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Abstract
Brain imaging quality of data is important to confirm their 
liability of brain imaging studies. Previous literature confirmed 
that some confounding factors such as movement, age, 
and gender may impact brain imaging quality. Automatic 
quality control (QC) applications may not be able to properly 
calculate their reliability due to confounding factors.There 
are a few studies on brain imaging quality data and relevant 
confounding factors such as age or gender.
Methods: Open data from a previous study was used to 
conduct this study. In total 26 participants were recruited. 
Random Forest (RF) and Neural Networks (NN) machine 
learning (ML) methods were used to predict age groups 
(cut-off age: 16). Patients were grouped by age groups. 
Then, the age group was predicted with RF and NN machine 
learning (ML) models.
Goal of study: The goal of the study was to predict age 
groups using brain imaging quality data.
Results: We found that according to NNs, the age group 
was predicted with an accuracy of over 60% (accuracy: 
64%, sensitivity: 50%, specificity: 71%, area under curve 
(AUC): 55%,). Furthermore, the RFML model found that 
the age group was predicted with an accuracy of 64% 
(sensitivity: 50%, specificity: 71%, AUC: 86.6%).
Conclusion: Our study showed that age groups can 
be predicted using the brain imaging quality of the data. 
Further studies should investigate the relationship between 
other brain imaging parameters related to the quality of data 
and age.
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Introduction
Neuroimages must be checked for potential 

distortion after processing [1]. Previously, the impact 
of data quality on the localization of brain activation 
in functional magnetic resonance imaging (fMRI) 
was investigated in-depth [2]. Also, some studies 
concluded that low-quality imaging data may cause 
false associations. Many techniques such as deep 
learning [3] and random forest were used to calculate 
the image quality of the human brain data whilst age 
is related to in-scanner motion and data quality [4]. 
Furthermore, several factors are related to MR image 
quality assessments such as geometric accuracy, high-
contrast resolution, slice thickness accuracy, and slice 
position accuracy [5]. It is also important to analyze the 
association of parameters with age groups since it is 
one of the potential confounding factors.

Taken together, this study aimed to predict age 
groups using brain imaging quality data created using 
MRI QC.

Methods
To provide measures describing the quality of this 

dataset, the data were analyzed using MRIQC [3]. The 
open fMRI Data from the previous study was used to 
conduct this study.

Participants

This data was obtained from the Open fMRI 
database. The fMRI data is available at (https://exhibits.
stanford.edu/data/catalog/xg798vw8719) [6].
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Measuring quality of machine learning image

MRIQC was used to measure the quality of brain 
imaging. 

Machine learning results

In this study, Neural Networks (NN) and Random 
Forest (RF) were used to predict age groups.

Neural networks

Neural networks (NN) predicted age groups. Scikit-
learn default parameters were used to create prediction 
models [7].

Random forest: Random Forest (RF) [8] is one of the 
popular ML algorithms used to predict age groups in 
this study. Scikit-learn default parameters were used to 
create prediction models [7].

Data analysis

Participants were selected from the Open fMRI 
data data base. There was no missing value to report 
based on the shared data. The threshold of 0.05 was 
considered significant. Independent Sample T-test 
and Mann Whitney tests were used according to the 
normality of the study. Scikit-learn package of Python 
was used to create ML model [7].

Results
In this study, the following brain imaging quality 

parameters were used to predict age groups: summary_
mean_bg, summary_mean_csf, summary_mean_gm, 
summary_mean_wm, summary_p05_bg, summary_
p05_csf, summary_p05_gm. 

Summary_p05_wm, summary_p95_bg, summary_
p95_csf, summary_p95_gm, summary_p95_wm, 
summary_stdv_bg, summary_stdv_csf, summary_
stdv_g, and summary_stdv_wm.

Descriptive statistics

The mean age of the all participants was “16.89’’. 
The standard deviation was ‘’4.26’’. The minimum age 
was ‘’8.8’’ while the maximum age was ‘’25.6’’. Most of 
the patients who participated in this study were female 
(n = 14) while 13 of the patients were male. 

Output of machine learning analysis

In this study, random forest (RF) and neural networks 
(NN) were implemented to predict age groups.

Random forest: The RF ML model found that the 
age group was predicted with an accuracy of 64% 
(sensitivity: 50%, specificity: 71%, AUC:86.6%). The most 
important predictive features were Summary_p05_wm, 
summary_p05_csf, summary_stdv_csf, summary_
mean_wm_, and summary_p05_gm respectively. For 
the RF model mean cross-val accuracy was 61 ± 0.12.

Neural networks: Based on the NN model, the 
accuracy of ML model was 64% (sensitivity: 50%, 

specificity: 71%, AUC: 55%). The most important 
predictive features were Summary_p95_csf, summary_
mean_wm, summary_p95_bg, summary_mean_csf, 
and summary_stdv_bg respectively. For the NN model 
mean cross-val accuracy was 58.6 ± 0.26.

Discussion
Based on our main results of the study, we found 

that age groups can be predicted with both Random 
Forest (RF) and Neural Networks (NN) with the same 
accuracy over chance level. 

Brain imaging data is not usable for extracting 
meaningful information without processing [9] and it 
should have some quality standards to be used.

The performance of the quality control (QC) 
strategies depended on the morphological measure 
[10]. Automated QC is important where visual QC is 
not practical [11]. Manual quality control strategies are 
reliable for QC of brain segmentation [10] however, 
manually controlling may take time. Furthermore, QC 
protocols allow different laboratories to search the 
impact of QC on the relationship between the brain and 
phenotypes [12].

Besides, The degree of anonymization of the data 
is important [13]. Revealing brain imaging quality data 
may allow researchers to predict their age groups. 
Furthermore, the age-dependent increase was found in 
brain because of the changes related to myelination.

Consistent with the findings that activity from almost all 
areas of the brain became less predictable with increased 
age [14]. Moreover, the ability to evaluate MRIs for disease 
characterization is hampered by the artifacts [15].

Age-related potential changes in brain

Studies on such "brain age prediction" vary widely by 
their methods [16]. Developmental processes that occur 
during the first two decades of human development 
impact brain development (e.g. body growth and 
puberty) [17]. In addition, Age can be a confounding 
factor in some studies [18]. Further, the percent signal 
change associated with the BOLD effect increases with 
age in children ages [19]. Taken together, age is one 
of the important confounding factors that potentially 
impact brain imaging quality data.

Conclusion
This study concluded that age groups can be predicted 

with high accuracy with RF and NN ML algorithms using 
brain imaging quality data.

Suggestions for further studies
Further studies should investigate other confounding 

factors that may affect brain imaging quality.

Limitations
There were several limitations in the current study. 

Gender was one of the important confounding factors.
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Figure 1: Feature importance's associated with random forest model.
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Figure 2: Feature importance's associated with neural networks model.

[2, 2]
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Table 1: Confusion matrix associated with random forest model. 

[2, 2]
[2, 5]

Table 2: Confusion matrix associated with neural networks model.

Precision Recall f1-Score
0 0.50 0.50 0.50
1 0.71 0.71 0.71

accuracy 0.64
macro avg 0.61 0.61 0.61

weighted avg 0.64 0.64 0.64 

Table 3: Accuracy scores (Random forest).

Precision Recall f1-Score
0 0.50 0.50 0.50
1 0.71 0.71 0.71

accuracy 0.64
macro avg 0.61 0.61 0.61

Table 4: Accuracy scores (Neural networks).
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