Diagnostic Yield of Fiberoptic Bronchoscopy for the Evaluation of Chronic Cough in Patients with Normal Chest X-Ray

Zainab Syed1*, Ro-Jay Reid2 and Roberto Solis1

1Division of Pulmonary & Critical Care, St Joseph’s University Medical Center, USA
2Division of Internal Medicine, St Joseph’s University Medical Center, USA

*Corresponding author: Zainab Syed, MD, Division of Pulmonary & Critical Care, St Joseph’s University Medical Center, 703 Main Street, Paterson NJ 07503, USA, Tel: (973) 754 2450, Fax: 973-754-2469

Abstract

Approximately 30 million annual clinic visits are attributed to cough in the United States. Moreover, evaluation and management of persistent cough in pulmonary clinics account for roughly 40% of patient volume. The most common etiologies are: Upper airway cough syndrome (UACS), asthma, non-asthmatic eosinophilic bronchitis (NAEB) and gastro-esophageal reflux disease (GERD) - all of which are treatable. However, despite avoidance of triggers and medical therapy, there remains an elusive diagnosis for some individuals with persistent cough. Further investigation warrants bronchoscopy, which is indicated for patients with persistent or unexplained cough.

The purpose of this study is to assess the diagnostic yield of fiberoptic bronchoscopy (FB) with Broncho-alveolar lavage (BAL) for chronic cough in patients with normal chest roentgenogram. FB records were reviewed in cohort for a period of 3 years. Only patients with normal chest roentgenograms who remained refractory to medical therapy were included in the study. Fifty-two (52) cases encompassing ages 20-90 were reviewed. In 42 cases, BAL was negative for any diagnostic cause. Eight (8) cases were significant for infectious processes, one (1) case diagnosed bronchiectasis, and 1 case was lost to follow-up. Statistical analysis between the total cases in each group was statistically significant p < 0.001. Thus, though FB with BAL is indicated in chronic cough of unknown etiology, its diagnostic yield is low.

Keywords

Chronic cough, Upper airway cough syndrome (UACS), Asthma, Gastroesophageal reflux (GERD), Non-asthmatic eosinophilic bronchitis (NAEB), Fiberoptic bronchoscopy (FB)

Introduction

Every human has a natural defense mechanism that removes mucus, noxious substances and infections from the larynx, trachea, and large bronchi. The innate cough mechanism is a symptom experienced by healthy, non-smoking individuals, as well as immunocompromised hosts. However chronic cough, in the absence of inciting drugs such as ACE inhibitors, can be a clinical pointer to “silent” diseases [1,2]. Our study referred to the conventional definition of chronic cough, which is defined as “refractory cough to therapy for > 8 weeks in hosts with stable or normal chest roentgenogram” [1]. The most common etiologies, excluding founders such as cigarette smoking and ACE inhibitors, are upper airway cough syndrome (UACS - formerly known as postnasal drip syndrome), asthma, non-asthmatic eosinophilic bronchitis (NAEB) and gastroesophageal reflux disease (GERD) [3].

UACS, which accounts for 41%-58% of chronic cough cases, can be initially treated with antihistamines and decongestants. Antibiotics that cover Streptococcus pneumoniae and Haemophilus influenzae for 10 days may be added if infective sinusitis is suspected. Cough variant asthma, which accounts for 24%-59% cases of chronic cough, can be initially treated with inhaled bronchodilators, inhaled corticosteroid (ICS) and, in specific cases, leukotriene receptor antagonists. GERD accounts for 21%-41% of chronic cough patients and can be initially treated with diet, exercise and proton pump inhibitors (PPI). NAEB, which is commonly under diagnosed due
St. Joseph’s Regional Medical Center were gathered. Patients with normal chest x-rays with chronic cough without a diagnosis were included.

Results

A total of 52 patients with a mean age of 60 ± 16 years were collected, including 27 females and 25 males. The causes of chronic cough were as follows: 42 cases (80.77%) yielded negative lavage, 8 (15.38%) yielded infectious etiologies, 1 (1.92%) showed abnormal lung pathology, specifically bronchiectasis, and 1 (1.92%) specimen was lost to follow-up. Infectious causes included 1 (12.5%) of *Haemophilus influenzae*, 3 (37.5%) of *Pseudomonas*, 3 (37.5%) of *Staphylococcus aureus* and 1 (12.5%) of *Aspergillus*. We performed statistical analysis between the total number of cases in each group and found low diagnostic yield in lieu of a normal chest x-ray with a statistical significance of Chi Square 11.56, p < 0.001 (Figure 1).

Discussion

A cough is a complex arc involving stimulation of cough receptors that exist not only in the respiratory epithelium, but also the pericardium, esophagus, diaphragm, and stomach. These receptors are sensitive to a variety of mechanical and chemical stimuli which activate the vagus nerve, then eventually the phrenic nerve and spinal motor nerves [1]. A cough can be initiated by a variety of mechanisms affecting any region of this path. To diagnose the cause of a chronic cough is thus dependent on many mechanisms and in some cases requires multiple studies beyond radiographs and sputum analysis. Examples include Barium swallow, 24-hour esophageal pH monitoring, direct laryngoscopy evaluation and multichannel intraluminal impedance (MII) to exclude and assess GERD [1].
A large body of research also embodies diagnosis and characterization of asthma. Noninvasive biomarkers such as exhaled nitric oxide (FeNO) and sputum or blood eosinophilia assist in asthma diagnosis and guidance of management. Most recently, by periostin levels as a biomarker has also offered further insight in understanding reactive airways and even bronchiectasis [6].

Over the past decades, FB has been utilized as a tool for diagnostic and therapeutic interventions in patients with pulmonary pathologies associated with chronic cough. In addition, it has been regarded as a safe intervention with complications of less than 0.1% to 11% in several studies. Moreover, several studies have reproduced data that reveal a mortality rate of 0% to 0.1% [7]. Table 1 illustrates the major and minor complications associated with FB in 3 studies.

Based on the data from Table 1, it can be deduced that FB is relatively a safe procedure. With careful selection of patients, proper management of sedation, and usage of FB by skilled intensivists or pulmonologists, complications can be as low as 0.02%. Such results may have led to widespread usage of bronchoscopy. Therefore, this paper seeks to ask a provocative question - is it possible that the availability and relative low risk have led to excessive usage of FB? With any diagnostic test, clinicians are faced to answer the following questions: Will the test lead to a change in management? Will the test improve patient outcome? How cost effective is the test? But more importantly, clinicians must ascertain the accuracy of the test in ruling in or out the disease in question. In other words, what is the diagnostic yield of the test as proven by dependable research?

In our study of a sample of 52 patients with normal roentgenogram, the diagnostic power for FB was surprisingly low. FB was statistically significantly found to be non-diagnostic in 42 (80.77%) patients.

Sen, et al. also recognized that FB has a low diagnostic yield in patients with chronic cough [8]. A retrospective study was conducted in patients with unexplained cough that was refractory to medical therapy. Patients with hemoptysis, acquired immunodeficiency syndrome (AIDS) or with roentgenograms suggesting the primary diagnosis were excluded. In this study of 25 patients with chronic cough for 2 - 240 months, FB was diagnostic in only 7 (28%) cases. This leaves an impressive 72% (18) to be non-diagnostic.

As was eluded to earlier, FB is more appropriate in patients suspected of having malignancy or Tuberculosis Infection. Alzeer, et al. demonstrated this in retrospective review over 3 years where diagnostic bronchoscopies were conducted in 592 out of 720 cases [5].

Table 1: Complications and Outcomes associated with FB.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Major</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pneumothorax</td>
<td>5</td>
<td>0.07</td>
<td>0.16</td>
<td>0.6</td>
<td>Chest tube thoracostomy and/or nasal cannula</td>
</tr>
<tr>
<td>Pulmonary hemorrhage (> 50 ml)</td>
<td>-</td>
<td>0.17</td>
<td>0.12</td>
<td>0.3</td>
<td>Intubation and/or topical epinephrine therapy</td>
</tr>
<tr>
<td>Respiratory failure</td>
<td>-</td>
<td>0.31</td>
<td>0.2</td>
<td>-</td>
<td>Intubation</td>
</tr>
<tr>
<td>Sepsis</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Antibiotics</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
<td>0.04</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Minor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypoxemia</td>
<td>14</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>Transient and improved with O2 therapy</td>
</tr>
<tr>
<td>Laryngospasm</td>
<td>-</td>
<td>0.04</td>
<td>0.6</td>
<td>-</td>
<td>Spontaneous resolution and/or usage of IV magnesium</td>
</tr>
<tr>
<td>Sinus Tachycardia</td>
<td>5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Resolved after sedation usage</td>
</tr>
<tr>
<td>Bleeding/Epistaxis</td>
<td>-</td>
<td>0.07</td>
<td>0.02</td>
<td>1.4</td>
<td>FB only on patients with platelets > 60000</td>
</tr>
<tr>
<td>Bronchospasm</td>
<td>3</td>
<td>0.22</td>
<td>0.02</td>
<td>0.4</td>
<td>Resolved with B2 agonist treatment</td>
</tr>
<tr>
<td>Bradycardia</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>0.3</td>
<td>Resolved after sedation usage</td>
</tr>
<tr>
<td>Vomiting</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>FB terminated</td>
</tr>
<tr>
<td>Fits</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Subsided with IV diazepam, FB terminated</td>
</tr>
</tbody>
</table>
Tuberculosis and Malignancy were the two main indications, yielding diagnosis in 67% of suspected Tuberculosis cases and 61.2% of malignancy cases, respectively. It is to be noted this study did not exclude cases with abnormal chest roentgenograms, as was highlighted in our study.

We strongly believe that for patients with chronic cough and normal roentgenogram, the usage of FB will be significantly non-diagnostic and clinicians should entertain the possibility of other noninvasive/minimal invasive testing.

Conclusion

The diagnostic yield of FB with BAL in patients with chronic cough and normal chest x-ray was significantly low. To mitigate this problem it is recommended that FB be performed in a selective patient population. Several studies have reproduced high diagnostic yield of FB with BAL in a patient population with a high prevalence of malignancy and infection such as TB. Though FB is indicated to further evaluate the cause of chronic cough in patients with normal roentgenograms, our experience showed that the yield was surprisingly low. Our results were statistically significant and lead us to question whether FB is actually indicated, given such poor diagnostic yield. Therefore in a patient population of chronic cough with normal roentgenogram, we recommend that clinicians explore other noninvasive or minimally invasive tests while considering their accuracy and cost. In recent research, there has been a great deal of development involving noninvasive biomarkers that further expand our diagnostic means. As many tools are still being evaluated for their efficacy, we recommend the continued exploration of new methods for utilization in chronic cough.

Contributions

All persons who meet authorship criteria are listed as authors, and all authors certify that they have participated sufficiently in the work to take public responsibility for the content, including participation in the concept, design, analysis, writing, or revision of the manuscript.

References

