 µg/g, cadmium 7 µg/g, arsenic 110 µg/g, 
and nickel 23 µg/g).

The patient’s symptoms progressed to encompass 
weakness in the left shoulder with increasing weakness 
in the left arm. Examination showed atrophy in the bilat-
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lower levels of urine creatinine and elevated levels of 
haptoglobin denoting a more serious disease stage 
as well as being predictive of a significant rate of 
progression. They also demonstrated sensitivity and 
specificity values at predicting morbidity that paralleled 
“the best established prognostic factors” for ALS, such 
as forced vital capacity, age, and scores on the ALS 
Functional Rating Scale-Revised.

As such, it is postulated from this study’s findings 
that creatinine and haptoglobin are reliable and easily 
detectable blood and urine markers that correspond to 
the severity of motor dysfunction in ALS and could be 
used in helping with prognosis at the time of diagnosis.

In addition, study data revealed that serum creati-
nine levels were significantly lower in ALS patients than 
in controls (p < 0.005), something that argues for a role 
for creatinine in ALS pathophysiology and points to 
a correlation between serum creatinine and ALS. This 
study also found that sALS patients with low serum cre-
atinine levels in had the most severe motor.

And, interestingly with respect to haptoglobin, one 
published study found that the myelin nerve damage 
observed in multiple sclerosis (MS) may be partly me-
diated through the long-term release and degradation 
of extracellular haemoglobin (Hb) and the products of 
its oxidative degradation. The protein and acute phase 
reactant haptoglobin (Hpt) binds extracellular Hb as a 
first line of defence, and can serve as a vascular antiox-
idant [16,19].

In conclusion, our results suggest that heavy metals, 
creatinine, haptoglobin, and ferritin are associated with 
the clinical severity and pathogenesis of ALS. And ex-
trapolating from study findings, heavy metals burden 
plus increased ferritin and haptoglobin and reduced 
urine creatinine should serve as a reliable “collective” 
biomarker signature that will help clinicians distinguish 
ALS from other forms of neurologic pathology.
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