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Introduction
According to the International Classification of 

Diseases eleven edition (ICD11), Multiple Sclerosis 
(MS, code: 8A40) is defined as a chronic, inflammatory 
demyelinating disease of the central nervous system 
[1]. It has a multifactorial origin and it is characterized 
by disabling inflammatory attacks in the central nervous 
system [2]. Three categories of multiple sclerosis 
have been outlined: Relapsing-remitting, secondary 
progressive and primary progressive multiple sclerosis 
[1].

It affects any functional system (visual, motor, 
sensory, coordination, language and sphincter control). It 
is considered as more disabling not traumatic disease of 
young population in the world. In recent years there have 
been a general increase of the disease worldwide [2].

On 2016, prevalence had been reported as 2221 
thousands, death 19 thousand and disability adjusted 
life years (DALYs) 1151 thousands, with male/female 
ratio of 0.48, worldwide [3].

Mean prevalence in Latin America have been 
reported as 10.1 cases per 100.000 inhabitants; with 
range of 0.9 to 77.7 On 2017, in Costa Rica the MS 
incidence reported was of 8.3 per million [2].

Diagnosis is based on McDonald criteria and it is 
supported by clinic aspects, MRI and cerebrospinal fluid 
analysis [4].
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Inclusion criteria for patient group
• Meet the modified McDonald criteria for MS [7].

• Relapsing-remitting form.

• Age upper 20-years-old.

• Both sexes.

• Any race.

• No evidence of other neurologic disease.

• Any disease duration.

Inclusion criteria for healthy subject group
• No antecedent of disease.

• Age similar to MS group.

• Both sexes.

• Any race.

Exclusion criteria for patient and healthy group
• Patients with contraindication for MRI.

• Patients that deny participating on the research.

Image acquisition
MRI was carried out using a 3T Allegra system 

scanner (Siemens) device with a standard quadrature 
head coil.

High-resolution three-dimensional whole-brain T1-
weighted MRI scans were acquired using a volumetric 
three-dimensional spoiled fast gradient echo with the 
following parameters: repetition time (TR ) = 2000 ms, 
echo time (TE) = 2.6 ms, inversion time (TI) = 900ms, 
slice thickness = 1.0 mm; flip angle = 9 Ê, field of view 
(FOV) = 230 × 230 mm, 1 × 1 × 1 mm3 voxel size. The 
volume consisted of 192 contiguous coronal sections 
covering the entire brain, acquisition matrix: 256 × 256, 
slice thickness: 1.

T2-weighted MRI scans were acquired with TR = 
3500 ms, TE = 354 ms.

FLAIR MRI scans were acquired with TR = 5000 ms, 
TE = 353 ms, TI = 1800 ms.

DWI data were acquired using a diffusion weighted 
spin echo imaging sequence with the following 
parameters: 80 volumes, slice thickness 2.0 mm, 
representing 80 gradient directions, FOV = 230 mm, TR 
= 86 ms, TE = 8000 ms, slice thickness = 2.0 mm; flip 
angle = 90, b = 1000 s/mm2 and two scan with gradient 
0 (b = 0), resolution was 1 × 1 × 1.

Image processing
DICOM to nifty image format was convert with 

dcm2nii tool, Chris Rorden’s dcm2nii: 4AUGUST2014 
32bit (https://www.nitrc.org/projects/dcm2nii/).

DTI processing: DTI images were processed using DSI 
Studio software tool (https://dsi-studio.labsolver.org/).

Conventional T2-weighted images are highly sensitive 
in depicting focal demyelinating lesions but lack 
histopathologic specificity, such as inflammation, oedema, 
gliosis, and axonal loss, which are all represented as areas 
of high signal intensity. Because of this lack of specificity, 
T2-weighted imaging does not provide information that 
can be reliably associated with the pathologic substrate 
and clinical status of the patient [5].

In MS research, new post-processing MRI techniques 
have demonstrated a high degree of specificity and 
sensitivity in detecting pathological tissue damage. 
These techniques include diffusion-weighted imaging 
(DWI), which plays an important role in highlighting brain 
microstructural damage not visible when conventional 
sequences are used [6].

An important clinical application for DWI in 
demyelinating disease is in establishing a differential 
diagnosis with other pathologies. In some circumstances, 
tumefactive inflammatory lesions may mimic a cerebral 
neoplasm, infectious abscess, or vascular ischemia. And 
in some specific and rare situations, restricted diffusion 
can be the first marker for a demyelinating lesion, 
preceding contrast enhancement and associated with 
subtle T2-weighted image alterations, in the course of 
disease [5].

Diffusion tensor imaging (DTI) is a powerful non-
invasive technique that can be used to investigate 
white mater (WM) microstructures. When applied to 
the brain, this technique has the potential to map the 
WM integrity and the structural connectivity in vivo. In 
recent years, DTI has been increasingly applied to the 
brain WM studies in MS [7].

For another hand, other post-processing techniques 
as voxel based morphometry (VBM), cortical thickness, 
volumetric analysis, and others have showed interesting 
changes in brain structures of MS patients [6].

With this research we purpose describe structural 
changes that characterize brain in a group of MS 
patients, through post-processing MRI studies.

Material and Methods

Subjects
A total of 30 consecutive relapsing-remitting 

MS patients were recruited, according to modified 
McDonald criteria [7]. The control group consisted of 30 
healthy subjects.

Ethical considerations
The study protocol was approved by Ethical 

Committee of Cuban Neuroscience Centre and all of 
patients and healthy subjects were agree with the 
evaluation and signed informed consent. All procedures 
of the study were in accordance with the ethical 
standards of the institution and with the 1964 Helsinki 
declaration.
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- Fractional Anisotropy (FA): It is a scalar measure 
of the preferential axis of diffusion motion. It is 
related to the integrity of the myelin, the density 
and the parallelism of the fibres, it has a value 
ranged from 0 (isotropic) to 1 (totally anisotropic). 

- Mean Diffusivity (MD): It is the average 
displacement of water within a voxel in the main 
axes. 

- Axial Diffusivity (AD): It quantifies how fast water 
diffuses along the axonal fibres. It is low on axonal 
damage.

- Radial Diffusivity (RD): It evaluates the 
perpendicular component of water diffusion to 
axons [8].

Voxel based morphometry (VBM) analysis
VBM was a fully automated, whole-brain technique 

that enables measurement of regional brain volumes 
based on voxel-wise comparison of grey and white 
matter volumes using Statistical Parametric Mapping 
(SPM8,Welcome Department of Imaging Neuroscience, 
London, United Kingdom) software, running on Matlab 
2017a and the DARTEL registration method. Briefly, 
the process was as follows: T1-weighted images were 
segmented by using VBM8 toolbox of SPM, the images 
were imported in DARTEL, rigidly aligned, and segmented 
into grey and white matter, the grey and white matter 
segments were co-registered simultaneously by using 
the fast diffeomorphic image registration algorithm and 
the flow fields were created, the flow fields were then 
applied to the rigidly aligned segments to warp them to 
the common DARTEL space and then were modulated 
by using the Jacobian determinants, the modulated 
images from DARTEL were normalized to the MNI 
template by using an affine transformation estimated 
from the DARTEL grey matter template and the a priori 
grey matter probability map without resampling, before 
the statistical computations, the images were smoothed 
with an 10-mm FWHM Gaussian filter.

Grey and white matter of MS patients and healthy 
subjects were compared using t-test statistical analysis, 
with p < 0.05.

Cortical thickness processing
Computational Anatomy Toolbox (CAT), version 

CAT12.6-rc1 (1430) was used for cortical thickness 
processing, it runs within SPM12. This software tools 
are freely available at http://dbm.neuro.uni-jena.de/
cat/.

For pre-processing: T1 images were normalized to a 
template space and segmented into grey matter (GM), 
white matter (WM) and cerebrospinal fluid (CSF), after 
the pre-processing is finished, a quality check was done, 
after that image data were smoothed and finally the GM 
images were entering into a statistical model.

Images were reoriented into oblique axial, slices were 
aligned parallel to the anterior-posterior commissural 
axis with the origin set to the anterior commissure, 
Eddy currents distortions were corrected, diffusion 
tensor was estimated, scalar maps were constructed, 
fibre tracking was done, tensor were visualized and 
tractography based analysis (automatic) was done.

Based on Montreal neurologic Institute (MNI) maps, 
ROIs was placed at left (cortico spinal tract, arcuate 
fascicle and optic radiation) with a volume size of 
2.7e+04 mm cubic. An ROI was placed at right (cortico 
spinal tract, arcuate fascicle and optic radiation) with 
a volume size of 2.9e+04 mm cubic. A seeding region 
was placed at whole brain. The anisotropy threshold 
was randomly selected. The change threshold was 20%. 
The angular threshold was randomly selected from 15 
degrees to 90 degrees. The step size was randomly 
selected from 0.5 voxel to 1.5 voxels. Tracks with length 
shorter than 26.9531 or longer than 269.531 mm were 
discarded. A total of 50000 seeds were placed.

Once tracts were constructed, the following 
quantitative metrics were calculated automatically: 

- Number of tracts (called too number of fibres or 
count of fibres): It is the number of streamlines 
generated by the algorithm (n).

- Tract length or mean longitude: It was calculated 
by multiplying number of coordinates in the 
streamlines with the distance between the 
coordinates. It was calculated trough the 
following equation:

( ) ( )1
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n is the total number of tracks, vi(t) is a sequence of 
3D coordinates representing the trajectory of a track, 
t is a discrete variable from 1 to mi, where mi is the 
number of the coordinates.

- Tracts volume (in mm cubic): It was calculated 
by multiplying number of voxels passed by all 
streamlines with the voxel size (N × voxel volume), 

- N is the total number.

- Diameter (in mm): It was calculated trough the 
following equation: 

2 volume
lenghtπ ×

- Total surface area = Ns × voxel spacing2, Ns is 
number of surface voxels.

- Irregularity: Is conceptually similar to convexity 
and concavity. It is the opposite of compactness 
or roundness defined in computer vision. It was 
calculated trough the following equation: 

surface area
diameter lenghtπ × ×

https://doi.org/10.23937/2572-3235.1510107
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equal to the cortical thickness) onto other grey matter 
voxels using a neighbouring relationship described 
by the WMdistance. This projection-based thickness 
(PBT method) allows the handling of partial volume 
information, sulcal blurring, and sulcal asymmetries 
without explicit sulcus reconstruction [9,10].

Statistical analysis
Descriptive statistical measures were applied.
Between groups mean comparison (t-test) was done 

to compare mean parameters of tractography of MS 
and healthy subjects.

Regression analysis was done in order to evaluate 
the relation of number of fibres of all of analysed tracts 
and cortical thickness value with disease duration.

By group automated analysis (based on t-test) 
was done for VBM and cortical thickness, maps of 
signification were construed.

Processing: CAT uses a fully automated method 
that allows the measurement of cortical thickness and 
reconstruction of the central surface in one step. It uses a 
tissue segmentation to estimate the white matter (WM) 
distance and then projects the local maxima (which is 

Table 1: Clinic characteristics of MS patients and healthy subjects.

MS patients (n = 30) Healthy subjects (n = 30) t/X2 p-value
Age mean and SD in years (range) 43.20 ± 14.43 (20-66) 44.60 ± 12.31 (32-64) 0.301  0.764

Sex (M/F) 4/26 10/20 0.895  0.370

Disease duration mean and SD in months (range) 15.42 ± 13.31 (1-48)  NA  NA  NA

Table 2: Localization of hyperintense image on T2 weight and 
FLAIR MRI in MS group of patients.

Site Number of patients Percent
Periventricular 23/30 85.18%

Corpus callosum 10/30 37.03%

Frontal area 20/30 74.07%

Parietal area 21/30 77.77%

Temporal area 4/30 14.81%

Occipital area 4/30 14.81%

Cerebellum 3/30 11.11%

Others 0/30 0%

          

Figure 1: Tractography.
Note diminishes of fibres on CST and OR in MS patients in relation with Healthy subjects.

https://doi.org/10.23937/2572-3235.1510107
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diminish of area (p = 0.04) of MS patients in relation 
with healthy subjects (See Table 3).

Optic Radiation (OR) statistical analysis: It showed 
diminish of mean number of tracts (p = 0.00) area (p 
= 0.00), volume (p = 0.01), diameter (p = 0.03) and 
irregularity (p = 0.03) of MS patients in relation with 
healthy subjects. And it also showed increase of MD (p 
= 0.02) and AD (p = 0.03) of MS patients in relation with 
healthy subjects (See Table 4).

Regression analysis

Analysis of number of tracts in relation with disease 
duration: It showed that any parameters of tractography 
were significant in relation with the increase of the 
disease duration.

Voxel based morphometry
Patterns of brain atrophy in grey matter: We 

observed reduced grey matter density in MS patients 
in relation with healthy subjects on subcortical areas of 
frontal and parietal lobes, occipital lobe, periventricular 
areas, brainstem, pulvinar thalamus and hippocampus 
(Figure 2); p < 0.05 was considered statistically 
significant.

Patterns of brain atrophy in white matter

We observed reduced white matter density in MS 
patients in relation with healthy subjects on external 

We applied a statistical threshold of p < 0.05 in all 
statistical analysis.

Results

Clinic aspects
Clinics aspects of all of participants are described in 

Table 1.

Localization of hyperintense lesions on T2 weight 
and FLAIR images

Table 2 shows more frequent sites of localization of 
hyperintense lesions on T2 weight and FLAIR images in 
our MS cases series.

Tractography
Tractography revealed that corticospinal tract and 

optic radiation volume of MS patients is lower than 
healthy subjects (See Figure 1).

Comparison of tractography parameters between 
groups (MS patients and healthy subjects):

Corticospinal Tract (CST) statistical analysis: It 
showed diminish of mean number of tracts (p = 0.02), 
diameter (p = 0.01), volume (p = 0.02) and area (p = 
0.02) of MS patients in relation with healthy subjects 
(See Table 3).

Arcuate Fascicle (AF) statistical analysis: It showed 

Table 3: Mean comparison of CST parameters between healthy subjects and MS patients.

Variable Healthy subjects MS T p
Number of fibres 1543.8 1134.50 -2.47393 0.02*

Mean longitude 67.47 67.10 0.10416 0.91

Diameter 33.1 28.33 -2.56604 0.01*

Volume 58511.4 43412.39 -2.34646 0.02*

Total area 115188.9 64153.37 -2.34017 0.02*

 Irregularity 11.13 17.0 -1.59677 0.12

FA 0.43 0.4 0.05260 0.12

MD 0.86 0.90 0.11207 0.91

AD 1.28 1.3 0.22382 0.82

RD 0.65 0.7 -0.46457 0.64

Table 4: Mean comparison of arcuate fascicle parameters between healthy subjects and MS patients.

Variable Healthy subjects MS t P
Number of fibres 1407.0 1252.6 -0.91205 0.37

Mean longitude 1407.0 1252.6 -0.91205 0.47

Diameter 33.6 32.3 -0.53258 0.59

Volume 61830.8 54361.1 -0.81180 0.42

Total area 129547.0 82341.7 -2.10072 0.04*

Irregularity 13.1 19.1 -1.63855 0.11

FA 0.4 0.4 -0.55466 0.58

MD 0.8 0.8 -0.49359 0.62

AD 1.2 1.2 -0.41007 0.68

RD 0.6 0.6 -0.19441 0.84

https://doi.org/10.23937/2572-3235.1510107
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healthy subjects): In relation with comparison of mean 
cortical thickness of MS patients and healthy subject. 
There were not statistic significate areas (p = 0.26) (See 
Figure 4).

Group statistical analysis of cortical thickness did 
not show group differences between MS and healthy 
subjects, p < 0.05 was considered statistically significant 
and surface-based statistical maps not showing clusters 
of significant (See Figure 5).

capsule, extreme capsule, optic radiation, caudal fibres, 
arcuate fasciculus, fornix, frontal inferior gyrus, corona 
radiata, subcortical areas of parieto-temporo-occipital 
lobes, corpus callosum head, white matter of pons and 
medulla oblongata, cingulate gyrus (See Figure 3); p < 
0.05 was considered statistically significant.

Cortical thickness
Comparison between groups (MS patients and 

          

Figure 2: Generic MRI brain slices with superimposed areas showing statistically significant regions of grey matter atrophy 
(p < 0.05, corrected for multiple comparisons) in a group of 30 MS patients compared with 30 healthy age matched subjects 
using voxel-based morphometry.
It shows grey matter atrophy on subcortical areas of frontal and parietal lobes, occipital lobe, periventricular areas, 
brainstem, pulvinar thalamus and hypocamppus. The coloured bar represents the T score.

          

Figure 3: Generic MRI brain slices with superimposed areas showing statistically significant regions of white matter atrophy 
(p < 0.05, corrected for multiple comparisons) in a group of 30 MS patients compared with 30 healthy age matched subjects 
using voxel-based morphometry.
It shows white matter atrophy on external capsule, extreme capsule, optic radiation, caudal fibers, arcuate fasciculus, 
fornix, frontal interior gyrus, corona radiata, subcortical areas of parieto-temporo-occipital lobes, corpus callosum head, 
white matter of pons and medulla oblongata and cingulate gyrus. The coloured bar represents the T score.

https://doi.org/10.23937/2572-3235.1510107
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Figure 4: Comparison of individual mean cortical thickness between healthy subjects and MS patients.
Notice they are not significate differences.

          

Figure 5: Cortical thickness group differences between MS and healthy subjects, p < 0.05.
Surface-based statistical maps showing that there are not significant clusters. 

Table 5: Mean comparison of optic radiation parameters between healthy subjects and MS patients.

Variable Healthy subjects MS t P
Number of fibres 703.50 348.35 -3.52128 0.00*

Mean longitude 67.95 64.03 -0.59472 0.55

Diameter 24.49 19.12 -2.25740 0.03*

Volume 36135.18 19286.69 -2.78815 0.01*

Total area 75988.13 34552.61 -4.28540 0.00*

Irregularity 9.69 15.71 -2.29991 0.03*

FA 0.40 0.39 0.39752 0.69

MD 0.90 0.95 2.40932 0.02*

AD 1.28 1.38 2.18533 0.03*

RD 0.73 0.71 1.04583 0.30

Table 6: Regression summary for dependent variable: Cortical thickness on MS patients in relation with disease duration.

R = 0.56288009 R2 = 0.31683400 Adjusted R2 = 0.25990350 F (1,12 = 5.5653 p < 
0.3611 Std Error of estimate: 0.30917

b* Std Error of b* b Std Error t P

Intercept 3.010 0.129 23.28 0.00*

Disease duration -0.562 0.238 -0.015 0.006 -2.359 0.03* 

Notice it diminishes as disease duration increase

https://doi.org/10.23937/2572-3235.1510107
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Elshafey demonstrated decrease of FA with MD 
increase on corpus callosal regions, periventricular 
areas, frontal and occipital lobes of MS patients in 
relation with healthy subjects. The statistical analysis 
showed more significance of MD in the detection of 
lesions. Thus being demonstrated that DTI quantitative 
parameters are good predictors of brain tissue damage 
[14,15].

DTI parameters have been demonstrated very useful 
not only inside of MS lesions regions, but also around 
the lesions, this suggests the existence of an extension 
of the disease invisible in conventional MRI study [16-
21].

Some authors affirm that DTI is able to measure the 
degree of diseased white matter more accurately than 
T2 weight imaging and may also detect abnormalities 
earlier than T2. It may represent an important indicator 
of neuronal structure and its loss in patients with MS 
[21].

In our case series, the most affected tract was OR. 
MD was higher in comparison with healthy subject. It 
is agreeing with Cheng results; it suggests that OR has 
an increase of diffusivity, indicating axonal damage [22]. 

We didn’t find significative FA abnormalities between 
MS patients and healthy subjects.

Gajamange, et al. published their results in relation 
with optic nerve and tract evaluation: Reduced fibre 
density and amplitude associated with reduced of 
FD in MS patients compared to healthy subjects, and 

Regression analysis: Analysis of cortical thickness in 
relation with disease duration.

It showed that cortical thickness diminishes when 
disease duration increasing (p = 0.03) (See Table 5, 
Table 6 and Figure 6).

Discussion
Great number of studies have reported abnormalities 

of brain of MS patients. Majorities of them on 
white matter due to MS are considered a primary 
demyelinating disease. However, in the last decades 
some researches has described abnormalities on grey 
matter and cortical areas in MS patients; demonstrating 
secondary degeneration of brain structures [11].

In relation of tractography our cases series showed 
that most affected tract was OR and in second order 
CST. It is according with abnormalities of visual system 
on MS patients, which could be sub-clinically.

Fox reported a progressive increase of MD with AD 
unchanged in a group of relapsing remitting MS patients 
prior to gadolinium enhancement, it provided evidence for 
impaired myelin integrity at the initial stage of MS [11].

Kolbe showed progressive decrease of FA trough 
optic radiation and near cortex, it was in relation with 
amplitude decreased and latency prolongation of 
multimodal evoked potential [12]. Lower values of FA 
and MD of CST were observed on MS patients in relation 
with healthy subject in a study carried out for El-Sourgy 
and col on 2015 [13].

          

Figure 6: Scatterplot of cortical thickness against disease duration. P < 0.03.
Notice it diminishes as disease duration increase.

https://doi.org/10.23937/2572-3235.1510107
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frequently associated with memory deficits in MS 
patients [29,30].

In relation with cortical thickness we did not find any 
significant difference between MS patients and healthy 
subjects, however the findings are controversial. Some 
authors have showed significant mean global cortical 
thickness was reduced in multiple sclerosis patients 
compared to healthy subjects [31-37] and also local 
cortical thickness was reduced in some areas: Left and 
right frontal lobe, left and right parietal lobe, precentral, 
paracentral, postcentral and posterior cingulate cortices 
in both hemispheres, entorhinal, parahippocampal 
areas, pars opercularis, pars orbitalis [32-39]. Others 
authors have also reported diminish of cortical thickness 
on visual areas [37].

Sailer, et al. reported that there was a highly significant 
main effect of disease duration [F (2,59) = 11.51, P = 
0.002] over cortical thickness, it is in accordance with 
our results. They observed that patients with disease 
duration of < 3 years did not exhibit any significant 
focal cortical thinning compared with normal control 
subjects. In patients with disease duration up to 5 years, 
they observed significant focal atrophy that mainly 
involved the left and right temporal superior gyrus and 
sulcus as well as the left and right frontal superior gyrus 
and sulcus. Patients whose disease duration was > 5 
years exhibited pronounced focal atrophy beside the 
temporal and frontal areas, in the motor cortex of the 
left and right hemisphere [38,39].

Damjanovic, et al. and other authors have showed 
a significant reduction of all brain volumes, atrophy 
of cortical grey and white matter, thalamus and basal 
gangliain MS patients in relation with healthy subject 
and they have thought it would be in relation with 
cognitive impairment [40-43].

Some of these researches have correlationed atrophy 
of cortical grey matter with cognitive dysfunction in MS 
patients [40,43,44].

Post-mortem studies have confirmed MRI findings. 
They are revealed decrease of global cortical thickness, 
diffuse changes in myelination occurring in non-lesional, 
apparently normal white and grey matter at the early 
stages of disease and also extensive axonal damage in 
acute white matter lesions and normal appearing white 
matter in the progressive stage of MS [45,46].

Carassiti demonstrated that the total neocortical 
neurons were 14.9 ± 1.9 billion vs. 24.4 ± 2.4 billion in 
controls (mean ± SD) showing that there were 39% fewer 
neurons in the neocortex of MS than in controls and also 
he described that the non-adjusted mean proportion 
of demyelinated cortex in MS patients was 40 ± 13%, 
occipital cortex (p < 0.001) which was the most severely 
affected. No association was detected either between 
the number of cortical neurons and white matter lesion 
volume (p = 0.11) [45].

they proposed it as a potential early marker of clinical 
disability in MS [23].

In relation with our findings on VBM, some authors 
have supported grey and white matter loss on MS 
patients in vivo and also in post-mortem studies. Trapp 
demonstrated cortical atrophy on early states of MS 
and this phenomenon can be detected on patients with 
very low brain white matter lesions. He showed in a 
post-mortem study that MS patients had significantly 
decrease of cortical neuronal density, specifically on V 
layer [24].

Sbardella, et al. on 2013 demonstrated in a VBM 
analysis done reduced GM volume in patients with 
respect to healthy subject in the cerebellum, thalamus, 
subgenual gyrus and middle cingulate cortex, superior 
frontal gyrus, occipital and temporal cortices bilaterally, 
it could be in relation with cognitive or motor disability 
[25].

Rothstein published cortical diminish of grey matter 
on forebrain parenchyma, thalamus, and hippocampal 
area. Same abnormalities have been showed in post-
mortem studies, cortical atrophy appeared to be 
unrelated to the degree of myelin loss [26].

Prinster, et al. on 2010 showed significantly 
decreased of grey and white matter volume in a group 
of remitting relapsing MS group of patients, it involved 
preferentially the left fronto-temporal cortex and 
precuneus, as well as the anterior cingulate gyrus and 
the caudate nuclei bilaterally, and to a minor extent the 
right frontotemporal cortex and right parietal lobule. 
The VBM analysis of white matter indicated preferential 
areas on bilaterally periventricular regions in the 
temporal lobes, juxtacortical insular regions, extending 
posteriorly through the internal capsule to the thalami, 
and to the splenium of the corpus callosum.

They confirmed a direct correlation between disease 
severity and brain tissue loss (both grey and white 
matter) in the motor system, while lesion load correlated 
of brain tissue loss mainly affects highly interconnected 
subcortical structures, including the caudate nuclei and 
thalami [27].

VBM is an automated technique for assessing 
brain structural changes. It detects changes in brain 
morphology caused by small lesions, quantifies 
changes in the volume and density of brain tissue. 
Other VBM analysis have showed grey matter volumes 
were decreased in the right frontal lobe (superior 
frontal, middle frontal, precentral, and orbital gyri), 
right parietal lobe (postcentral and inferior parietal 
gyri), right temporal lobe (caudate nucleus), right 
occipital lobe (middle occipital gyrus), right insula, right 
parahippocampal gyrus, and left cingulate gyrus of 
MS patients in comparison with healthy subject [28]. 
Hippocampal areas are common mentioned as affected 
on VBM analysis for different authors and it has been 
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Axonal degeneration seems to be the primary 
abnormality of principal’s tracts, they show diminish of 
fibre numbers, diameter, volume, total area, increase of 
RD and MD. The most affected tract was optic radiation, 
followed by corticospinal tract.

Cortical thickness appears not affected in ME 
patients, at least in the first three years of diseases 
duration, but it diminishes with the disease duration 
increase.

Advanced methods of MRI provide new insight into 
pathophysiology of this disease and may serve as an 
additional prospective marker of disease progression.

Conclusion
In our MS patient’s series was demonstrated 

morphologic abnormalities of grey and white mater of 
subcortical structures and brainstem.
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